scholarly journals Industrialization of an Academic Miltenyi Prodigy-Based CAR T Process

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 477-477
Author(s):  
Abigail Culshaw ◽  
Frederick Arce Vargas ◽  
Gerardo Santiago Toledo ◽  
Claire Roddie ◽  
Paul Shaughnessy ◽  
...  

Abstract INTRODUCTION We have previously described AUTO1, a CD19 CAR with a fast off-rate binding domain, designed to reduce CAR T-cell immune toxicity and improve engraftment. Clinical testing in two academic studies in relapsed/refractory (r/r) paediatric [NCT02443831; CARPALL] and adult B-ALL, B-NHL and B-CLL [NCT02935257; ALLCAR19] confirmed the intended function of the receptor, with low levels of cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) and long-term engraftment of CAR T-cell 1,2. Based on data in adult B-ALL, we initiated a phase Ib/II registration study in r/r adult B-ALL [NCT04404660; FELIX]. To facilitate this study and future commercialization, industrialization of the manufacturing process was required. METHODS & RESULTS The original process in the academic studies was based on the Miltenyi CliniMACS Prodigy T cell transduction process. Leukapheresis was performed at the same site as manufacture. T cells were isolated from pheresis by CD4/CD8 positive selection and seeded onto the Prodigy to be activated using the Miltenyi CD3/CD28 targeting activating reagent, TransAct. The following day, transduction was carried out using a lentiviral vector. Cells were cryopreserved after an expansion phase of up to day 10 of the process. To facilitate industrialization of the AUTO1 manufacture in the multi-center, multi-regional FELIX study, we first explored the use of cryopreserved pheresis (81.3% median viability pre-selection (range 71.9 - 94.3), 1.0 days median doubling time (range 0.9 - 1.5) and 47.6% median CD19 CAR expression (range 19.1-62.1)). We concluded that optimal manufacture includes the use of fresh pheresis and the initiation of manufacture within 72 hours (99.0% median viability pre-selection (range 92.5 - 99.7), 1.3 days median doubling time (range 1.1 - 2.1) and 69.3% median CD19 CAR expression (range 22.9-86.2)). To further simplify the process, we explored removal of the pre-selection step. Full-scale runs using starting material from 4 healthy donors were conducted to compare CD4/CD8 selected with unselected cells. On the day following activation, selected cells displayed a higher percentage of viable cells, defined as cPARP-FVS780- (median: 76.1%, range: 84.5-66.4) as compared to unselected cells (median: 52.2%, range: 43.6-59.0). In addition, selected cells demonstrated a median of 23-fold expansion (range: 20.0 - 29.1) compared to a 13.3-fold expansion for unselected cells (range 6.1-17.4). Median transduction efficiencies of viable CAR+ T-cells were 53.9% (range: 43.2-56.9) and 78.0% (range: 64.5-81.1) in selected and unselected cells, respectively. CD4/8 pre-selection was determined to be a critical part of the process. A comparison of phenotype between 18 batches manufactured using the academic process and 5 batches produced from fresh material using the industrial process was carried out. No significant differences, as determined by 2-way ANOVA, were observed between the percentage of CAR+ CD3+ cells, the memory phenotype (% TSC/naive, % TCM, % TEM and % TEMRA) and the percentage expression of PD1 (figure 1). The CD4/CD8 ratio was also comparable between products of the two processes. Data from the initial 6 fresh in patients show that engraftment in the FELIX study is consistent with ALLCAR19 engraftment results. Additional patients, updated clinical data and longer follow-up will be presented at the conference. CONCLUSION Industrialization of an autologous Miltenyi CAR T process is feasible, leading to a comparable product to that manufactured in an academic setting. We have now opened the pivotal multi-center phase II part of the FELIX study in r/r adult B-ALL patients. REFERENCES Ghorashian S et al. (2019) Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat Med, 25(9):1408-1414.Roddie C et al. (2021) Durable responses and low toxicity after fast off-rate CD19 CAR-T therapy in adults with relapsed/ refractory B-ALL. J Clin Oncol, in press Figure 1. Comparison of phenotype between 18 CAR T cell batches manufactured using the academic process and 5 batches produced using the industrial process. Boxes represent median, 25th and 75th percentiles and whiskers represent minimum and maximum. Figure 1 Figure 1. Disclosures Culshaw: Autolus Ltd.: Current Employment. Arce Vargas: Autolus Ltd.: Current Employment. Santiago Toledo: Autolus Ltd.: Current Employment. Roddie: Novartis: Consultancy; Celgene: Consultancy, Speakers Bureau; Gilead: Consultancy, Speakers Bureau. Shaughnessy: BMS: Honoraria, Speakers Bureau; Sanofi: Honoraria, Speakers Bureau; Kite: Honoraria, Speakers Bureau. Cerec: Autolus Ltd.: Current Employment. Duffy: Autolus Ltd.: Current Employment. Perna: Autolus Ltd.: Current Employment. Brugger: Autolus Ltd.: Current Employment. Merges: Autolus Ltd.: Current Employment. Pule: Autolus Ltd: Current Employment.

