scholarly journals Differential Prognostic Impact of IDH1 and IDH2 Mutations in Chronic Myelomonocytic Leukemia

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3684-3684
Author(s):  
Connor M. Walsh ◽  
Anthony Hunter ◽  
Terra Lasho ◽  
Christy Finke ◽  
Rami S. Komrokji ◽  
...  

Abstract Introduction: Mutations involving isocitrate dehydrogenase 1/2 (IDH) are known oncogenic drivers in hematological malignancies, conferring neomorphic enzymatic activity to IDH 1/2, resulting in the oncometabolite, 2-hydroxyglutarae (2-HG). 2-HG in turn suppresses TET activity, making IDH and TET2 mutations synthetically lethal and almost mutually exclusive. The frequency of IDH mutations in CMML is <10% and their prognostic impact remains unclear. We carried out this study in a large database of molecularly annotated CMML patients to better define the clinical profile and prognostic impact of these mutations. Methods: After IRB approval, CMML patients from the Mayo Clinic, Minnesota and the Moffitt Cancer Center (MCC), Tampa, Florida, were included in the study. All patients had bone marrow (BM) biopsies with cytogenetics and molecular genetics done either at diagnosis, or at first referral. Clinical and mutational data were abstracted and retrospectively analyzed. Overall survival (OS) was calculated from date of CMML diagnosis to date of death/last follow, while AML-free survival (AML-FS) was calculated from date of CMML diagnosis to date of leukemic transformation (LT). Patients that had undergone allogeneic HCT were excluded from the study (n=3). Statistical analysis was carried out using the Blue Sky software. Results: Six hundred and forty four patients were included in the study (Mayo Clinic-357, MCC- 287), median age 71 years (range, 20-95 years), 67.8% being male. Forty-three (6.7%) patients had IDH mutations, 35 (82%) IDH2 and 8 (18%) IDH1; of which, 34 (97%) involved the IDH2R140 hotspot and 5 (62.5%) involved the IDH1R132 hotspot, respectively. The median variant allele fractions (VAF) for IDH1 mutations was 41% (range, 8-46%) and for IDH2 mutations was 46% (range, 7-70%). There were no significant demographic or clinical differences between IDH mutant and wild type CMML patients, with the exception that IDH mutant CMML patients were less likely to be thrombocytopenic (p=0.006), were less likely to have TET2 co-mutations (14% vs 53.2%; p<0.001) and were more likely to have SRSF2 co-mutations (69.8% VS 40.3%; p<0.001). Importantly there were no differences in proliferative or dysplastic subtypes (p=0.3), cytogenetic (p=0.12) and molecular risk stratifications (p=045). There were also no significant demographic or clinical differences between IDH1 vs IDH2 mutant CMML patients. Six (14%) IDH mutant CMML patients had TET2 co-mutations; 5 (83%) with IDH2R140Q (median VAF-28%;all male) and 1 (17%) with IDH1R132H (VAF-44%;female) (Figure 1). Five (11%) IDH2 mutant patients were treated with enasidenib (IDH2 inhibitor), none with a durable response, while none of the IDH1 mutant patients received targeted therapy. At last follow up (median 18 months), 337 (52%) deaths and 119 (18.5%) LT have been documented, with IDH mutant patients having a higher LT rate (30.2% vs 17.6%, p=0.04) compared to wildtype patients. The median OS of the entire cohort was 35 months, with no difference in OS between IDH mutant and wild type patients (34.5 vs 35 months, p=0.12), with IDH1 mutant patients having a shorter OS in comparison to IDH2 mutant patients (31 vs 37 months; p=0.005- Figure 1). IDH mutant CMML patients also had a shorter AML-FS in comparison to wild type patients (36.6 vs 210 months, p=0.005), with there being no differential impact on AML-FS of IDH1 vs IDH2 mutations (p=0.26, Figure 1). Conclusions: IDH mutations are infrequent in CMML (7%), with IDH2 mutations being more common than IDH1 mutations (80 vs 20%). IDH mutations co-occur very infrequently with TET2 mutations (14%), with IDH mutant patients being less likely to have thrombocytopenia and more likely to have SRSF2 co-mutations. IDH mutations negatively impacting AML-FS without a significant impact on OS. Prospective clinical trials testing the safety and efficacy of IDH1/2 inhibitors in CMML are much needed. Figure 1 Figure 1. Disclosures Komrokji: AbbVie: Consultancy; PharmaEssentia: Membership on an entity's Board of Directors or advisory committees; Taiho Oncology: Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Jazz: Consultancy, Speakers Bureau; Acceleron: Consultancy; BMSCelgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Geron: Consultancy. Al-Kali: Novartis: Research Funding; Astex: Other: Research support to institution. Padron: BMS: Research Funding; Stemline: Honoraria; Taiho: Honoraria; Kura: Research Funding; Incyte: Research Funding; Blueprint: Honoraria. Patnaik: StemLine: Research Funding; Kura Oncology: Research Funding.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 30-31
Author(s):  
Giulia Maggioni ◽  
Cristina Astrid Tentori ◽  
Maria Teresa Voso ◽  
Sonja Heibl ◽  
Klaus H. Metzeler ◽  
...  

