scholarly journals The Loss of Liver Kinase B1 Accelerates Maturation Time in the Developing Erythrocyte

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 936-936
Author(s):  
Zollie White III ◽  
Katie Freeman ◽  
Lorrie L Delehanty ◽  
Adam N Goldfarb

Abstract In the US, iron-restricted anemia contributes greatly to morbidity. The erythroid iron deprivation response, characterized by a pathway in which erythropoiesis is suppressed during iron restriction, underlies this anemia. In preliminary studies, liver kinase B1 (LKB1) was implicated as a potential key component in the erythroid iron deprivation response. Normal human CD34+ hematopoietic progenitor cells cultured for 3 days in erythroid medium with 100% or 10% transferrin saturations underwent immunoblot of whole cell lysates. Reproducibly, the levels of LKB1 did not change based on the transferrin saturation; however, immunofluorescence imaging showed a shift in subcellular localization when cells were subjected to low iron conditions. To assess the effects of LKB1 loss in the erythroid compartment, we used control and LKB1 conditional knockout (STK11 F/F; EpoR-Cre+) mice. In steady-state conditions, the loss of LKB1 does not confer a change in RBC count, though, there is a baseline increase in the number of reticulocytes, and a large increase in the level of serum Erythropoietin (Epo). In a model to precipitate anemia, these mice were challenged with intraperitoneal injection of phenylhydrazine (PHZ). It was found that LKB1 is dispensable for an appropriate response to this type of stress erythropoiesis. To assess the impact of LKB1 on maturation, we performed flow cytometric analysis using an ex vivo culture system of splenic erythroblasts. LKB1-deficient erythroid progenitors show increased percentages of more advanced cells as evidenced by the surface markers CD71 and Ter119 (the mouse analogue of human glycophorin A). Current studies are underway to assess if this change is due to signaling through the AMPK pathway. These studies will provide mechanistic detail of LKB1 function and activity on erythropoiesis, improving our understanding of programs involved in maturation of differentiation and lineage selection which may ultimately help to improve health outcomes and advance treatment for various types of anemias. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2453-2453
Author(s):  
Susana Brito dos Santos ◽  
Mark C. Allenby ◽  
Athanasios Mantalaris ◽  
Nicki Panoskaltsis

Abstract Reproduction of dynamic physiologic erythropoiesis in vitro requires a three-dimensional (3D) architecture, erythroblast-macrophage interactions and cytokines such as erythropoietin (EPO). The role of oxygen concentration gradients in this process is unclear. We have created a 3D bone marrow (BM) biomimicry using collagen-coated polyurethane scaffolds (5mm3) to expand cord blood mononuclear cells (CBMNCs) in a cytokine-free environment for 28 days (D). Addition of EPO to this system induces mature erythropoiesis. We hypothesised that physiologic concentrations of cytokines - stem cell factor (SCF) / EPO - and a hypoxia (H)/normoxia (N) schedule to mimic BM oxygen gradients would enhance erythropoiesis. CBMNCs were seeded (4x106 cells/scaffold) in 3D serum-free cultures supplemented with 10ng/mL SCF (D0-D28), and 100mU/mL EPO (D7-D28), with medium exchange every 3D. Three conditions were compared: N (20%), H (5%) and 2-step oxygenation HN (H D0-D7 and N thereafter). Erythroid maturation was monitored weekly by flow cytometry (CD45/CD71/CD235a) both in situ (i.e., in scaffolds) and in supernatant (S/N) cells. D0-7 H was more efficient in early induction of CD235a in the absence of exogenous EPO (H 13% vs N 8% CD45loCD71+CD235alo cells, p<0.05). This maturation profile was also observed in D10 S/N cells, in which CD45loCD71+CD235a+ cells were proportionately more in H (30%) and HN (27%) than in N (16%, p<0.05). By D14, N and HN stimulated the appearance of CD45-CD71+CD235a+ cells, whereas H maintained the CD45loCD71+CD235a-/lo phenotype. By D21, a CD45-CD71+CD235a+ mature population was clearly distinguished in all conditions, most notably in N (16%) and HN (21%) vs H (9%). At D28, more mature CD45-CD71loCD235a+ cells were observed in normoxia conditions, N 3% and HN 4%, vs H 0.3%. A renewed population of erythroid progenitors was also evident at this time (H 62%, N 51% and HN 46% CD45loCD71lo/+CD235a- cells). In order to assess the impact of H and N on erythroid gene transcription, we evaluated erythroid signatures by qRT-PCR. GATA-1 expression was detected from D7, highest for H at D14 (p<0.05), and decreased thereafter. GATA-2 expression was up-regulated only at D28, in particular in N (p<0.05), and correlated with emerging erythroid progenitors identified at this stage. At D14, EPOR expression was maximal, especially in HN (p<0.05), simultaneous with high pSTAT5 levels, suggesting activation of EPOR signalling. Also at D14, H upregulated γ-globin (p<0.05). By Western Blot, only H and HN still produced γ-globin whereas β-globin expression was clearly detected in all conditions by D28. In situ production of cytokines was evaluated by cytometric bead array in the exhausted media. IL-6, G-CSF, GM-CSF, IL-1, TNF-α and IL-17 were detected at higher