2022 ◽  
Vol 12 ◽  
Author(s):  
Zhicai Lin ◽  
Xiangzhen Liu ◽  
Tao Liu ◽  
Haixia Gao ◽  
Sitong Wang ◽  
...  

Nonviral transposon piggyBac (PB) and lentiviral (LV) vectors have been used to deliver chimeric antigen receptor (CAR) to T cells. To understand the differences in the effects of PB and LV on CAR T-cell functions, a CAR targeting CD19 was cloned into PB and LV vectors, and the resulting pbCAR and lvCAR were delivered to T cells to generate CD19pbCAR and CD19lvCAR T cells. Both CD19CAR T-cell types were strongly cytotoxic and secreted high IFN-γ levels when incubated with Raji cells. TNF-α increased in CD19pbCAR T cells, whereas IL-10 increased in CD19lvCAR T cells. CD19pbCAR and CD19lvCAR T cells showed similar strong anti-tumor activity in Raji cell-induced mouse models, slightly reducing mouse weight while enhancing mouse survival. High, but not low or moderate, concentrations of CD19pbCAR T cells significantly inhibited Raji cell-induced tumor growth in vivo. These CD19pbCAR T cells were distributed mostly in mesenteric lymph nodes, bone marrow of the femur, spleen, kidneys, and lungs, specifically accumulating at CD19-rich sites and CD19-positive tumors, with CAR copy number being increased on day 7. These results indicate that pbCAR has its specific activities and functions in pbCAR T cells, making it a valuable tool for CAR T-cell immunotherapy.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3445
Author(s):  
Olaf Penack ◽  
Christian Koenecke

Clinical trials demonstrated that CD19+ chimeric antigen receptor (CAR) T-cells can be highly effective against a number of malignancies. However, the complete risk profile of CAR T-cells could not be defined in the initial trials. Currently, there is emerging evidence derived from post approval studies in CD19+ CAR T-cells demonstrating both short-term and medium-term effects, which were unknown at the time of regulatory approval. Here, we review the incidence and the current management of CD19+ CAR T-cell complications. We highlight frequently occurring events, such as cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, cardiotoxicity, pulmonary toxicity, metabolic complications, secondary macrophage-activation syndrome, and prolonged cytopenia. Furthermore, we present evidence supporting the hypothesis that CAR T-cell-mediated toxicities can involve any other organ system and we discuss the potential risk of long-term complications. Finally, we discuss recent pre-clinical and clinical data shedding new light on the pathophysiology of CAR T-cell-related complications.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3243-3243
Author(s):  
Graham Lilley ◽  
Alden Ladd ◽  
Daniel Cossette ◽  
Laura Viggiano ◽  
Gregory Hopkins ◽  
...  