Introduction. Mutations in genes encoding the metabolic enzymes isocitrate dehydrogenase (IDH) 1 and 2 are found in 10-20% of patients with acute myeloid leukemia (AML). Recently, IDH inhibitors have shown good clinical response in patient's refractory to standard treatments, providing evidence for a new treatment paradigm. Comprehensive real-world studies are needed to explore genotype-to-phenotype correlations and prognosis of IDH mutated AML, which may influence targeted treatment strategies. Patients. From a retrospective, European, real-word population (ClinicalTrials.gov Identifier: NCT04369287) we studied 477 IDH mutated patients and 954 IDH wild type patients matched for age, sex and type of treatment with a 1:2 ratio. Results. Median age of IDH mutated patients was 67 years; IDH1 mutations were found in 202 patients (89% carried R132 mutation), while IDH2 mutations were found in 275 cases (51% and 28% carried R140 and R172 mutations, respectively). At diagnosis, IDH mutated patients had lower neutrophil and higher platelet count and higher percentage of marrow blasts (P<0.001). IDH mutations were more frequently observed in de novo AML vs. AML from previous myeloid malignancy (P=0.043). Considering cytogenetic risk according to ELN criteria, the great majority of IDH1 and IDH2 mutated patients had an intermediate cytogenetic risk (84% and 86%, respectively, P<.001, most of them showing a normal karyotype). Considering IDH1 vs. IDH2 mutated population, deletion of chromosome 7 was more frequently reported in IDH2 mutated patients (P=.001). We then analysed the most common co-mutational patterns in IDH mutated patients. A total of 53% of IDH1 mutated patients carried NPM1 mutations (without FLT3 mutations), while the majority of IDH2 mutated patients had wild type NPM1 gene (P<.001). IDH2 mutated patients more frequently presented with co-mutation in FLT3 gene (P<.001); among IDH2/FLT3 co-mutated patients, the great majority of cases carried the R140 mutation (P<.001). ASXL1 mutations were also more frequently associated with IDH2 mutations (P=.029). Most patients with CEBPA biallelic mutations carried IDH1 or 2 mutations (66%, P=.01), while core binding factor translocations, and mutations in TP53 and RUNX1 were rarely associated with IDH1 or 2 mutations. Median overall survival from diagnosis (OS) was 14 months for IDH1 mutated patients, 23 for IDH2 mutated patients and 19 for IDH wild type patients (P<.001, figure 1); the independent negative effect on OS for IDH1 mutations was confirmed in a multivariable analysis on the whole study population including age, sex, ELN risk group, and type of treatment as covariates (HR was 1.65 vs. wild type population and 1.36 vs. IDH2 mutated patients, P<.001), as well as in a specific analysis focused on patients belonging to intermediate ELN risk category (HR 1.75 vs. wild type population, P<.001). Focusing on different mutational hotspots, survival analysis confirmed that IDH1 R132 mutation was associated with worse prognosis among IDH mutated patients (P<.001). Moreover, we observed a reduced relapse-free survival (RFS) for both IDH1 and 2 mutated patients vs. wild type patients (P<.001, figure 1). Multivariable analysis confirmed worse RFS for IDH1 and 2 patients vs. wild type patients (HR 3.8 and 1.4, respectively, P<.001), as well as for IDH1 vs. IDH2 mutated patients (HR 1.5, P<.001). IDH mutated patients receiving hypomethylating agents (n=211) had a lower response rate vs. wild type patients (56% vs. 36% of treatment failure, respectively, P=.04), while no significant different probability of response to intensive chemotherapy was noticed. In patients who received allogeneic transplantation (n=345), IDH1 mutated patients shower higher relapse rate vs. wild type and IDH2 mutated patients (53% vs. 34%, P<.001). Conclusion. In a real world context, AML patients with IDH1 and 2 mutations have high marrow blasts percentage, frequently present normal karyotype and show specific co-mutational patterns with respect to NPM1, FLT3 and ASXL1 genes. IDH1 mutations were an independent predictor of unfavorable outcome with high rate of disease recurrence under currently available treatment options, and could be considered as an additional marker to improve personalized prognostic assessment within ELN risk groups. Dissection of prognosis of IDH mutated AML may influence targeted treatment strategies in clinical practice. Disclosures Voso: Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Heibl:Takeda: Honoraria; AOP orphan: Consultancy, Honoraria, Research Funding; BMS/celgene: Consultancy, Honoraria, Research Funding; novartis: Consultancy, Honoraria. Metzeler:Astellas: Honoraria; Daiichi Sankyo: Honoraria; Otsuka Pharma: Consultancy; Pfizer: Consultancy; Jazz Pharmaceuticals: Consultancy; Novartis: Consultancy; Celgene: Consultancy, Honoraria, Research Funding. Thiede:AgenDix GmbH: Other: Co-owner and CEO. Fracchiolla:ABBVIE: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel, accommodations, expenses; Gilead: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel, accommodations, expenses, Speakers Bureau; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel, accommodations, expenses, Speakers Bureau; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel, accommodations, expenses, Speakers Bureau. Todisco:Jannsen, Abbvie, Jazz: Membership on an entity's Board of Directors or advisory committees. Passamonti:Novartis: Speakers Bureau; BMS: Speakers Bureau; Roche: Other: Support of parent study and funding of editorial support.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1274-1274
Author(s):  
Warren Fiskus ◽  
Christopher Peter Mill ◽  
Vrajesh Karkhanis ◽  
Bernardo H Lara ◽  
Prithviraj Bose ◽  
...  

LSD1 (KDM1A) is an FAD-dependent amine-oxidase that demethylates mono and dimethyl histone H3 lysine 4 (H3K4Me1 and H3K4Me2), which regulates active enhancers and transcription in AML stem/progenitor cells (LSCs). LSD1 is part of the repressor complexes involving HDACs, CoREST or GFI1, mediating transcriptional repression and differentiation block in LSCs that persist in the minimal residual disease (MRD) following attainment of clinical complete remission, leading to relapse and poor outcome in AML. In AML LSCs, genetic alterations and epigenetic dysregulation of enhancers affect levels of myeloid transcriptional regulators, including c-Myc, PU.1, GATA 2 and CEBPα, and their target genes, which are involved in differentiation block in LSCs. Our present studies demonstrate that CRISPR/Cas9-mediated knockout of LSD1 in the AML OCI-AML5 cells significantly increased the permissive H3K4Me2/3-marked chromatin, reduced H3K27Ac occupancy at super-enhancers and enhancers (SEs/Es) (by ChIP-Seq), especially of c-Myc and CDK6, as well as repressed CoREST, c-Myc, CDK6, and c-KIT, while inducing