concentrations during the first 7 days, declining to undetectable thereafter. IL-21 was not detected at any point. IL-3 was detected from D13, with highest expression in H (p<0.05, D22). VEGF was also expressed after D7, highest in H (p<0.05, D16 & D19), concurrent with HIF-1α up-regulation observed at D7 and D14. TNF-α was produced with variable intensity from D4. These data suggested that D7-D14 was a crucial period for culture dynamics, in particular for H and HN, with up-regulation of erythroid transcription factors, EPOR signalling, and endogenous cytokine production. BFU-E and CFU-E also dominated the first 14 days of culture. Scanning electron microscopy at D17 and D25 revealed niche-like structures in situ, which expressed STRO-1, osteopontin and vimentin at D19 by confocal immunofluorescent microscopy, indicative of an endogenous stromal cell microenvironment. CD68+ cells were also detected at D19 in proximity to CD71+ cells suggesting formation of erythroblastic islands. In this 3D ex vivo biomimicry using near-physiologic cytokine and oxygen conditions, H induced initial erythroid commitment and established an early erythroid progenitor population. N was required at later maturational stages and enhanced the γ-globin to β-globin switch. We identified D7-D14 as a crucial timeframe in this system wherein endogenous cytokine production as well as up-regulation of GATA-1, EPOR and HIF-1α was observed. We propose that a combined HN schedule in this 3D BM biomimicy may enable a more robust and physiologic culture platform to study normal and abnormal erythroid differentiation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4349-4349
Author(s):  
Tokiko Nagamura-Inoue ◽  
Yuki Yamamoto ◽  
Seiichiro Kobayashi ◽  
Kazuo Ogami ◽  
Kiyoko Izawa ◽  
...  

Abstract Abstract 4349 Background: Regulatory T cells (Tregs) play an important role in immune-tolerance to allograft. Unbalance between Tregs and effector T cells is involved in graft-versus-host disease (GvHD) and other autoimmune disorders. Adoptive use of inducible Tregs (iTregs) is a candidate immunosuppressive therapy, and major concern has been focused on sustained expression of Foxp3 in iTregs. We previously reported that iTregs can be efficiently expanded from cord blood (CB)-derived CD4+ T cells in the presence of IL2, TGFb and a mTOR inhibitor, Everolimus (Eve). However, the effect of Eve on in vitro induction of iTreg remains to be elucidated. Here we studied the impact of Eve on CB-CD4+ T cells. Methods: CD4+ T cells were prepared from CB with a purity of >95% and put into the flask coated with anti-CD3/CD28 MAb. For Treg induction, these cultures were supplemented with IL2, IL-2/TGFb, IL2/TGFb/Eve, or IL2/Eve and kept for two weeks. The resulting CD4+ T cells including variable proportion of iTregs were subjected to mixed lymphocyte reaction (MLR) along with CFSE-labeled autologous responder T cells and allogeneic dendritic cells (DCs) as stimulator. Results: The basal proportion of CD25+Foxp3+ cells in CB-CD4+ T cells was 0.60 ± 0.59%. After two weeks, the induction rate of CD25+Foxp3+CD4+ T cells was higher in the culture with IL2/TGFb/Eve than that with IL2/TGFb, but Eve itself could not significantly induce iTregs in the absence of TGFb (Figure1.). The iTreg ratio (CD25+Foxp3+ cells/total CD4+ T cells) was 79.3 ± 17.4% in the culture with IL2/TGFb/Eve, 53.1 ± 23.8% with IL2/TGFb, 35.5±18.6% with IL2/Eve and 22.7 ± 18.6% with IL2, respectively. There was no significant relationship between the dose of Eve and the iTreg ratio, but the highest ratio and induction rate of iTregs were observed at 10nM Eve. Thus, an average of 2.95 ± 2.8 ×107 iTregs was obtained from 5 ×104 CB-CD4+ T cells after two weeks of culture with IL2/TGFb/Eve. The iTreg-rich population cultured with IL2/TGFb/Eve and IL2/TGFb, but not IL2 alone, efficiently inhibited MLR triggered by allogeneic DCs (Figure 2.). These iTregs were also active in MLR using allogeneic responder T cells. Interestingly, IL2/Eve-treated CB-CD4+ T cells also inhibited MLR, irrespective of the low or moderate iTreg ratio. The inhibitory effect on MLR was much less observed by another mTOR inhibitor, rapamycin, rather than Eve (Figure2). Expression of CD26 on CD4+ T cells was inversely correlated to Foxp3 expression and significantly down-regulated by TGFb with or without Eve. Discussion: Treatment of CB-CD4+ T cells with IL2/TGFb/Eve results in the efficient ex vivo expansion of functional iTregs. Eve enhanced TGFb induction of Foxp3 expression, but did not induce Foxp3 expression by itself. mTOR is a complex of TORC1 and 2. Rapamycin is reported to inhibit TORC1, while Eve inhibits both of them, at general dose. In recent report, mTOR-deficient T cells (TORC1/2, not TORC1 alone) displayed normal activation and IL-2 production upon initial stimulation, but failed to differentiate into effecter T cells, instead, differentiated into Tregs. Although the direct mechanism to inhibit MLR by CB-CD4+ T cells treated with Eve remained to be elucidated, these results suggested the aberrant pathways of immunological inhibition. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3422-3422
Author(s):  
Melinda M Dean ◽  
Katrina Kildey ◽  
Thu V Tran ◽  
Kelly Rooks ◽  
Shoma Baidya ◽  
...  