Abstract T cells engineered with chimeric antigen receptors (CAR) specific to CD19 have caused rapid and durable clinical responses in ~90% of patients with acute lymphoblastic leukemia. These data support the development of additional CAR T cell products for the treatment of other hematological malignancies. Recently, B cell maturation antigen (BCMA) expression has been proposed as a marker for identification of malignant plasma cells in patients with multiple myeloma (MM). Nearly all MM and some non-Hodgkin's lymphoma tumor cells express BCMA, while normal tissue expression is restricted to plasma cells and a subset of mature B cells. Therefore, BCMA is an attractive CAR T cell target to treat patients with MM and some B cell lymphomas. To this end, using lentiviral vector technology, we successfully generated CAR T cells specific to BCMA that exhibit potent anti-tumor activity to both multiple myeloma and Burkitt's lymphoma in animal models. Manufacture of CAR T cells for individual patient treatment requires the establishment of a robust and reproducible process - since variability in manufacturing could impact the potency of each cell product. To begin to understand the parameters of the manufacturing process that might contribute to the activity of the final product, we first tested the impact of lentiviral vector (LVV) multiplicity of infection (MOI) on CAR T cell phenotype and function. Using a broad range of MOIs (0.625 to 40) across multiple independent PBMC donors we observed no differences in population doubling or cell size throughout the ~10 day manufacturing process, irrespective of the MOI used. As expected, the number of anti-BCMA CAR expressing cells, the level of CAR expression per cell and the average vector copy number (VCN) in the cell product increased proportionally with MOI. Similarly, T cell function, as determined by an IFNg cytokine release assay in response to BCMA-expressing K562 target cells, was also correlated with the LVV MOI. Notably, increased IFNg expression was readily observable at MOIs as low as 1.25 and reached a plateau with T cells generated using an MOI of 20 or more - highlighting the sensitivity of this functional assay. Analogous data demonstrating MOI dependent in vitro killing activity were obtained using a BCMA-expressing tumor cell cytotoxicity assay. Varying the LVV MOI used during transduction simultaneously alters both the amount of anti-BCMA CAR molecules expressed per cell as well as the number of T cells in the cell product that express anti-BCMA CAR. To evaluate each variable in isolation we generated T cell products containing the same frequency of anti-BCMA CAR T cells (26 ± 4% CAR+ T cells) but different levels of anti-BCMA expression per cell by diluting T cell products made with MOIs from 5 to 40 with donor-matched untransduced cells. While these populations had markedly different levels of CAR surface expression per cell (based on anti-BCMA CAR MFI levels measured by flow cytometry) both low and high expressing anti-BCMA CAR T cell products exhibited identical levels of cytotoxicity against BCMA-expressing tumor cells. These data suggest it is the number of CAR expressing cells that is the critical driver of higher functional activity (perhaps due to the efficiency of LVV mediated anti-BCMA CAR expression per transduced cell). Finally, using this information the variability in manufacturing of anti-BCMA CAR T cells was evaluated across 11 independent normal PBMC donors. All 11 products demonstrated very similar properties with respect to cell growth (population doublings, cell volume), and VCN. Importantly, using our standard MOI we obtained a consistent and high level of anti-BCMA CAR expressing T cells that resulted in robust IFNg cytokine release when co-cultured with BCMA-expression cells. Together, our data highlight the frequency of anti-BCMA CAR T cells per cell product as a key parameter for anti-tumor activity in vitro. Moreover, these data suggest that our LVV driven T cell engineering process can reproducibly generate robust anti-BCMA CAR expressing T cell products in a donor independent manner. A phase I clinical trial to evaluate this technology as a cell-based gene therapy for MM is under development. Disclosures Lilley: bluebird bio, Inc: Employment, Equity Ownership. Ladd:bluebird bio, Inc: Employment, Equity Ownership. Cossette:bluebird bio, Inc: Employment, Equity Ownership. Viggiano:bluebird bio, Inc: Employment, Equity Ownership. Hopkins:bluebird bio, Inc: Employment, Equity Ownership. Evans:bluebird bio, Inc: Employment, Equity Ownership. Li:bluebird bio, Inc: Employment, Equity Ownership. Latimer:bluebird bio: Employment, Equity Ownership. Miller:bluebird bio: Employment, Equity Ownership. Kuczewski:bluebird bio: Employment, Equity Ownership. Bakeman:bluebird bio, Inc: Employment, Equity Ownership. MacLeod:bluebird bio, Inc: Employment, Equity Ownership. Friedman:bluebird bio: Employment, Equity Ownership. Maier:bluebird bio, Inc: Employment, Equity Ownership. Paglia:bluebird bio, Inc: Employment, Equity Ownership. Morgan:bluebird bio: Employment, Equity Ownership. Angelino:bluebird bio, Inc: Employment, Equity Ownership.


Author(s):  
Bianca Santomasso ◽  
Carlos Bachier ◽  
Jason Westin ◽  
Katayoun Rezvani ◽  
Elizabeth J. Shpall

Immune effector cells, including T cells and natural killer cells, which are genetically engineered to express a chimeric antigen receptor (CAR), constitute a powerful new class of therapeutic agents to treat patients with hematologic malignancies. Several CAR T-cell trials have shown impressive remission rates in patients with relapsed/refractory hematologic cancers. Although the clinical responses of these agents in hematologic malignancies have been very encouraging, they have also produced substantial morbidity and occasionally mortality resulting from toxicity. With more experience and collaboration, hopefully the toxicities and the costs will come down, increasing the availability of CAR T cells to patients in need.


