scholarly journals Sirt1 Is a Novel Therapeutic Target in T-ALL

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2221-2221
Author(s):  
Olga Lancho ◽  
Amartya Singh ◽  
Victoria da Silva-Diz ◽  
Patricia Renck Nunes ◽  
Luca Tottone ◽  
...  

Abstract T-cell Acute Lymphoblastic Leukemia (T-ALL) is an aggressive hematological malignancy that affects both children and adults. Still, 20%-50% of patients show primary resistance or relapse after treatment, and ultimately die from their disease. Aberrant NOTCH1 signaling has a major role in the pathogenesis of T-ALL, as more than 60% of T-ALL cases harbor activating mutations in the NOTCH1 gene. In this context, small-molecule γ-secretase inhibitors (GSIs), which effectively block NOTCH1 activation via inhibition of a critical intramembrane proteolytic cleavage required for NOTCH1 signaling, are being tested in clinical trials for the treatment of relapsed and refractory T-ALL. However, the clinical development of anti-NOTCH1 therapies in T-ALL has been hampered by limited and delayed therapeutic response to these drugs, underscoring the need to identify novel therapeutic targets and to develop more effective drugs for the treatment of this disease. We previously demonstratedthe importance of NOTCH1-driven metabolic pathways in the response to anti-NOTCH1 therapies (gamma-secretase inhibitors, GSIs). Moreover, epigenetic plasticity has also been proposed to mediate resistance to GSIs. Thus, we postulated that central regulators that control both the metabolic and epigenetic status of cells could act as master regulators of NOTCH1-induced transformation. Indeed, our results have identified the SIRT1 histone deacetylase, a central epigenetic and metabolic regulator, as a key player in T-ALL. Analyses of gene expression profiling data from T-ALL patients revealed a significant upregulation of SIRT1 in T-ALL. Consistently, SIRT1 protein levels are significantly upregulated in T-ALL cells as compared to normal human thymus. Moreover, through the integration of GSI-washout experiments, epigenetic profiling and CRISPR/Cas9-induced experiments, we have identified a distal enhancer of Sirt1 that is bound and controlled by NOTCH1, which might help explain the broad upregulation of Sirt1 observed in T-ALL patients. Next, and to formally test the effects of Sirt1 on T-cell transformation, we generated NOTCH1-driven primary T-ALLs from different Sirt1 genetic backgrounds. In this context, our results demonstrate that Sirt1 genetic overexpression leads to accelerated kinetics of NOTCH1-induced T-ALL and promotes resistance to GSI treatment in T-ALL in vivo in a deacetylase-dependent manner. Conversely, germinal loss of Sirt1 leads to delayed T-ALL development and reduced disease penetrance. Moreover, pharmacological inhibition of SIRT1 with EX-527 shows anti-leukemic and synergistic effects with NOTCH1 inhibition in T-ALL cell lines in vitro. Finally, genetic deletion of Sirt1 in already established primary isogenic Sirt1 conditional knockout leukemiasleads to significant and highly synergistic anti-leukemic effects with GSI treatment in vivo. Mechanistically, acetyl-proteomics analyses revealed that acute deletion of Sirt1 consistently leads to hyperacetylation of Kat7 and Brd1, which are both part of a histone acetyltransferase complex. Indeed, Sirt1 loss results in global epigenetic changes including decreased levels of H4K12ac, which is a Kat7-target mark. Moreover, gene expression profiling analyses upon Sirt1 loss in leukemia in vivo revealed broad transcriptional changes. Gene-set enrichment analyses revealed that the transcriptional signature upon Sirt1 loss significantly correlates with the one obtained upon Kat7 loss, overall suggesting that Sirt1 loss leads to hyperacetylation of Kat7, which might be less active. Finally, our gene expression analyses also revealed a marked block in mTOR signaling, suggesting leukemia cells suffer a metabolic crisis upon Sirt1 loss. Consistently, acute deletion of Sirt1 results in prominent global metabolic changes in glycolysis, glutaminolysis and TCA, with concomitant activation of AMPK, resulting in markedly cytotoxic effects. Overall, our results reveal an oncogenic role for Sirt1 in T-ALL generation and progression, demonstrate that Sirt1 contributes to mediate resistance to anti-NOTCH1 therapies, identify a novel Notch1-Sirt1-Kat7 link and uncover Sirt1 as a novel therapeutic target for the treatment of T-ALL. Disclosures No relevant conflicts of interest to declare.