p21, CD11b, and CD86 levels (log2 -fold change by RNA-Seq, and protein expression by Western analyses). This led to significant growth inhibition, differentiation and loss of viability of OCI-AML5 and patient-derived AML blasts (p < 0.01). Similar effects were observed following exposure of OCI-AML5 (96 hours) to tet-inducible shRNA to LSD1. Knock-down of GFI1 by shRNA (by 90%) also inhibited growth and induced differentiation, associated with upregulation of PU.1, p21 and CD11b levels. Treatment with irreversible (INCB059872, 0.25 to 1.0 µM) or reversible (SP2577, 1.0 to 2.0 µM) LSD1 inhibitor (LSD1i) inhibited binding of LSD1 to CoREST, and significantly induced growth inhibition, differentiation and loss of viability (over 96 hours) of the OCI-AML5, post-myeloproliferative neoplasm (post-MPN) sAML SET2 and HEL92.1.7 cells, as well as patient-derived AML and post-MPN sAML blasts (p < 0.01). Co-treatment with INCB059872 and ruxolitinib synergistically induced apoptosis of the post-MPN sAML SET2 and HEL92.1.7 cells and patient-derived CD34+ post-MPN sAML blasts (combination indices < 1.0). Notably, pre-treatment with the LSD1i for 48 hours significantly re-sensitized ruxolitinib-persister/resistant SET2 and HEL92.1.7 cells to ruxolitinib (p < 0.001). We previously reported that treatment with the BET inhibitor (BETi) JQ1 or OTX015 represses SE/E-driven AML-relevant oncogenes including MYC, RUNX1, CDK6, PIM1, and Bcl-xL, while inducing p21 and p27 levels in post-MPN sAML blasts (Leukemia 2017;31:678-687). This was associated with inhibition of colony growth and loss of viability of AML and post-MPN sAML blasts (p < 0.01). Here, we determined that INCB059872 treatment induced similar levels of lethality in BETi-sensitive or BETi-persister/resistant AML and post-MPN sAML cells. Since BETi treatment also depleted LSD1 protein levels, co-treatment with the BETi OTX015 and LSD1i INCB059872 or SP2577 induced synergistic lethality in AML and post-MPN sAML blasts (combination indices < 1.0). Co-treatment with INCB059872 (1.5 mg/kg) and OTX015 (50 mg/kg) both orally for 21 days, compared to each agent alone or vehicle control, significantly reduced the sAML burden and improved survival of immune-depleted mice engrafted with HEL92.1.7 or HEL92.1.7/OTX015-resistant-GFP/Luc sAML xenografts (p < 0.01). Collectively, these findings strongly support further in vivo testing and pre-clinical development of LSD1i-based combinations with ruxolitinib against post-MPN sAML and with BETi against AML or post-MPN sAML cells. Disclosures Bose: CTI BioPharma: Research Funding; Astellas: Research Funding; NS Pharma: Research Funding; Promedior: Research Funding; Constellation: Research Funding; Incyte Corporation: Consultancy, Research Funding, Speakers Bureau; Celgene Corporation: Consultancy, Research Funding; Blueprint Medicine Corporation: Consultancy, Research Funding; Kartos: Consultancy, Research Funding; Pfizer: Research Funding. Kadia:Amgen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Jazz: Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Research Funding; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; AbbVie: Consultancy, Research Funding; Bioline RX: Research Funding; Genentech: Membership on an entity's Board of Directors or advisory committees. Bhalla:Beta Cat Pharmaceuticals: Consultancy. Khoury:Stemline Therapeutics: Research Funding; Angle: Research Funding; Kiromic: Research Funding. Verstovsek:Ital Pharma: Research Funding; Pharma Essentia: Research Funding; Astrazeneca: Research Funding; Incyte: Research Funding; CTI BioPharma Corp: Research Funding; Promedior: Research Funding; Gilead: Research Funding; Celgene: Consultancy, Research Funding; NS Pharma: Research Funding; Protaganist Therapeutics: Research Funding; Constellation: Consultancy; Pragmatist: Consultancy; Sierra Oncology: Research Funding; Genetech: Research Funding; Blueprint Medicines Corp: Research Funding; Novartis: Consultancy, Research Funding; Roche: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1835-1835 ◽  
Author(s):  
Katrina M Piedra ◽  
Hani Hassoun ◽  
Larry W. Buie ◽  
Sean M. Devlin ◽  
Jessica Flynn ◽  
...  

Introduction Immunomodulatory agents (IMiD's) are associated with an increased risk of venous thromboembolism (VTE), particularly when combined with high dose steroids. Studies evaluating the use of lenalidomide-bortezomib-dexamethasone (RVD) and carfilzomib-lenalidomide-dexamethasone (KRD) in the frontline setting for multiple myeloma (MM) have reported a 6% and 24% incidence of thrombosis, respectively, despite primary thrombotic prophylaxis with aspirin (ASA) (Richardson, et al. Blood. 2010; Korde, et al. JAMA Oncol 2015). Recent data, including the Hokusai VTE Cancer Trial, have suggested that safety and efficacy of direct oral anticoagulants (DOACs) are preserved in the setting of treatment of solid malignancy-associated thrombosis (Raskob, et al. N Engl J Med. 2018; Mantha, et al. J Thromb Thrombolysis. 2017). Despite this data, there is limited experience and use of DOACs in prevention of thromboses in the setting of hematologic malignancies, specifically MM. After careful review of literature, since early 2018, we changed our clinical practice and routinely placed newly diagnosed MM (NDMM) patients receiving KRD at Memorial Sloan Kettering Cancer Center (MSKCC) on concomitant rivaroxaban 10 mg once daily, regardless of VTE risk stratification. In the following abstract, we present VTE rates and safety data for newly diagnosed MM patients receiving RVD with ASA vs. KRD with ASA vs. KRD with rivaroxaban prophylaxis. Methods This was an IRB-approved, single-center, retrospective chart review study. All untreated patients with newly diagnosed MM, receiving at least one cycle of RVD or KRD between January 2015 and October 2018 were included. The period of observation included the time between the first day of therapy until 90 days after completion of induction therapy. Patients were identified by querying the pharmacy database for carfilzomib or bortezomib administration and outpatient medication review of thromboprophylaxis with rivaroxaban or ASA. VTE diagnoses were confirmed by ICD-10 codes and appropriate imaging studies (computed tomography and ultrasound). Descriptive statistics were performed. Results During the observation period, 241 patients were identified to have received RVD or KRD in the frontline (99 RVD with ASA; 97 KRD with ASA; 45 KRD with rivaroxaban). Baseline characteristics were well distributed among the three arms, with a median age of 60 (30-94) in the RVD ASA arm, 62 (33-77) in the KRD ASA arm, and 60 (24-79) in the KRD rivaroxaban arm. Patients had International Staging System (ISS) stage 3 disease in 13% (N=13), 9.3% (N=9), and 11% (N=5) of the RVD ASA, KRD ASA, and KRD rivaroxaban arms, respectively. Median weekly doses