2020 ◽  
Vol 14 (4) ◽  
pp. 312-323
Author(s):  
Romeo G. Mihăilă

Background: Patients with refractory or relapsed diffuse large B-cell lymphoma have a poor prognosis with the current standard of care. Objective: Chimeric Antigen Receptor T-cells (CAR T-cells) are functionally reprogrammed lymphocytes, which are able to recognize and kill tumor cells. The aim of this study is to make progress in this area. Method: A mini-review was achieved using the articles published in Web of Science and PubMed in the last year and the new patents were made in this field. Results: The responses to CAR T-cell products axicabtagene ciloleucel and tisagenlecleucel are promising; the objective response rate can reach up to 83%, and the complete response rate ranges between 40 and 58%. About half of the patients may have serious side effects, such as cytokine release syndrome and neurotoxicity. Current and future developments include the improvement of CAR T-cell expansion and polyfunctionality, the combined use of CAR T-cells with a fusion protein between interferon and an anti-CD20 monoclonal antibody, with checkpoint inhibitors or small molecule sensitizers that have apoptotic-regulatory effects. Furthermore, the use of IL-12-expressing CAR T-cells, an improved technology for the production of CAR T-cells based on targeted nucleases, the widespread use of allogeneic CAR T-cells or universal CAR T-cells obtained from genetically engineered healthy donor T-cells are future developments actively considered. Conclusion: CAR T-cell therapy significantly improved the outcome of patients with relapsed or refractory diffuse large B-cell lymphoma. The advances in CAR T-cells production technology will improve the results and enable the expansion of this new immunotherapy.


2021 ◽  
Vol 22 (5) ◽  
pp. 2476
Author(s):  
Kento Fujiwara ◽  
Masaki Kitaura ◽  
Ayaka Tsunei ◽  
Hotaka Kusabuka ◽  
Erika Ogaki ◽  
...  

T cells that are genetically engineered to express chimeric antigen receptor (CAR) have a strong potential to eliminate tumor cells, yet the CAR-T cells may also induce severe side effects due to an excessive immune response. Although optimization of the CAR structure is expected to improve the efficacy and toxicity of CAR-T cells, the relationship between CAR structure and CAR-T cell functions remains unclear. Here, we constructed second-generation CARs incorporating a signal transduction domain (STD) derived from CD3ζ and a 2nd STD derived from CD28, CD278, CD27, CD134, or CD137, and investigated the impact of the STD structure and signaling on CAR-T cell functions. Cytokine secretion of CAR-T cells was enhanced by 2nd STD signaling. T cells expressing CAR with CD278-STD or CD137-STD proliferated in an antigen-independent manner by their STD tonic signaling. CAR-T cells incorporating CD28-STD or CD278-STD between TMD and CD3ζ-STD showed higher cytotoxicity than first-generation CAR or second-generation CARs with other 2nd STDs. The potent cytotoxicity of these CAR-T cells was not affected by inhibiting the 2nd STD signals, but was eliminated by placing the STDs after the CD3ζ-STD. Our data highlighted that CAR activity was affected by STD structure as well as by 2nd STD signaling.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Laura Castelletti ◽  
Dannel Yeo ◽  
Nico van Zandwijk ◽  
John E. J. Rasko

AbstractMalignant mesothelioma (MM) is a treatment-resistant tumor originating in the mesothelial lining of the pleura or the abdominal cavity with very limited treatment options. More effective therapeutic approaches are urgently needed to improve the poor prognosis of MM patients. Chimeric Antigen Receptor (CAR) T cell therapy has emerged as a novel potential treatment for this incurable solid tumor. The tumor-associated antigen mesothelin (MSLN) is an attractive target for cell therapy in MM, as this antigen is expressed at high levels in the diseased pleura or peritoneum in the majority of MM patients and not (or very modestly) present in healthy tissues. Clinical trials using anti-MSLN CAR T cells in MM have shown that this potential therapeutic is relatively safe. However, efficacy remains modest, likely due to the MM tumor microenvironment (TME), which creates strong immunosuppressive conditions and thus reduces anti-MSLN CAR T cell tumor infiltration, efficacy and persistence. Various approaches to overcome these challenges are reviewed here. They include local (intratumoral) delivery of anti-MSLN CAR T cells, improved CAR design and co-stimulation, and measures to avoid T cell exhaustion. Combination therapies with checkpoint inhibitors as well as oncolytic viruses are also discussed. Preclinical studies have confirmed that increased efficacy of anti-MSLN CAR T cells is within reach and offer hope that this form of cellular immunotherapy may soon improve the prognosis of MM patients.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2941
Author(s):  
Luciana R. C. Barros ◽  
Emanuelle A. Paixão ◽  
Andrea M. P. Valli ◽  
Gustavo T. Naozuka ◽  
Artur C. Fassoni ◽  
...  