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3582-3582
Author(s):  
Eric Lowe ◽  
R. Andrea Fan ◽  
Jing Jiang ◽  
Henry W. B. Johnson ◽  
Christopher J. Kirk ◽  
...  

3582 Background: Secreted and transmembrane proteins play key roles in malignant transformation and growth, including in autocrine growth factor expression, receptor oncogene signaling, and immune system evasion. Biogenesis of these proteins involves translocation of the nascent polypeptides into the endoplasmic reticulum (ER) through the Sec61 channel, providing an untapped therapeutic target for a broad spectrum of malignancies. Here we describe preclinical activity of KZR-261 and related inhibitors of Sec61-dependent protein secretion. Methods: Sec61 inhibition with KZR-261 and related analog KZR-834 were evaluated using cell lines overexpressing proteins of interest tagged with luciferase. In vitro anti-tumor activity was assessed against a panel of 346 cell lines across 25 tumor types. Quantitative proteomic profiling by mass spec and gene expression profiling by RNAseq were conducted following treatment in multiple solid and heme tumor cell lines. Anti-tumor efficacy was evaluated in athymic nude mice implanted with the cancer cell lines H82 (SCLC), HT29 (CRC), BxPC3 (Pancreatic), 22RV1 (Prostate), H929 (Myeloma) and RL (NHL). Activity was also evaluated in a MC38 syngeneic colon tumor model. Results: KZR-261 and KZR-834 exhibited nanomolar potency against many therapeutic targets, including immune checkpoints, VEGF-A, VEGFR and EGFR. Broad in vitro anti-cancer activity was observed with KZR-834, which potently decreased cell viability across both solid and heme tumor types including CRC, Pancreatic, HNSCC, HCC, Lymphoma and Myeloma. Global proteomic analysis observed more than 1.5 fold downregulation of < 10% of detected Sec61 client proteins following treatment, while gene expression profiling revealed upregulation of ER stress response genes in sensitive versus resistant cell lines. Analysis of the TCGA database also found these genes upregulated in a number of different tumor types. In vivo, weekly IV administration was well tolerated and induced a dose dependent anti-tumor response at doses below the MTD in solid and heme xenograft models. In the syngeneic MC38 model, administration of KZR-834 in combination with anti-PD1 antibody resulted in greater anti-tumor activity than either single agent. Conclusions: Novel Sec61 inhibitors potently block expression of secreted and membrane proteins, translating into anti-tumor activity against many tumor types in vitro and in vivo, suggesting broad therapeutic potential. Clinical trials are being planned with KZR-261 to understand safety and early efficacy of this novel compound and therapeutic target.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 66-66 ◽  
Author(s):  
Patricia Garrido Castro ◽  
Simon Bomken ◽  
Lidija Seslija ◽  
Ronald Stam ◽  
Elda S Latif ◽  
...  