Abstract Introduction During routine storage packed red blood cells (PRBC) undergo biochemical and biophysical changes collectively referred to as the “RBC storage lesion”. Donor-to-donor variability in the severity of the storage lesion has been reported. The extent to which donor-associated differences in blood component storage affect blood product quality and post-transfusion outcome remains unknown. Murine models with single nucleotide variants (SNV) in gene encoding spectrin-1β were used to investigate the impact of mutations on the RBC storage lesion. Methods Two murine lineages with N-ethyl-N-nitrosourea (ENU) generated single SNV in Spnb1, encoding spectrin-1β (Table 1), were selected from the Australian Phenomics Facility library (http://databases.apf.edu.au/mutations). Using genetic selection, homozygous (HOM), heterozygous (HET) and unaffected (WT) mice from each strain were generated (C57BL/6 background strain). Murine blood was leucoreduced, prepared in SAGM (0.4 HCT) and stored at 4°C for time course assessment of RBC characteristics. At day (D), D2, D7, D14 and D21 of storage, RBC integrity and evidence of storage-related changes were investigated using RBC osmotic fragility and flow cytometric analysis of CD44, CD47, TER119 and phosphatidylserine (PS). Data were generated from analysis of blood from Spnb1 (pedigree spectrin-1β a) homozygous (HOM, n=3), heterozygous (HET, n=3) and unaffected (WT, n=2 ); Spnb1 (pedigree spectrin-1β b) HOM (n=4), HET( n=4); C57BL/6 (n=4). The Mann-Whitney Test and ANOVA were utilised for statistical analyses (95% CI). Results At D2 of storage SNV in Spnb1 did not alter RBC characteristics, with all mice studied demonstrating a similar resistance to osmotic lysis and levels of CD44, CD47, TER119 and PS. By D7 of storage, clear pedigree-related differences in RBC characteristics were evident. At D7, RBC from spectrin-1β(a) HOM mice had significantly increased osmotic fragility and exposure of PS as well as significantly reduced CD44 and TER119 expression compared to unaffected siblings and background strain. Of note, these changes were not evident in the spectrin-1β(b) HOM mice at D7. For both strains at D7, heterozygous SNV did not exhibit altered storage parameters. By D14 both HOM and HET spectrin-1β(a) mice demonstrated a phenotype consistent with an exacerbated RBC storage lesion, characterised by significantly increased osmotic fragility and exposure of PS, and reduced CD44 and CD47 compared to background strain. At D14 there was also evidence of exacerbation of the storage lesion in stored RBC from HOM spectrin-1β(b) mice (significantly increased PS), though this was not to the extent observed in the spectrin-1β(a) mice. By D21 all murine RBC were substantially degraded under these storage conditions. Conclusions SNV in Spnb1,encoding RBC structural protein spectrin-1β, resulted in both early onset and exacerbation of the RBC storage lesion. Further, the degree of storage lesion and the point at which RBC degradation was observed was not only dependent on the homozygous or heterozygous status, but the mutation itself. These data demonstrate that minor genetic variation in genes encoding important RBC proteins contribute to donor related differences in PRBC storage. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4095-4095
Author(s):  
Edwin Chen ◽  
Lawrence J Breyfogle ◽  
Rebekka K. Schneider ◽  
Luke Poveromo ◽  
Ross L. Levine ◽  
...  