of dexamethasone were higher in both KRD arms, 40 mg (20-40) vs. 20 mg (10-40) in the RVD ASA arm. The average initial doses of lenalidomide were 22 mg in the RVD ASA arm compared to 25 mg in both the KRD ASA and KRD rivaroxaban arms. After querying the pharmacy database, no patients were identified to have a history or concomitant use of erythropoietin stimulating agent (ESA) use. Treatment-related VTE's occurred in 4 patients (4.0%) in the RVD ASA arm, 16 patients (16.5%) in the KRD ASA arm, and in 1 patient (2.2%) in the KRD rivaroxaban arm. Average time to VTE was 6.15 months (Range 5.42, 9.73) after treatment initiation in the RVD ASA group, while it was 2.61 months (Range 0.43, 5.06) in the KRD ASA group and 1.35 months in the KRD rivaroxaban group. Minor, grade 1 bleeding events per the Common Terminology Criteria for Adverse Events (CTCAE) were identified in 1 (1.1%) patient in the RVD ASA arm, 5 (5.2%) patients in the KRD ASA arm, and 1 (2.2%) patient in the KRD rivaroxaban arm. Conclusion More efficacious MM combination therapies have been found to increase the risk of VTE when using ASA prophylaxis, indicating better thromboprophylaxis is needed. We found patients receiving ASA prophylaxis with KRD were more likely to experience a VTE and these events occurred earlier compared to patients receiving ASA prophylaxis with RVD. Importantly, the rate of VTE was reduced to the same level as ASA prophylaxis with RVD when low-dose rivaroxaban 10 mg daily was used with KRD, and without necessarily increasing bleeding risk. Our retrospective data support the development of prospective clinical trials further investigating DOAC use in thromboprophylaxis for NDMM patients receiving carfilzomib-based treatments. Figure Disclosures Hassoun: Novartis: Consultancy; Janssen: Research Funding; Celgene: Research Funding. Lesokhin:BMS: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria; Janssen: Research Funding; GenMab: Consultancy, Honoraria; Serametrix Inc.: Patents & Royalties; Genentech: Research Funding; Juno: Consultancy, Honoraria. Mailankody:Juno: Research Funding; Celgene: Research Funding; Janssen: Research Funding; Takeda Oncology: Research Funding; CME activity by Physician Education Resource: Honoraria. Smith:Celgene: Consultancy, Patents & Royalties, Research Funding; Fate Therapeutics and Precision Biosciences: Consultancy. Landgren:Theradex: Other: IDMC; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Merck: Other: IDMC; Sanofi: Membership on an entity's Board of Directors or advisory committees; Adaptive: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. OffLabel Disclosure: Off-label use of rivaroxaban for outpatient prophylaxis of venous thromboembolism (VTE) will be explicitly disclosed to the audience.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3306-3306
Author(s):  
Yi L. Hwa ◽  
Qian Shi ◽  
Shaji Kumar ◽  
Martha Q. Lacy ◽  
Morie A. Gertz ◽  
...  

Abstract Introduction: A recent study revealed an antiproliferative and apoptotic effect of propranolol on multiple myeloma (MM) cells. Our previous small matched case-control study showed longer survival in patients with propranolol and other beta-blockers (BB) intake than those without. This larger scale study was conducted to confirm the positive association of BB and MM survival. Methods: We identified 1971 newly diagnosed pts seen at Mayo Clinic between 1995 and 2010. Cardiac medication usage after diagnosis of MM was extracted from patient records and categorized based on BB intake. Cause of death was collected with death due to MM as the primary interest event and death due to cardiac disease or other reasons as competing risk events. The primary outcomes were MM disease-specific survival (DSS) and overall survival (OS). Cumulative incidence functions and Kaplan-Meier method were used to estimate the 5-year cumulative incidence rate (CIR) of MM death and OS rate, respectively. DSS and OS were compared by Gray's test and log-rank test, respectively. Multivarable Cox proportional hazard models were used to estimate the adjusted cause-specific HR (HRCSadj.) and hazard ratio (HRadj.) for DSS and OS, respectively, adjusting for demographics, disease characteristics, diagnosis year, and various chemotherapies. Results: 930 (47.2%) of MM patients had no intake of any cardiac medications; 260 (13.2%) had BB only; 343 (17.4%) used both BB / non-BB cardiac medications; and 438 patients (22.2%) had non-BB cardiac drugs. Five-year CIR of MM death and OS rate were shown in table. Superior MM DSS was observed for BB only users, compared to patients without any cardiac drugs (HRCSadj., .53, 95% confidence interval [CI], .42-.67, padj.<.0001) and non-BB cardiac drugs users (HRCSadj., .49, 95% CI, .38-.63, padj.<.0001). Patients received both BB and other cardiac drugs also showed superior MM DSS than non-cardiac drugs users (HRCSadj.., .54, 95% CI, .44-.67, padj.<.0001) and non-BB cardiac drug users. (HRCSadj., .50, 95% CI, .40-.62, padj.<.0001). MM DSS does not differ between BB users with and without other cardiac drugs (padj.=0.90). Multivariable analysis showed the same pattern for OS. None of the MM therapies impacted the differences in DSS and OS among BB intake groups (interaction padj.>.60). Conclusion: MM patients with BB intake showed reduced risk of death due to MM and overall mortality compared to patients who used non-BB cardiac or never used cardiac drugs. The result warrants further investigation for anti-cancer effect of BB in MM. Disclosures Shi: Mayo Clinic: Employment. Kumar:Onyx: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Array BioPharma: Consultancy, Research Funding; Sanofi: Consultancy, Research Funding; Skyline: Honoraria, Membership on an entity's Board of Directors or advisory committees; AbbVie: Research Funding; Glycomimetics: Consultancy; Janssen: Consultancy, Research Funding; Noxxon Pharma: Consultancy, Research Funding; Millennium: Consultancy, Research Funding; BMS: Consultancy; Kesios: Consultancy. Gertz:NCI Frederick: Honoraria; Celgene: Honoraria; Med Learning Group: Honoraria, Speakers Bureau; Research to Practice: Honoraria, Speakers Bureau; Alnylam Pharmaceuticals: Research Funding; Novartis: Research Funding; Prothena Therapeutics: Research Funding; Ionis: Research Funding; Annexon Biosciences: Research Funding; GSK: Honoraria; Sandoz Inc: Honoraria. Kapoor:Celgene: Research Funding; Amgen: Research Funding; Takeda: Research Funding. Dispenzieri:pfizer: Research Funding; Celgene: Research Funding; Alnylam: Research Funding; Jannsen: Research Funding; GSK: Membership on an entity's Board of Directors or advisory committees; Prothena: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4024-4024
Author(s):  
Michael Lubbert ◽  
Stefan Suciu ◽  
Uwe Platzbecker ◽  
Aristoteles A.N. Giagounidis ◽  
Dominik Selleslag ◽  
...  