Abstract Abstract 66 Background: MLL-rearranged acute lymphoblastic leukemia (ALL) is prevalent in infants, constituting 70% of the cases. The preferred MLL translocation partner is the gene AF4, resulting in t(4;11)(q21;q23), which arises in 50% of infant ALL patients. This translocation generates the fusion genes MLL/AF4 and AF4/MLL, and is associated with an aggressive clinical presentation and poor outcome. Biologically, cells expressing MLL/AF4 show resistance to stress- and chemotherapy-related apoptosis. Concordantly, we have previously shown that RNAi-mediated depletion of MLL/AF4 in the t(4;11)-positive ALL cell line SEM results in induction of cell death and impaired both clonogenicity and in vivo engraftment. In order to characterize this phenotype on a molecular level, we have performed gene expression profiling of SEM cells depleted of MLL/AF4 and corresponding controls. Expression of >1000 genes was affected, including a subset of angiogenic genes, most prominently ANGIOPOIETIN1 (ANGPT1), a proangiogenic cytokine reported to play a role in acute myeloid leukemia (AML), hematopoietic stem cell (HSC) quiescence and bone marrow (BM) niche maintenance, but to date not implicated in ALL. Here we report a novel link between ANGPT1 expression and MLL-rearranged ALL. Methods: Gene expression profiling was performed using the Illumina HT-12 platform and data processed using BeadStudio and Genespring software suites. ANGPT1 expression was analyzed by real-time RT-PCR (qRT-PCR), and ANGPT1 protein secretion determined using enzyme-linked immunosorbent assay (ELISA). The MLL/AF4 status of cells was modulated with fusion transcript-specific siRNAs and knockdown monitored by qRT-PCR. RNAi-mediated depletion of ANGPT1 was achieved using siRNA or lentiviral shRNA constructs, and validated on transcript and protein level. Effects on cell cycle progression and proliferation in response to ANGPT1 knockdown in t(4;11)-positive cells were assessed by flow cytometry and trypan blue exclusion assay, respectively. For in vivo studies, SEM cells were sequentially transduced to express both luciferase and either non-target control shRNA (shNTC) or shANGPT1. Doubly transduced cells were selected for and FACS-sorted prior to intrafemoral transplantation into immunodeficient NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. Disease progression was monitored using bioluminescence imaging and engraftment assessed by flow cytometry at the terminal timepoint. Results: ANGPT1 expression was screened in a MLL-rearranged ALL patient cohort (n=35), comprising t(4;11)-positive (n=20), t(11;19)-positive (n=10) and t(9;11)-positive patients (n=5), and in a MLL-wildtype BCP ALL patient cohort (n=8). MLL-rearranged patients showed ANGPT1 upregulation, t(4;11)-positive patients having the strongest overexpression by 232-fold when compared to ANGPT1 levels in CD19+ peripheral blood (PB) cells. A 27-fold and 13-fold upregulation was detected in t(11;19)- and t(9;11)-positive patients, respectively. Conversely, MLL-wildtype BCP ALL patients had similar ANGPT1 levels as CD19+ PB cells, with only a 2-fold increase. In addition to its high expression in t(4;11)-positive ALL, ANGPT1 levels were shown to be dependent on MLL/AF4; a reduction of ANGPT1 mRNA and protein correlated with siRNA-mediated MLL/AF4 depletion in a time-dependent manner in both cell lines and primary patient samples. This was concordant with expression array data, which indicated an up to 4-fold decrease of ANGPT1 in response to MLL/AF4 depletion. The functional role of ANGPT1 in t(4;11)-positive ALL was assessed by RNAi; sustained depletion of ANGPT1 in SEM cells resulted in cell cycle arrest and a marked decrease in proliferation. In vivo, mice transplanted with shANGPT1 expressing SEM cells showed reduced splenic infiltration and development of solid tumours at the injection site, as opposed to a systemic spread of the disease and massive splenomegaly in mice injected with shNTC expressing SEM cells. Conclusions: In this study we have identified ANGPT1 as a novel player in t(4;11)-positive ALL, as defined by overexpression, MLL/AF4-dependent regulation and functional consequences in vivo and in vitro. Currently we are investigating ANGPT1-mediated signalling in t(4;11) ALL cells, as it represents an attractive potential therapeutic target. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 10030-10030
Author(s):  
Jennifer Seelisch ◽  
Matthew Zatzman ◽  
Federico Comitani ◽  
Fabio Fuligni ◽  
Ledia Brunga ◽  
...  

10030 Background: Infant acute lymphoblastic leukemia (ALL) is the only subtype of childhood ALL whose outcome has not improved over the past two decades. The most important prognosticator is the presence of rearrangements in the Mixed Lineage Leukemia gene (MLL-r), however, many patients present with high-risk clinical features but without MLL-r. We recently identified two cases of infant ALL with high-risk clinical features resembling MLL-r, but were negative for MLL-r by conventional diagnostics. RNA sequencing revealed a partial tandem duplication in MLL (MLL-PTD). We thus aimed to determine if MLL-PTD, other MLL abnormalities, or other genetic or transcriptomic features were driving this subset of high-risk infant ALL without MLL-r. Methods: We obtained 19 banked patient samples from the Children’s Oncology Group (COG) infant ALL trial (AALL0631) from MLL wildtype patients as determined by FISH and cytogenetics. Utilizing deep RNA-sequencing, we manually inspected the MLL gene for MLL-PTD, while also performing automated fusion detection and gene expression profiling in search of defining features of these tumors. Results: 3 additional MLL-PTDs were identified, all in patients with infant T-cell ALL, whereas both index cases were in patients with infant B-cell ALL. Gene expression profiling analysis revealed that all five MLL-PTD infants clustered together. Eight infants (7 with B-cell ALL) were found to have Ph-like expression. Five of these 8 infants were also found to have an IKZF1/JAK2 expression profile; one of these five had a PAX5-JAK2 fusion detected. Two infants (including the one noted above) had novel PAX5 fusions, known drivers of B-cell leukemia. Additional detected fusions included TCF3-PBX1 and TCF4-ZNF384. Conclusions: MLL-PTDs were found in both B- and T-cell infant ALL. Though Ph-like ALL has been described in adolescents and young adults, we found a substantial frequency of Ph-like expression among MLL-WT infants. Further characterization of these infants is ongoing. If replicated in other infant cohorts, these two findings may help explain the poor prognosis of MLL-WT ALL when compared to children with standard risk ALL, and offer the possibility of targeted therapy for select infants.