Abstract TET2 mutations are early somatic events in the pathogenesis of acute myeloid leukemia (AML), myelodysplastic syndrome (MDS) and myeloproliferative neoplasms (MPN) and are one of the most common genetic lesions found in these diseases. In MPN, TET2 mutations are enriched within more advanced disease phenotypes such as myelofibrosis and leukemic transformation and often co-occur with the JAK2V617F mutation, which is present in the majority of MPN patients. We have developed and characterized a Jak2V617F conditional knockin mouse (Jak2VF/+), the phenotype of which closely recapitulates the features of human MPN. To determine the impact of Tet2 loss on Jak2V617F-mediated MPN, we crossed Tet2 conditional knockout mice with Jak2VF/+ knockin and Vav-Cre transgenic mice and backcrossed the compound mutant animals. We then characterized the effects of heterozygous and homozygous loss of Tet2 on the phenotype of Jak2VF/+ mice. We assessed peripheral blood counts, histopathology, hematopoietic differentiation using flow cytometry, colony formation and re-plating capacity. We also evaluated the effects of Tet2 loss on the transcriptome of the HSC compartment using gene expression microarrays and on HSC function using competitive bone marrow transplantation assays. Similar to Jak2VF/+/VavCre+ mice, Tet2+/-/Jak2VF/+/VavCre+ and Tet2-/-/Jak2VF/+/VavCre+ mice develop leukocytosis, elevated hematocrits (HCT) and thrombocytosis. Tet2-/-/Jak2VF/+/VavCre+ mice demonstrate enhanced leukocytosis and splenomegaly compared to the other groups. All groups demonstrate myeloid expansion, erythroid hyperplasia and megakaryocytic abnormalities consistent with MPN in the bone marrow and spleen, while more prominent myeloid expansion and megakaryocytic morphological abnormalities are observed in Tet2-/-/Jak2VF/+/VavCre+ mice as compared to the other groups. Notably, we do not see the development of acute myelogenous leukemia (AML) in Tet2-/-/Jak2VF/+/VavCre+ mice at 6 months. We see enhanced expansion of lineagelowSca1+cKithigh (LSK) cells (enriched for HSC) most prominently in the spleens of Tet2+/-/Jak2VF/+/VavCre+ and Tet2-/-/Jak2VF/+/VavCre+ mice as compared to Jak2VF/+/VavCre+ mice. In colony forming assays, we find that Tet2-/-/Jak2VF/+/VavCre+ LSK cells have enhanced re-plating activity compared to Jak2VF/+/VavCre+ LSK cells and that Tet2-/-/Jak2VF/+/VavCre+ LSK cells form more colonies that Tet2-/-/Jak2+/+/VavCre+ cells. Gene expression analysis demonstrates enrichment of a HSC self-renewal signature inTet2-/-/Jak2VF/+/VavCre+ LSK cells. Concordant with this, we find that Tet2-/-/Jak2VF/+/VavCre+ LSK cells have enhanced competitive repopulation at 16 weeks as compared to Jak2VF/+/VavCre+ and Tet2+/-/Jak2VF/+/VavCre+ LSK cells. In aggregate these findings demonstrate that Tet2 loss promotes disease progression in MPN but is insufficient to drive full leukemic transformation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3681-3681
Author(s):  
Anna Lena Illert ◽  
Cathrin Klingeberg ◽  
Corinna Albers ◽  
Stephan w. Morris ◽  
Christian Peschel ◽  
...  

Abstract Timely degradation of proteins that control cell proliferation and apoptosis is an essential mechanism in keeping normal growth from turning into runaway malignancy. We previously reported the cloning of NIPA (Nuclear-Interaction-Partner-of-ALK) and characterized it as a F-Box-protein that defines an oscillating E3-ubiquitin-ligase. Using a conditional-knockout strategy we inactivated Nipa and found Nipa-/- animals to be viable, but sterile due to a block of spermatogenesis. Our studies demonstrate that loss of Nipa has no substantive effect on physiological cell cycle progression of primary MEFs indicating that this cell cycle checkpoint is inactive under optimal proliferation conditions. Interestingly, Nipa checkpoint control can be unmasked by oncogenic c-Myc-transformation. Here we show significant differences in c-Myc-induced transformation: Focus formation ability of c-Myc-infected Nipa-/- MEFs was greatly reduced. Moreover, Nipa-deficiency leads to premature senescence in cultured primary MEFs. Ectopic reexpression of Nipa resulted vice versa in delayed senescence of knockout MEFs. Next, we sought to know, whether increased apoptosis in Nipa-/- c-Myc-transduced MEFs is dependent on a functional p53-Axis. Interestingly, the effect of Nipa deficiency on c-Myc-mediated transformation was totally abolished by p53-knockdown. We observed no differences in focus formation ability or growth behaviour in Nipa-/- MEFs with inactivated p53, suggesting the importance of p53 in Nipa-induced cell death. Looking in more detail on the c-myc-p53 axis we detected a substantial increase in Arf-p19 levels in Nipa-/- cells. Moreover, Nipa-knockdown in Zn-inducible-Arf-NIH/3T3 cells lead to stabilization of Arf p19. To test the impact of these findings in a relevant in-vivo model we intercrossed Nipa-/- animals with a transgene EµMyc-Strain. Nipa-/-EµMycTG/wt animals developed lymphomas within a significantly shorter latency than Nipa+/+EµMycTG/wt animals. Furthermore, lymphomas of knockout animals were more aggressive. FACS- and biochemical-analyses showed no gross differences between Nipa-/- and wt lymphomas except highly elevated Arf-p19 levels in Nipa-/- lymphomas, pointing to an important role of Nipa in Myc-p19-signalling. Taken together our results highlight the functional importance of the Nipa-p53-axis in cell cycle regulation and suggest that deregulation of the protein provides a substantial contribution during the process of tumorigenesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 798-798 ◽  
Author(s):  
Iman Fares ◽  
Jalila Chagraoui ◽  
Yves Gareau ◽  
Stephane Gingras ◽  
Ruel Rjean ◽  
...  