Abstract Abstract 4024 Background: The hypomethylating agents 5-azacytidine (Vidaza) and 5-aza-2′-deoxycytidine (Decitabine, DAC) are active in different MDS subtypes. Compared to other response predictors to DAC, prior MDS duration has received only limited attention (1, 2), with conflicting results. Based on our finding that long duration of MDS prior to DAC treatment may be a novel factor linked to a better outcome (1), we now assess its value in the phase III trial 06011 (DAC versus BSC [3]). Immediate enrolment after diagnosis was allowed in that trial, median MDS duration prior to randomization thus only 3 months (mths). Methods: Comparison of progression-free (PFS), AML-free (AMLFS) and overall survival (OS) according to MDS duration >= vs. <3 mths in 233 patients (pts) with higher-risk MDS (median age 70 years) randomized to DAC (n=119) or BSC (n=114). Comparisons by long-rank test and multivariate analyses by Cox regression (Performance Status [PS], cytogenetics and IPSS high risk N/Y) were performed retrospectively: MDS duration had not yet been known as possible stratification factor at time of study initiation, and the trial thus not been powered to detect significant differences with regard to this discriminator. Results: A better prognosis of patients with MDS duration >=3 vs <3 mths was observed in DAC arm (B vs A) and BSC arm (D vs C). Conversely, DAC yielded better results than BSC in each MDS duration group: <3 mths (A vs C) and >=3 mths (B vs D). In both arms (n=233), Mult. indicated that MDS duration (>=3 vs <3 mths) adjusted for treatment, PS, cytogenetics and IPSS group was an independent prognostic factor regarding PFS (HR=0.75, 95%CI 0.58–0.99), AMLFS (HR=0.68, 95%CI 0.51–0.90), and OS (HR=0.75, 95%CI 0.56–0.99). The tests for interaction treatment × duration of MDS were not significant for 3 endpoints: PFS (p=0.38), AMLFS (p=0.90), OS (p=0.67). Conclusion: In intermediate-2 and high-risk MDS pts, long duration from MDS diagnosis to start of DAC or BSC appeared to be associated with a better outcome. This finding is in sharp contrast to the adverse prognostic impact of antecedent disease duration in patients who received intensive chemotherapy (4). It is supported by a similar analysis of pts with AML from MDS treated on the 00331 DAC phase II multicenter trial: those with longer MDS duration prior to DAC also had better outcome (5). Application of this discriminator in the evaluation also of other DAC schedules and MDS treatments therefore appears warranted. References: 1. Wijermans et al., Ann. Hematol. 84 (suppl. 1): 9–14, 2005 2. Kantarjian et al., Cancer 109:265-73, 2007 3. Wijermans et al., Blood 112 (suppl. 1): abs. 226, 2008 4. Estey et al., Blood 90:2969-77, 1997 5. Lübbert, Schmoor et al., abstract submitted, ASH 2010 Disclosures: Platzbecker: Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Salih:Pfizer: Research Funding. Muus:Celgene: Membership on an entity's Board of Directors or advisory committees; Alexion: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2940-2940
Author(s):  
Ruben Niesvizky ◽  
Luciano J Costa ◽  
Nisreen A. Haideri ◽  
Georg Hess ◽  
Seema Singhal ◽  
...  

Abstract Abstract 2940 Background: PD 0332991 is an orally bioavailable selective inhibitor of cyclin-dependent kinase (CDK) 4/6. Inhibition of CDK4/6 phosphorylation of retinoblastoma (Rb) induces prolonged early G1 cell cycle arrest (pG1) and synchronous progression to S phase (pG1-S) upon withdrawal, which sensitizes human multiple myeloma (MM) cells to killing by bortezomib (B) or dexamethasone (D) in vitro and in animal models. Based on these observations, a phase 1/2 study in combination with B plus D in patients (pts) with relapsed and/or refractory MM was initiated. The phase 1 part of the study (completed) determined the recommended phase 2 dose and schedule to be PD 0332991 100 mg QD 12 days on followed by 9 days off treatment in a 21-day cycle with intravenous B 1.0 mg/m2 plus oral D 20 mg administered on Days 8 and 11 in pG1 and 15 and 18 in pG1-S (Niesvizky et al. ASH 2010). We present preliminary data from the phase 2 part of the study. Methods: Pts with Rb protein-positive, measurable (as defined by International Myeloma Working Group [IMWG]) progressive, relapsed or refractory MM after ≥1 prior treatment were eligible. Prior B was allowed only if there was a response and disease progression occurred off therapy. Pts received oral PD 0332991 once daily on Days 1–12 in a 21-day cycle in combination with intravenous B 1.0 mg/m2 plus oral D 20 mg administered on Days 8, 11, 15, and 18. The primary endpoint is overall response rate (ORR); secondary endpoints include time to progression (TTP), progression-free survival (PFS), overall survival, duration of response, and safety. PD 0332991-mediated inhibition of CDK4/6-specific phosphorylation of Rb (pSRb) and Ki67 in bone marrow MM cells were also assessed. The phase 2 part of the study is a Simon Two-Stage Minimax design; 25 response evaluable patients were to be enrolled into the first stage. Results: 39 pts have been tested for Rb and 36 pts (92%) were positive. Of the 36 pts, 30 pts have been enrolled to date including 2 pts who did not receive the study treatment, and 23 pts are considered response evaluable as of the data cut-off. 56% of pts had an Eastern Cooperative Oncology Group performance status (ECOG PS) of 1 and 8% had ECOG PS of 2. At baseline, median β2 microglobulin was 3.1 (range 1.6–26.2), median hemoglobin was 11.2 (7.2–13.6), median calcium was 9.4 (8.7–11.9). The median number of prior therapies was 2 (range 1–8); 55% had received prior B. Sixteen pts have discontinued (9 due to progressive disease, 3 due to AE, 2 consent withdrawal, and 2 not treated). The most common treatment-related AEs were thrombocytopenia (44%), nausea (20%), anemia, constipation, fatigue, and neutropenia (all 16%); 32% of pts reported grade ≥3 thrombocytopenia. IHC data showed on-treatment reduction in pSRb and Ki67 in MM cells from bone marrow of 3/3 patients with available samples. To date, 1 pt achieved a complete response (CR), 1 achieved a very good partial response (VGPR), 1 partial response (PR), 1 minor response (MR), and 5 stable disease (SD); 6 pts are too early for assessment. Conclusions: To date, the combination of PD 0332991 and B plus D has shown response in 4 pts with relapsed/refractory MM. The most commonly reported AEs were cytopenias, consistent with the known safety profiles of PD 0332991 and B. PD 0332991 inhibited phosphorylation of Rb and cell cycle progression in MM cells. The accrual to stage 1 is ongoing. Updated efficacy and safety data will be presented. Disclosures: Niesvizky: Millennium Pharmaceuticals: Consultancy; Millennium Pharmaceuticals: Research Funding; Millennium Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees. Hess:Pfizer Oncology: Consultancy; Pfizer Oncology: Research Funding; Pfizer Oncology: Membership on an entity's Board of Directors or advisory committees. Spicka:Janssen-Cilag: Consultancy; Celgene: Consultancy; Celgene: Research Funding; Janssen-Cilag: Honoraria; Celgene: Honoraria; Janssen-Cilag: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Jakubczak:Pfizer Oncology: Employment; Pfizer Oncology: Equity Ownership. Kim:Pfizer Oncology: Equity Ownership; Pfizer Oncology: Employment. Randolph:Pfizer Oncology: Employment; Pfizer Oncology: Equity Ownership. Chen-Kiang:Pfizer Oncology: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 782-782
Author(s):  
Alice Fabarius ◽  
Armin Leitner ◽  
Andreas Hochhaus ◽  
Martin C Müller ◽  
Claudia Haferlach ◽  
...  