Cancers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 525 ◽  
Author(s):  
Alexander Ring ◽  
Cu Nguyen ◽  
Goar Smbatyan ◽  
Debu Tripathy ◽  
Min Yu ◽  
...  

Background: Triple negative breast cancers (TNBCs) are an aggressive BC subtype, characterized by high rates of drug resistance and a high proportion of cancer stem cells (CSC). CSCs are thought to be responsible for tumor initiation and drug resistance. cAMP-response element-binding (CREB) binding protein (CREBBP or CBP) has been implicated in CSC biology and may provide a novel therapeutic target in TNBC. Methods: RNA Seq pre- and post treatment with the CBP-binding small molecule ICG-001 was used to characterize CBP-driven gene expression in TNBC cells. In vitro and in vivo TNBC models were used to determine the therapeutic effect of CBP inhibition via ICG-001. Tissue microarrays (TMAs) were used to investigate the potential of CBP and associated proteins as biomarkers in TNBC. Results: The CBP/ß-catenin/FOXM1 transcriptional complex drives gene expression in TNBC and is associated with increased CSC numbers, drug resistance and poor survival outcome. Targeting of CBP/β-catenin/FOXM1 with ICG-001 eliminated CSCs and sensitized TNBC tumors to chemotherapy. Immunohistochemistry of TMAs demonstrated a significant correlation between FOXM1 expression and TNBC subtype. Conclusion: CBP/β-catenin/FOXM1 transcriptional activity plays an important role in TNBC drug resistance and CSC phenotype. CBP/β-catenin/FOXM1 provides a molecular target for precision therapy in triple negative breast cancer and could form a rationale for potential clinical trials.


2004 ◽  
Vol 20 (3) ◽  
pp. 129-137 ◽  
Author(s):  
Claes D. Enk ◽  
Iris Shahar ◽  
Ninette Amariglio ◽  
Gideon Rechavi ◽  
Naftali Kaminski ◽  
...  

Blood ◽  
2009 ◽  
Vol 113 (11) ◽  
pp. 2375-2385 ◽  
Author(s):  
Joerg Faber ◽  
Andrei V. Krivtsov ◽  
Matthew C. Stubbs ◽  
Renee Wright ◽  
Tina N. Davis ◽  
...  

Leukemias that harbor translocations involving the mixed lineage leukemia gene (MLL) possess unique biologic characteristics and often have an unfavorable prognosis. Gene expression analyses demonstrate a distinct profile for MLL-rearranged leukemias with consistent high-level expression of select Homeobox genes, including HOXA9. Here, we investigated the effects of HOXA9 suppression in MLL-rearranged and MLL-germline leukemias using RNA interference. Gene expression profiling after HOXA9 suppression demonstrated co–down-regulation of a program highly expressed in human MLL-AML and murine MLL-leukemia stem cells, including HOXA10, MEIS1, PBX3, and MEF2C. We demonstrate that HOXA9 depletion in 17 human AML/ALL cell lines (7 MLL-rearranged, 10 MLL-germline) induces proliferation arrest and apoptosis specifically in MLL-rearranged cells (P = .007). Similarly, assessment of primary AMLs demonstrated that HOXA9 suppression induces apoptosis to a greater extent in MLL-rearranged samples (P = .01). Moreover, mice transplanted with HOXA9-depleted t(4;11) SEMK2 cells revealed a significantly lower leukemia burden, thus identifying a role for HOXA9 in leukemia survival in vivo. Our data indicate an important role for HOXA9 in human MLL-rearranged leukemias and suggest that targeting HOXA9 or downstream programs may be a novel therapeutic option.


2009 ◽  
Vol 69 (5) ◽  
pp. 437-446 ◽  
Author(s):  
D. Brudzewsky ◽  
A. E. Pedersen ◽  
M. H. Claesson ◽  
M. Gad ◽  
N. N. Kristensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document