Abstract Various combinations of soluble factors have been reported to promote the ex vivo proliferation of human HSCs but few of them are capable of promoting self-renewal. Characterization of StemRegenin (SR1), an aryl hydrocarbon receptor (AhR) antagonist that promotes expansion of CD34+ cells ex vivo, provided a proof of principle that low molecular weight (LMW) compounds have the ability to modulate cellular pathways possibly leading to HSC expansion. In an attempt to identify novel putative agonists of HSC self-renewal, we tested a library comprising > 5,000 LMW molecules in a phenotypical screen based on in vitro expansion of CD34+CD45RA- cells. Eight hits were identified, the majority of which were AhR antagonists. Validation studies identified one hit synthesized in our institute which potently expanded human CD34+CD45RA- cord blood cells ex vivo. Importantly this molecule does not antagonize AhR. Structure activity relationship (SAR) generated a compound called UM171 which is 14-25 folds more potent than the starting molecule with an EC50 of 8-15 nM on CD34+ human cord blood (CB). Using the optimal dose of this analog, CD34+, CD34+CD45RA-, and CD34+CD38-CD90+CD45RA-CD49f+ were expanded 115±15, 62±3 and 121±6 fold respectively over the input values after 12 day culture in fed-batch system. The expansion of these phenotypic HSC populations was enhanced, in an additive manner by including SR1. Washout of UM171 led to a rapid loss of the CD34+CD45RA- population suggesting that its effect is reversible. UM171 is not a mitogen and cannot compensate for the absence of cytokines added to the media (Flt3L, SCF, and TPO). Our cell division studies revealed no effect of the compound on division rate compared to control indicating that UM171 cultured cells retain the CD34+CD45RA- phenotype. Apoptosis and cell phonotype analysis showed significantly less cell differentiation and cell death for UM171 cultured cells compared to controls or SR1 supplemented cultures suggesting that the compound acts by anti-differentiation/apoptosis. Similar to SR1, UM171 treated cells showed a 75±20 fold net increase in the numbers of multilineage colony forming cell (CFU-GEMM) and 150±20 fold when both compounds were present in the 12 day culture.To further understand the impact of UM171 on more primitive cell compartments, we transplanted 100, 500, 1000 and 10,000 uncultured CB CD34+ cells and their progeny after a 12-day culture (with or without UM171) in NSG mice and verified the human hematopoietic reconstitution in their bone marrow 20 weeks later. Mice transplanted with UM171 expanded cells showed a much higher level of human CD45 engraftment compared to uncultured or control expanded cells. The NSG Repopulating Cells (NRC) showed a net expansion ex vivo only in the presence of UM171 with values ranging from 3.1 to 5.5 fold increase over input value in 6 independent experiments. Interestingly, the co-treatment with SR1 did not significantly enhance the impact of UM171 on NRC expansion. In these fed-batch conditions SR1 treatment maintained the NRC population at input values. Importantly, we observed a linear relationship between the number of UM171-treated cells transplanted in vivo and level of human CD45 engraftment. Moreover, at limit dilution, these cells were capable of human myeloid and lymphoid differentiation in NSG BM environment suggesting that UM171 expanded cells remain multipotent. Together, our studies have identified a novel compound which truly expands human progenitors while amplifying the more primitive stem cell population. UM171 has successfully passed toxicity studies and is in the final phase of GMP production for a phase I study which will be launched shortly. In addition, preliminary evidence suggests that UM171 strikingly enhances gene transfer efficiency to primitive human CD34 CB cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4276-4276
Author(s):  
Ahmad Abu-Khader ◽  
Gwendoline Bugnot ◽  
Manal Alsheikh ◽  
Roya Pasha ◽  
Nicolas Pineault