Abstract Abstract 782 Introduction: Current evidence indicates that acquired genetic instability in chronic myeloid leukemia (CML) as a consequence of the t(9;22)(q34;q11) and the resulting BCR-ABL fusion causes the continuous acquisition of additional chromosomal aberrations (ACA) and mutations and thereby progression to accelerated phase and blast crisis (BC). Around 10 –12% of patients in chronic phase (CP) CML have ACA already at diagnosis. During the course of the disease this number rises to 80% in BC. Acquisition of ACA during treatment is considered as a poor prognostic indicator, whereas the impact of ACA at diagnosis is controversial. Patients and methods: Clinical and cytogenetic data of 1151 out of 1311 patients with Philadelphia and BCR-ABL positive CP CML randomized until 2009 to the German CML-Study IV were investigated in a prospective study. There were 459 females (40%) and 692 males (60%). Median age was 53 years (range, 16–88). All patients were treated with imatinib alone or in combination with interferon alpha or araC. The impact of ACA at diagnosis on time to complete cytogenetic and major molecular remission (CCR, MMR) and progression-free and overall survival (PFS, OS) was investigated. Written informed consent was obtained from all patients prior to entering the study. Results: At diagnosis 1003/1151 patients (87%) had the standard t(9;22)(q34;q11) only and 69 patients (6.0%) had a variant t(v;22). In 60 of 69 patients with t(v;22), only one further chromosome was involved in the translocation, in 7 patients two, and in 2 patients three further chromosomes were involved. Seventy-nine patients (6.9%) had ACA. Of these, 38 patients (3.3%) lacked the Y chromosome (-Y) and 41 patients (3.6%) had ACA except -Y. Sixteen of the 41 patients had major-route ACA (+8, i(17)(q10), +der(22)t(9;22)(q34;q11), ider(22)(q10)t(9;22)(q34;q11)) and 25 minor-route ACA [e.g. t(3;12), t(4;6), t(2;16), t(1;21)]. In patients with major-route ACA, trisomy 8 was the most frequent additional alteration (n=9). +der(22)t(9;22)(q34;q11) was observed in six patients, isochromosome (17)(q10) in five patients and ider(22)(q10)t(9;22)(q34;11) in three patients. After a median observation time of 5.3 years for patients with t(9;22), t(v;22), -Y, minor- and major-route ACA median times to CCR were 1.01, 0.95, 0.98, 1.49 and 1.51 years, to MMR 1.40, 1.58, 1.65, 2.49 and > 7 years, 5-year PFS 90%, 81%, 88%, 96% and 50% and 5-year OS 92%, 87%, 91%, 96% and 53%, respectively. In patients with major-route ACA times to CCR and MMR were longer. PFS and OS were shorter (p<0.001) than with standard t(9;22)(q34;q11). Loss of Y chromosome had no influence on time to CCR or MMR, PFS and OS. Conclusion: We conclude that the prognostic impact of additional cytogenetic findings at diagnosis of CML is heterogeneous and consideration of their types may be important. Major-route ACA identify a small group of patients with significantly poorer prognosis as compared to all other patients requiring early and more intensive intervention such as stem cell transplantation. Disclosures: Hochhaus: Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees; Ariad: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Kneba:Hoffmann La Roche: Honoraria.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 270-270
Author(s):  
Julia E. Maxson ◽  
Jason Gotlib ◽  
Daniel A. Pollyea ◽  
Angela G. Fleischman ◽  
Anupriya Agarwal ◽  
...  

Abstract Background We have recently identified mutations in Colony Stimulating Factor 3 Receptor (CSF3R, aka GCSFR) in ∼60% of chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML) patients (Maxson et al, NEJM 2013). These mutations fall into two categories: membrane proximal point mutations (the most common of which is T618I) and truncation mutations. Drug and siRNA screening of primary patient samples revealed that the two classes of CSF3R mutations exhibit differential sensitivity to inhibition of SRC or JAK kinases. CSF3R truncation mutations conferred sensitivity to SRC family kinase inhibition, while CSF3R membrane proximal mutations (T618I) conferred sensitivity to JAK kinase inhibition. A patient with the T618I membrane proximal mutation responded to treatment with the FDA approved JAK inhibitor, ruxolitinib. CSF3R truncation mutations have also been observed in a subset of severe congenital neutropenia patients who are at high risk for development of acute myeloid leukemia. Prior studies in this context have shown that truncation mutations result in loss of endocytic and degradation motifs, leading to increased expression of the receptor. The differences in signaling and drug sensitivity of these mutation classes suggest that membrane proximal mutations may activate CSF3R signaling through a distinct, as-yet unknown mechanism. Furthermore, a subset of CNL patients harbor both membrane proximal and truncation mutations on the same allele, though the consequences of these compound mutations are not yet known. Methods CSF3R expression level and banding pattern were assessed by immunoblot of lysates from 293T17 cells transfected with wild type, membrane proximal mutant, or truncation mutant CSF3R. O-linked glycosylation was removed from the receptor by treatment with O-glycosidase and neuraminidase. Ligand independence of the CSF3R mutants was analyzed in murine interleukin-3 (IL3)-dependent Ba/F3 cells. CSF3R dimerization was assessed by co-transfecting CSF3R-Flag and CSF3R-V5 tagged constructs and then immunoprecipitating CSF3R-Flag and detecting co-immunoprecipitation of the CSF3R-V5 by immunoblot. Transforming potential of the CSF3R compound mutations relative to the corresponding point or truncation mutations was assessed by analyzing IL3-independent growth of Ba/F3 cells or mouse bone marrow colony formation. Results To better understand the functional and biochemical differences between membrane proximal and truncation mutant CSF3R, we examined transformation potential, requirement for ligand, and expression patterns in Ba/F3 and 293T17 cells. We found membrane proximal mutations to exhibit rapid transformation potential and ligand independence, while truncation mutations exhibited delayed transformation and ligand hypersensitivity. Unlike the truncation mutations, which induce dramatic overexpression of CSF3R, the T618I mutation did not result in overexpression of the receptor but instead induced a shifted banding pattern, indicative of altered protein modification. We examined the amino acid sequence surrounding the membrane proximal mutations and found residue T618 to be part of a consensus motif for O-glycosylation, wherein wild type CSF3R is O-glycosylated and the T618I mutation abrogates this O-glycosylation event. Furthermore, the T618I mutation exhibited increased receptor dimerization compared to wild type CSF3R, which likely explains its ligand independence. Finally, we found that CSF3R compound mutations have increased transforming potential in Ba/F3 and murine bone marrow colony assays compared with either class of single mutation, further underscoring the different mechanisms of action of the membrane proximal