Immunotherapy has gained great momentum with chimeric antigen receptor T cell (CAR-T) therapy, in which patient’s T lymphocytes are genetically manipulated to recognize tumor-specific antigens, increasing tumor elimination efficiency. In recent years, CAR-T cell immunotherapy for hematological malignancies achieved a great response rate in patients and is a very promising therapy for several other malignancies. Each new CAR design requires a preclinical proof-of-concept experiment using immunodeficient mouse models. The absence of a functional immune system in these mice makes them simple and suitable for use as mathematical models. In this work, we develop a three-population mathematical model to describe tumor response to CAR-T cell immunotherapy in immunodeficient mouse models, encompassing interactions between a non-solid tumor and CAR-T cells (effector and long-term memory). We account for several phenomena, such as tumor-induced immunosuppression, memory pool formation, and conversion of memory into effector CAR-T cells in the presence of new tumor cells. Individual donor and tumor specificities are considered uncertainties in the model parameters. Our model is able to reproduce several CAR-T cell immunotherapy scenarios, with different CAR receptors and tumor targets reported in the literature. We found that therapy effectiveness mostly depends on specific parameters such as the differentiation of effector to memory CAR-T cells, CAR-T cytotoxic capacity, tumor growth rate, and tumor-induced immunosuppression. In summary, our model can contribute to reducing and optimizing the number of in vivo experiments with in silico tests to select specific scenarios that could be tested in experimental research. Such an in silico laboratory is an easy-to-run open-source simulator, built on a Shiny R-based platform called CARTmath. It contains the results of this manuscript as examples and documentation. The developed model together with the CARTmath platform have potential use in assessing different CAR-T cell immunotherapy protocols and its associated efficacy, becoming an accessory for in silico trials.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 743
Author(s):  
Aleksei Titov ◽  
Ekaterina Zmievskaya ◽  
Irina Ganeeva ◽  
Aygul Valiullina ◽  
Alexey Petukhov ◽  
...  

Adoptive cell immunotherapy (ACT) is a vibrant field of cancer treatment that began progressive development in the 1980s. One of the most prominent and promising examples is chimeric antigen receptor (CAR) T-cell immunotherapy for the treatment of B-cell hematologic malignancies. Despite success in the treatment of B-cell lymphomas and leukemia, CAR T-cell therapy remains mostly ineffective for solid tumors. This is due to several reasons, such as the heterogeneity of the cellular composition in solid tumors, the need for directed migration and penetration of CAR T-cells against the pressure gradient in the tumor stroma, and the immunosuppressive microenvironment. To substantially improve the clinical efficacy of ACT against solid tumors, researchers might need to look closer into recent developments in the other branches of adoptive immunotherapy, both traditional and innovative. In this review, we describe the variety of adoptive cell therapies beyond CAR T-cell technology, i.e., exploitation of alternative cell sources with a high therapeutic potential against solid tumors (e.g., CAR M-cells) or aiming to be universal allogeneic (e.g., CAR NK-cells, γδ T-cells), tumor-infiltrating lymphocytes (TILs), and transgenic T-cell receptor (TCR) T-cell immunotherapies. In addition, we discuss the strategies for selection and validation of neoantigens to achieve efficiency and safety. We provide an overview of non-conventional TCRs and CARs, and address the problem of mispairing between the cognate and transgenic TCRs. Finally, we summarize existing and emerging approaches for manufacturing of the therapeutic cell products in traditional, semi-automated and fully automated Point-of-Care (PoC) systems.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1229
Author(s):  
Ali Hosseini Rad S. M. ◽  
Joshua Colin Halpin ◽  
Mojtaba Mollaei ◽  
Samuel W. J. Smith Bell ◽  
Nattiya Hirankarn ◽  
...  

Chimeric antigen receptor (CAR) T-cell therapy has revolutionized adoptive cell therapy with impressive therapeutic outcomes of >80% complete remission (CR) rates in some haematological malignancies. Despite this, CAR T cell therapy for the treatment of solid tumours has invariably been unsuccessful in the clinic. Immunosuppressive factors and metabolic stresses in the tumour microenvironment (TME) result in the dysfunction and exhaustion of CAR T cells. A growing body of evidence demonstrates the importance of the mitochondrial and metabolic state of CAR T cells prior to infusion into patients. The different T cell subtypes utilise distinct metabolic pathways to fulfil their energy demands associated with their function. The reprogramming of CAR T cell metabolism is a viable approach to manufacture CAR T cells with superior antitumour functions and increased longevity, whilst also facilitating their adaptation to the nutrient restricted TME. This review discusses the mitochondrial and metabolic state of T cells, and describes the potential of the latest metabolic interventions to maximise CAR T cell efficacy for solid tumours.


Sign in / Sign up

Export Citation Format

Share Document