Abstract Delayed neutrophil and platelet engraftment is a significant issue of cord blood (CB) transplantation. Ex vivo expansion of CB hematopoietic stem and progenitor cells (HSPC) before infusion has been shown to accelerate hematopoietic recovery in patients. Recently, we reported that serum free medium (SFM) conditioned with osteoblasts derived from human bone marrow (BM) mesenchymal stromal cells, referred as M-OST CM, was superior to SFM or MSC CM for the expansion of CB CD34+ cells, and that HSPC expanded in M-OST CM provided better platelet engraftment. Since large number of expanded cells were transplanted in the original study, it was not possible to estimate the increased expansion of HSPC with short-term (ST) and long-term (LT) thrombopoietic and BM engraftment activities. The objectives herein were to investigate these shortcomings using limit dilution analysis (LDA) in transplantation assay and to investigate the cellular mechanisms at play. M-OST CM was prepared by conditioning SFM with immature M-OST overnight. CB CD34+ cells were expanded in M-OST CM or in SFM (defined as control) for 7 days with SCF, FL and TPO. CB cell expansion was significantly greater in M-OST CM cultures vs. SFM control (2.4 ±0.9 fold, mean ± SD, n=4, p=0.01). LDA transplantation assays were done by infusing the progeny of 500-8000 CD34+ cells in NSG mice. First, we compared the ST (< 31 days) and LT (˃ 100 days) thrombopoietic activities of expanded HSPC by measuring circulating human platelets (hPLT). The threshold for hPLT engraftment was set above the mean background level measured in control mice + 1SD. The median ST levels of hPLT in M-OST mice tended to be greater (2.5-fold, p˃0.05) in M-OST recipients (21 mice/condition, n=2). The frequency of ST hPLT HSPC estimated by LDA was 3.4 ±0.2 fold higher in M-OST CM cultures though the difference vs. control was not significant (p=0.11). LT hPLT levels were significantly greater in M-OST recipients (median 33 vs. 8 hPLT/uL blood, p=0.0027). Consistent with this, the frequency of HSPC with LT hPLT engraftment was increased in M-OST CM cultures (3.5±0.8 fold, p<0.04). Considering the differences in cell expansion, the net expansion of HSPC with ST and LT hPLT engraftment were raised by 5.5 ±1.7 and 6.0 ±3.4 fold in M-OST CM cultures vs. control (n=2). Next, LT human BM engraftment was analyzed at week 16. Preliminary results (13 mice/condition) suggest that the frequency of LT Scid repopulating cells (SRC) was increased by 27% in the M-OST CM culture vs. SFM control (frequency of 1/2878 vs. 1/3626 of day 0 starting cell). Next, we set to determine how M-OST CM increases the thrombopoietic activity of expanded CB HSPC. First, cytometry analysis (CD34, CD38, CD45RA, CD90 and CD123) revealed that M-OST CM preferentially increased the expansion of common myeloid progenitors (CMP, 8-fold, p=0.2, n=3), megakaryocyte-erythroid progenitors (MEP, 7-fold, p=0.02) and granulocyte-macrophage progenitors (GMP, 9-fold, p=0.02) vs. SFM control. Expansion of HSC-enriched cells was unchanged while that of multipotent progenitors (MPP) was reduced 2-fold (p<0.05). We set to confirm these results by culturing purified primary CB HSPC subsets in M-OST CM or SFM; M-OST CM induced greater expansions of MEP (3-fold), GMP (˃10-fold) while expansion in MPP cultures was greater with SFM control (1.5-fold). No growth was noted with the HSC and CMP cultures likely due to low sort yields. To complement these findings, we measured the expansion of myeloid CFU progenitors and long term culture-initiating cells (LTC-IC) by LDA. The total number of CFU was increased 2.4-fold (<0.02, n=4) by M-OST CM due mostly to increased expansion of CFU-G/GM colonies (2-fold, p<0.05) and BFU-E (2-fold, p=0.05). M-OST CM also sustained a 3.4-fold increase in LTC-IC expansion vs. SFM culture, though this finding remains to be confirmed in ongoing experiments. Finally, we investigated the effect of M-OST CM on the chemotaxis of HSPC toward SDF-1 since we previously reported increased expression of its receptor CXCR4 on CB cells in M-OST CM cultures. M-OST CM HSPC showed a modest 15% increase in migration vs. SFM control (n=4, p=0.10). In conclusion, our results demonstrate that the ST and LT hPLT engraftment activities of ex vivo expanded CB HSPC can be increased 5-6 folds by the use of M-OST CM due to the expansion of immature CB HSPC subsets including perhaps LT SRC. Whether M-OST CM can also modulate the homing activity of HSPC remains unclear. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 886-886
Author(s):  
Ganqian Zhu ◽  
Huacheng Luo ◽  
Shi Chen ◽  
Qian Lai ◽  
Ying Guo ◽  
...  