and truncation mutations. Conclusion CSF3R represents a promising therapeutic target for patients with CNL. We show that T618I, the most common CSF3R mutation in CNL, is part of an O-linked glycosylation site. Mutation of this residue leads to loss of O-linked glycosylation and represents a novel mechanism of homodimeric cytokine receptor activation. CSF3R compound mutations are more rapidly transforming relative to the membrane proximal or truncation mutations alone, warranting their further investigation for patient prognosis and therapy. Disclosures: Off Label Use: Ruxolitinib - a JAK1/2 inhibitor that we propose can be used off-label for disease management of CSF3R-mutant neutrophilic leukemia. Gotlib:Incyte: Membership on an entity’s Board of Directors or advisory committees, Research Funding, Travel Support Other. Fleischman:Incyte: Speakers Bureau. Collins:Genoptix: Membership on an entity’s Board of Directors or advisory committees. Oh:Incyte Corporation: Membership on an entity’s Board of Directors or advisory committees, Research Funding, Speakers Bureau. Deininger:Novartis: Advisory Boards, Advisory Boards Other, Consultancy, Research Funding; Ariad Pharmaceuticals: Advisory Boards, Advisory Boards Other, Consultancy; Bristol-Myers Squibb: Advisory Boards Other, Consultancy, Research Funding; Celgene: Research Funding; Gilead Sciences: Research Funding. Druker:Bristol-Myers Squibb: PI or co-investigator on BMS clinical trials. OHSU and Dr. Druker have a financial interest in MolecularMD. OHSU has licensed technology used in some of these clinical trials to MolecularMD. Potential conflicts of interest are managed by OHSU. Other; Novartis: PI or co-investigator on Novartis clinical trials. OHSU and Dr. Druker have a financial interest in MolecularMD. OHSU has licensed technology used in some of these clinical trials to MolecularMD. Potential conflicts of interest are managed by OHSU., PI or co-investigator on Novartis clinical trials. OHSU and Dr. Druker have a financial interest in MolecularMD. OHSU has licensed technology used in some of these clinical trials to MolecularMD. Potential conflicts of interest are managed by OHSU. Other; Incyte: PI or co-investigator on clinical trials., PI or co-investigator on clinical trials. Other. Tyner:Incyte Corporation: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1992-1992 ◽  
Author(s):  
Eugen Tausch ◽  
Christina Galler ◽  
Richard Schlenk ◽  
Peter Hillmen ◽  
Fritz Offner ◽  
...  

Abstract BACKGROUND: Genomic aberrations and IGHV mutation status are established prognostic factors in CLL. With TP53, NOTCH1, SF3B1, ATM, MYD88, FBXW7, BIRC3 and POT1 recurrently mutated genes were found in CLL and were discussed to associate with disease characteristics and to affect therapy efficacy and outcome. METHODS: We assessed the incidence and impact of gene mutations in the COMPLEMENT1 trial (1st line Chl vs. O-Chl). Pretreatment samples were available from 376 patients (84.1%) and this cohort was representative of the full trial population. Mutations were analyzed by amplicon-based targeted NGS using Illumina Miseq for all coding exons (TP53, ATM, MYD88, FBXW7, BIRC3 and POT1) or hotspot exons (NOTCH1, SF3B1). Additionally, the exact variant frequency was determined. RESULTS: The incidences of gene mutations were: TP53 8.2%, NOTCH1 14.9%, SF3B1 14.1%, ATM 10.9%, MYD88 2.7%, FBXW7 3.5%, POT1 7.7%, and BIRC3 2.7%. Regarding baseline characteristics, we found significant associations: TP53mut with high ß2MG (p=0.01), 17p- (p<0.01), and unmutated IGHV (p=0.01); ATMmut with high WBC (p=0.02), and 11q- (p<0.01); MYD88mut with mutated IGHV (p=0.02); FBXW7mut with 17p- (p=0.02), and +12q (p<0.01). BIRC3mut was only present in IGHV unmutated cases (p<0.01), was more frequent in 11q- (p<0.01), +12q (p=0.05), and in cases with NOTCH1mut (p=0.05). POT1mut was more frequent in NOTCH1mut cases (p=0.02) without associations with any other baseline parameter. Regarding response to treatment, TP53mut was significantly associated with reduced ORR rate (p<0.01). CR rate was not correlated with mutations in the covered genes. At a median follow-up of 31.7 months, there were 249 (66%) events for PFS and 63 (16.8%) events for OS. O-Chl as compared to Chl resulted in significantly improved PFS (median 22.4 vs. 13.1 months, HR 0.54, p<0.01). In univariate analyses, TP53mut (HR 2.07, p<0.01), NOTCH1mut (HR 1.50, p=0.01) and SF3B1mut (HR 1.66, p=0.01) were associated with shorter PFS, whereas ATM and other candidate genes showed no association (ATMmut: HR 1.40, p=0.07). Analyzing both treatment arms separately, TP53mut had an impact on PFS with Chl and O-Chl treatment (HR 1.92, p=0.04 and HR 2.49, p<0.01). Notably, NOTCH1mut was associated with outcome in O-Chl only (HR 2.01, p<0.01 vs. HR 1.14, p=0.59) resulting in a reduced beneficial effect from the addition of Ofatumumab to Chlorambucil treatment. ATMmut and BIRC3mut mutations were only adverse prognostic factors with Chl monotherapy (ATMmut: HR 1.69, p=0.05 vs. HR 1.35, p=0.27; BIRC3mut: HR 2.84, p=0.04 vs. HR 0.99, p=0.99). OS was reduced significantly only in TP53mut cases (HR 3.69, p<0.01). Of note, none of the MYD88mut cases (n=10) had died within the follow-up period. To identify genomic factors of independent prognostic impact, we performed multivariable Cox regression analyses for PFS and OS including treatment arms, 11q-, +12q, 17p-, IGHV and all candidate gene mutations. For PFS, the following independent prognostic factors were identified: O-Chl (HR 0.46, p<0.01), 17p- (HR 3.14, p<0.01), 11q- (HR 1.57, p=0.01), unmutated IGHV (HR 1.43, p=0.02), TP53mut (HR 1.81, p=0.03), NOTCH1mut (HR 1.63, p<0.01) and SF3B1mut (HR 1.54, p=0.02). Regarding OS, only 17p- (HR 4.07, p<0.01), and unmutated IGHV (HR 1.81, p=0.05) were identified as independent adverse prognostic factors with TP53mut showing a trend (HR 2.14, p=0.10). CONCLUSION: We performed mutational analyses for the 8 most frequent mutated genes in CLL in the COMPLEMENT1 trial evaluating 1st line O-Chl against Chl. An independent prognostic impact was identified for TP53mut, NOTCH1mutand SF3B1mut regarding PFS. Notably, NOTCH1mut affected outcome mainly with O-Chl treatment, whereas ATMmut and BIRC3mut were associated with outcome with Chl monotherapy. In multivariate analysis for OS, none of the gene mutations, but the established parameters IGHV and 17p- had independent prognostic impact. Disclosures Tausch: GlaxoSmithKline: Research Funding, Travel support Other. Hillmen:GSK: Honoraria, Research Funding. Offner:GlaxoSmithKline: Honoraria, Research Funding. Janssens:GSK: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Amgen: Speakers Bureau; Roche: Speakers Bureau; Mundipharma: Speakers Bureau. Mayer:Glaxo: Research Funding; Roche: Research Funding. Panagiotidis:GlaxoSmithKline: Consultancy, Honoraria. McKeown:GlaxoSmithKline: Employment. Gupta:GlaxoSmithKline: Employment. Stilgenbauer:GlaxoSmithKline: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1697-1697 ◽  
Author(s):  
Rami S. Komrokji ◽  
Amy E. DeZern ◽  
Katrina Zell ◽  
Najla H. Al Ali ◽  
Eric Padron ◽  
...  

Abstract Introduction Somatic mutations in SF3B1 ,a gene encoding a core component of RNA splicing machinery, have been identified in patients (pts) with myelodysplastic syndrome (MDS). The SF3B1 mutation (MT) is more commonly detected in pts with ring sideroblasts (RS) morphology and is associated with favorable outcome. The pattern of response among SF3B1 mutated MDS pts to available treatment options, including erythropoiesis stimulating agents (ESA), hypomethylating agents (HMA) and lenalidomide is not known. The distinct underlying disease biology among such pts may alter response to treatment. Methods Pts treated at MDS CRC institutions with MT vs wild-type SF3B1 (WT) controls were matched 1:2. Matching criteria were age at diagnosis, year of diagnosis and International Prognostic Scoring System (IPSS) category at diagnosis. IPSS category was split into two groups (Low or Int-1 vs. Int-2 or High). Matching was performed using the R package by calculating a propensity score, which was then used to determine the two most similar WT SF3B1 patients for each SF3B1-mutated pt, without replacement. Additionally, to be included in the population, pts also had to have been treated with one of the following: ESAs, HMA, or lenalidomide. Response to treatment was evaluated by international Working Group criteria (IWG 2006) and classified as response if hematological improvement or better was achieved (HI+). Survival was calculated from date of treatment until date of death or last known follow-up, unless otherwise noted. Results: We identified 48 Pts with MT and 96 matched controls. Table 1 summarizes baseline characteristics comparing MT vs WT SF3B1 cohorts. SF3B1 MT was detected more often in association with RS, as expected. The majority of pts had lower-risk disease by IPSS and revised IPSS (IPSS-R). Pts with MT had higher platelets than controls. The most common concomitant somatic mutations observed were TET2 (30%), DNMT3A (21%), and ASXL1 (7%). Median follow-up time from diagnosis was 35 months (mo). Median overall survival (OS) from diagnosis was significantly longer for patients with SF3B1 MT (108.5 mo (68.8, NA)) than wild-type controls (28.3 mo (22.3, 36.4); p < 0.001). Patients with an SF3B1 MT had a decreased hazard of death (hazard ratio [HR]: 0.49 (95% confidence limits [95% CL]: 0.29, 0.84); p = 0.009) ESA was the first line therapy for 43 pts (88%) with MT and 55 WT Pts (56%). For ESA treated pts, 14 out 40 MT Pts responded (35%) compared to 9/56 among WT Pts (16%), p 0.032. Among those treated with HMA therapy, 5 out 21 (24%) MT pts responded compared to 11/46 (24%) WT Pts (p 0.99). Finally, for Pts treated with lenalidomide 4/16 (25%) and 4/21 (19%) responded among SF3B1 MT and WT Pts respectively, p 0.7. Conclusions SF3B1 somatic mutation in MDS is commonly associated with RS, lower risk disease, and better OS. Pts with SF3B1 mutation had higher response to ESA compared WT SF3B1. No difference in response to HMA or lenalidomide was observed compared to WT patients. Response rates to lenalidomide and HMA were low in both MT patients and controls. Biologically rational therapies are needed that target this molecular disease subset. Table 1. Baseline characteristics SF3B1 MT (n=48) SF3B1 WT (n=96) P value Age median 65 67 0.6 Gender male 29 (60%) 64(67%) 0.5 Race White 44/45 (98%) 83/90 (92%) 0.34 WHO classification RA RARS RCMD RARS-T Del5 q RAEB-I RAEB-II MDS-U MDS/MPN CMML 3 24 8 4 1 3 3 2 0 0 6 9 17 2 6 10 9 3 11 9 IPSS Low Int-1 Int-2 High 29 (60%) 16 (33%) 3 (6%) 0 21 (22%) 69 (72%) 4 (4%) 2 (2%) < 0.001 IPSS-R Very low Low Intermediate High Very High 15 (31%) 26 (54%) 5 (10%) 2 (4%) 0 11 (11%) 37 (39%) 26 (27%) 18 (19%) 4 (4%) <0.001 Lab values (mean) Hgb Platelets ANC myeloblasts 9.7 274 2.63 1 9.6 108 1.92 2 0.46 <0.001 0.04 0.05 Disclosures Komrokji: Novartis: Research Funding, Speakers Bureau; Celgene: Consultancy, Research Funding; Incyte: Consultancy; Pharmacylics: Speakers Bureau. Padron:Novartis: Speakers Bureau; Incyte: Research Funding. List:Celgene Corporation: Honoraria, Research Funding. Steensma:Incyte: Consultancy; Amgen: Consultancy; Celgene: Consultancy; Onconova: Consultancy. Sekeres:Celgene Corporation: Membership on an entity's Board of Directors or advisory committees; TetraLogic: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document