Abstract Aberrant expression of long non-coding RNAs (lncRNAs) might contribute to the development and progression of leukemia. However, functional studies on the actual role of lncRNAs during the development of leukemia remain scarce, and very few lncRNAs have been shown to be involved in leukemogenesis. HoxBlinc is an anterior HoxB gene-associated intergenic lncRNA. It is a cis-acting lncRNA and functions as an epigenetic regulator to coordinate anterior HoxB gene expression. Giving the dysregulation of HOXA/B genes is a dominant mechanism of leukemic transformation, HoxBlinc might be an oncogenic lncRNA of leukemia. To determine whether HOXBLINC lncRNA is aberrantly expressed in human AML samples, we performed RT-qPCR on bone marrow mononuclear cells (BMMNCs) from a cohort of 73 AML patients. A dramatic up-regulation of HOXBLINC was observed in over 60% of the patients. When TCGA-AML datasets of a cohort of 179 AML patients were analyzed for their HOXBLINC expression, a significant portion of these AML patients had high levels of HOXBLINC expression. Interestingly, AML patients with high HOXBLINC expression (the top thirty percentile of patients) had a significantly shortened survival as compared to patients with low HOXBLINC expression (the bottom thirty percentile). To investigate the impact of HoxBlinc overexpression on normal hematopoiesis and the pathogenesis of hematological malignancies in vivo, we generated a HoxBlinc transgenic(Tg) mouse model. Within 1 year of age, 67% of the HoxBlincTg mice (10 of 15) died or were sacrificed because of a moribund condition due to AML. We then assessed whether overexpression of HoxBlinc affects the pools of HSC/HPCs by flow cytometric analysis on the BM cells of young WT and HoxBlincTg mice (8-10 weeks of age). HoxBlincTg BM had a dramatically greater number of LT-HSC, ST-HSC, MPP cells, and a significantly higher percentage of GMP, but a lower percentage of MEP/CMP cell populations as compared to WT group. To determine the effect of HoxBlinc overexpression on the function of HSC/HPCs, we performed paired-daughter cell assay, replating assay and liquid culture on sorted LT-HSC, LSK or LK cells from young WT and HoxBlincTg mice, the results indicate that transgenic expression of HoxBlinc enhances HSC self-renewal and impairs HSC/HPC differentiation. To assess whether HoxBlinc overexpression-mediated changes in HSC/HPC function are cell-autonomous, we performed competitive transplantation assays to examine the repopulating capacity of HoxBlincTg BM cells. When the donor cell chimerism was analyzed kinetically in the PB of recipient mice, the CD45.2 cell population remained ~50% in mice receiving WT BM cells, whereas the CD45.2 chimerism in the recipients transplanted with HoxBlincTg BM cells steadily increased. Interestingly, mice receiving HoxBlincTg BM cells developed AML at 2-6 months after transplantation. Previous data reported that HoxBlinc can recruit the Setd1a/Mll1 histone H3K4 methyltransferase complex to mediate formation of the active topologically associated domain (TAD) in the anterior HoxB locus for transcription of the anterior HoxB genes. In this study, LSK or LK cells sorted from young WT and HoxBlincTg mice were analyzed by RNA-seq, ATAC-seq, H3K4me3 CHIP-seq and 4C analysis. Mechanistically, HoxBlinc overexpression alters HoxB locus chromatin three-dimensional organization to enhance enhancer/promoter chromatin accessibility and coordinate the expression of not only HoxB1-5 but also HoxA9, Runx1, Meis1 and so on, which are critical genes for HSC regulation and/or leukemogenesis. Our study provides novel insights into the HSC regulation by lncRNAs and identifies HOXBLINC, which coordinates to maintain an oncogenic transcription program for leukemic transformation, as a potent oncogenic lncRNA in leukemogenesis. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 288-288
Author(s):  
Suhita Ray ◽  
Linda Chee ◽  
Nicholas T. Woods ◽  
Kyle J Hewitt

Abstract Stress erythropoiesis describes the process of accelerating red blood cell (RBC) production in anemia. Among a number of important mediators of stress erythropoiesis, paracrine signals - involving cooperation between SCF/c-Kit signaling and other signaling inputs - are required for the activation/function of stress erythroid progenitors. Whereas many critical factors required to drive erythropoiesis in normal physiological conditions have been described, whether distinct mechanisms control developmental, steady-state, and stress erythropoiesis in anemia is poorly understood. Our prior work revealed that the Sterile Alpha Motif (SAM) Domain 14 (Samd14) gene is transcriptionally upregulated in a model of acute hemolytic anemia induced by the RBC-lysing chemical phenylhydrazine. Samd14 is regulated by GATA binding transcription factors via an intronic enhancer (Samd14-Enh). In a mouse knockout of Samd14-Enh (Samd14-Enh -/-), we established that the Samd14-Enh is dispensable for steady-state erythropoiesis but is required for recovery from severe hemolytic anemia. Samd14 promotes c-Kit signaling in vivo and ex vivo, and the SAM domain of Samd14 facilitates c-Kit-mediated cellular signaling and stress progenitor activity. In addition, the Samd14 SAM domain is functionally distinct from closely related SAM domains, which demonstrates a unique role for this SAM domain in stress signaling and cell survival. In our working model, Samd14-Enh is part of an ensemble of anemia-responsive enhancers which promote stress erythroid progenitor activity. However, the mechanism underlying Samd14's role in stress erythropoiesis is unknown. To identify potential Samd14-interacting proteins that mediate its function, we performed immunoprecipitation-mass spectrometry on the Samd14 protein. We found that Samd14 interacted with α- and β heterodimers of the F-actin capping protein (CP) complex independent of the SAM domain. CP binds to actin during filament assembly/disassembly and plays a role in cell morphology, migration, and signaling. Deleting a 17 amino acid sequence near the N-terminus of Samd14 disrupted the Samd14-CP interaction. However, mutating the canonical RxR of the CP interaction (CPI) motif, which is required for CP-binding in other proteins, does not abrogate the Samd14-CP interaction. Moreover, replacing this sequence with the canonical CPI domain of CKIP-1 completely disrupts the interaction, indicating that other sequence features are required to maintain the Samd14-CP complex. Ex vivo knockdown of the β-subunit of CP (CPβ), which disrupts the integrity of the CP complex, decreased the percentage of early erythroid precursors (p&lt;0.0001) and decreased (3-fold) progenitor activity as measured by colony formation assays (similar to knockdown of Samd14). Taken together, these data indicate that Samd14 interacts with CP via a unique CP binding (CPB) domain, and that the CP complex coordinates erythroid differentiation in stress erythroid progenitors. To test the function of the Samd14-CP complex, we designed an ex vivo genetic complementation assay to express Samd14 lacking the CPB-domain (Samd14∆CPB) in stress erythroid progenitors isolated from anemic Samd14-Enh -/- mice. Phospho-AKT (Ser473) and phospho-ERK (Thr202/Tyr204) levels in Samd14∆CPB were, respectively, 2.2 fold (p=0.007) and ~7 fold (n=3) lower than wild type Samd14 expressing cells, 5 min post SCF stimulation. Relative to Samd14, Samd14∆CPB expression reduced burst forming unit-erythroid (BFU-E) (2.0 fold) and colony forming unit-erythroid (CFU-E) (1.5 fold). These results revealed that the Samd14-CP interaction is a determinant of BFU-E and CFU-E progenitor cell levels and function. Remarkably, as the requirement of the CPB domain in BFU-E and CFU-E progenitors is distinct from the Samd14-SAM domain (which promotes BFU-E but not CFU-E), the function of Samd14 in these two cell types may differ. Ongoing studies will examine whether the function of Samd14 extends beyond SCF/c-Kit signaling and establish cell type-dependent functions of Samd14 and Samd14-interacting proteins. Given the critical importance of c-Kit signaling in hematopoiesis, the role of Samd14 in mediating pathway activation, and our discovery implicating the capping protein complex in erythropoiesis, it is worth considering the pathological implications of this mechanism in acute/chronic anemia and leukemia. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1993-1993
Author(s):  
Yukie Kawatani ◽  
Takafumi Suzuki ◽  
Ritsuko Shimizu ◽  
Vincent Kelly ◽  
Masayuki Yamamoto

Abstract Abstract 1993 Poster Board I-1015 Precise regulation of reactive oxygen species (ROS) level is essential for normal cellular homeostasis. Defect of ROS scavenging system results in excess accumulation of ROS in cells, leading to the cellular aging and senescence. Nrf2 (NF-E2-related factor 2) is a basic leucine zipper-type transcription factor, which regulates expression of a set of genes related to the ROS scavenging and detoxification. While accumulating lines of evidence support the significance of Nrf2 for the cellular protection in many types of cells, Nrf2-deficient mice live out their natural life span under the homeostatic condition, and show no significant hematological abnormality except for anemia with aging. We previously found that the Nrf2 activity rose in the macrophages and liver cells derived from conditional knockout (CKO) mice of the selenocystein tRNA (Trsp) gene. The Trsp gene is essential for production of selenoproteins, including glutathione peroxidase and thioredoxin reductase. Thus, there are two prevalent ROS scavenging systems based on different molecular mechanisms; Nrf2 and selenoproteins seemingly act compensatory and cooperatively for maintenance of hematopoietic homeostasis. To explore the roles Nrf2 and selenoproteins play in hematopoietic cells, we conducted conditional knockout of the Trsp gene by crossing Trsp-floxed mice with the interferon-inducible Mx1-Cre transgenic mice in combination with Nrf2 gene knockout (KO) in germline. The Trsp-CKO mice in the background of Nrf2 wild type (Trsp single KO mice) showed thymic atrophy with massive reduction of CD4/CD8 double-positive cells in thymus. This T-lymphocytic phenotype was not changed in the Trsp-CKO mice under the circumstance of Nrf2-null condition (Trsp:Nrf2 double KO mice), suggesting that selenoproteins were prerequisite for the T-cell development. The Trsp single KO mice suffered from mild anemia with increased number of erythroid progenitors in bone marrow and spleen, and importantly this erythroid phenotype was dramatically exacerbated in the Trsp:Nrf2 double KO mice. A large number of poikilocytes and teardrop-shaped cells were observed in the blood smear of the Trsp:Nrf2 double KO mice, whereas these deformed red blood cells were vaguely found in the Trsp single KO mice. Intracellular ROS level was significantly elevated in erythroid progenitors recovered from the Trsp:Nrf2 double KO mice, although that of the Trsp single KO mice were maintained within normal level, indicating that Nrf2 compensates for the defect of ROS scavenging function caused by the loss of selenoproteins in erythroid cells. These results thus demonstrate for the first time that the ROS scavenging conducted by Nrf2 and selenoproteins is essential for the homeostatic maintenance in erythroid and lymphoid cells in a lineage-specific manner. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document