scholarly journals Cereblon harnesses Myc-dependent bioenergetics and activity of CD8+ T lymphocytes

Blood ◽  
2020 ◽  
Vol 136 (7) ◽  
pp. 857-870
Author(s):  
Rebecca S. Hesterberg ◽  
Matthew S. Beatty ◽  
Ying Han ◽  
Mario R. Fernandez ◽  
Afua A. Akuffo ◽  
...  

Abstract Immunomodulatory drugs, such as thalidomide and related compounds, potentiate T-cell effector functions. Cereblon (CRBN), a substrate receptor of the DDB1-cullin-RING E3 ubiquitin ligase complex, is the only molecular target for this drug class, where drug-induced, ubiquitin-dependent degradation of known “neosubstrates,” such as IKAROS, AIOLOS, and CK1α, accounts for their biological activity. Far less clear is whether these CRBN E3 ligase-modulating compounds disrupt the endogenous functions of CRBN. We report that CRBN functions in a feedback loop that harnesses antigen-specific CD8+ T-cell effector responses. Specifically, Crbn deficiency in murine CD8+ T cells augments their central metabolism manifested as elevated bioenergetics, with supraphysiological levels of polyamines, secondary to enhanced glucose and amino acid transport, and with increased expression of metabolic enzymes, including the polyamine biosynthetic enzyme ornithine decarboxylase. Treatment with CRBN-modulating compounds similarly augments central metabolism of human CD8+ T cells. Notably, the metabolic control of CD8+ T cells by modulating compounds or Crbn deficiency is linked to increased and sustained expression of the master metabolic regulator MYC. Finally, Crbn-deficient T cells have augmented antigen-specific cytolytic activity vs melanoma tumor cells, ex vivo and in vivo, and drive accelerated and highly aggressive graft-versus-host disease. Therefore, CRBN functions to harness the activation of CD8+ T cells, and this phenotype can be exploited by treatment with drugs.

2010 ◽  
Vol 207 (8) ◽  
pp. 1791-1804 ◽  
Author(s):  
Elizabeth D. Thompson ◽  
Hilda L. Enriquez ◽  
Yang-Xin Fu ◽  
Victor H. Engelhard

Studies of T cell responses to tumors have focused on the draining lymph node (LN) as the site of activation. We examined the tumor mass as a potential site of activation after adoptive transfer of naive tumor-specific CD8 T cells. Activated CD8 T cells were present in tumors within 24 h of adoptive transfer and proliferation of these cells was also evident 4–5 d later in mice treated with FTY720 to prevent infiltration of cells activated in LNs. To confirm that activation of these T cells occurred in the tumor and not the tumor-draining LNs, we used mice lacking LNs. Activated and proliferating tumor-infiltrating lymphocytes were evident in these mice 24 h and 4 d after naive cell transfer. T cells activated within tumors acquired effector function that was evident both ex vivo and in vivo. Both cross-presenting antigen presenting cells within the tumor and tumor cells directly presenting antigen activated these functional CD8 effectors. We conclude that tumors support the infiltration, activation, and effector differentiation of naive CD8 T cells, despite the presence of immunosuppressive mechanisms. Thus, targeting of T cell activation to tumors may present a tool in the development of cancer immunotherapy.


2017 ◽  
Vol 214 (6) ◽  
pp. 1593-1606 ◽  
Author(s):  
Hossam A. Abdelsamed ◽  
Ardiana Moustaki ◽  
Yiping Fan ◽  
Pranay Dogra ◽  
Hazem E. Ghoneim ◽  
...  

Antigen-independent homeostasis of memory CD8 T cells is vital for sustaining long-lived T cell–mediated immunity. In this study, we report that maintenance of human memory CD8 T cell effector potential during in vitro and in vivo homeostatic proliferation is coupled to preservation of acquired DNA methylation programs. Whole-genome bisulfite sequencing of primary human naive, short-lived effector memory (TEM), and longer-lived central memory (TCM) and stem cell memory (TSCM) CD8 T cells identified effector molecules with demethylated promoters and poised for expression. Effector-loci demethylation was heritably preserved during IL-7– and IL-15–mediated in vitro cell proliferation. Conversely, cytokine-driven proliferation of TCM and TSCM memory cells resulted in phenotypic conversion into TEM cells and was coupled to increased methylation of the CCR7 and Tcf7 loci. Furthermore, haploidentical donor memory CD8 T cells undergoing in vivo proliferation in lymphodepleted recipients also maintained their effector-associated demethylated status but acquired TEM-associated programs. These data demonstrate that effector-associated epigenetic programs are preserved during cytokine-driven subset interconversion of human memory CD8 T cells.


2021 ◽  
Author(s):  
Rabiah Fardoos ◽  
Sarah K. Nyquist ◽  
Osaretin E. Asowata ◽  
Samuel W. Kazer ◽  
Alveera Singh ◽  
...  

Lymphoid tissues are an important HIV reservoir site that persists in the face of antiretroviral therapy and natural immunity. Targeting these reservoirs by harnessing the antiviral activity of local tissue resident memory (TRM) CD8+ T-cells is of great interest, but limited data exist on TRMs within lymph nodes of people living with HIV (PLWH). Here, we studied tonsil CD8+ T-cells obtained from PLWH and uninfected controls from South Africa. We show that these cells are preferentially located outside the germinal centers (GCs), the main reservoir site for HIV, and display a low cytolytic and transcriptionally TRM-like profile that is distinct from blood. In PLWH, CD8+ TRM-like cells are highly expanded and adopt a more cytolytic, activated and exhausted phenotype characterized by increased expression of CD69, PD-1 and perforin, but reduced CD127. This phenotype was enhanced in HIV-specific CD8+ T-cells from tonsils compared to matched blood. Single-cell profiling of these cells revealed a clear transcriptional signature of T-cell activation, clonal expansion and exhaustion ex-vivo. In contrast, this signature was absent from HIV-specific CD8+ T-cells in tonsils isolated from a natural HIV controller, who expressed lower levels of cell surface PD-1 and CXCR5, and reduced transcriptional evidence of T-cell activation, exhaustion and cytolytic activity. Thus, we show that HIV-specific TRM-like CD8+ T-cells in tonsils from non-HIV controllers are enriched for activation and exhaustion profiles compared to those in blood, suggesting that lymphoid HIV specific CD8+ TRM cells are potentially ideal candidates for immunotherapy to modulate their ability to targeting the HIV reservoirs.


2018 ◽  
Vol 20 (5) ◽  
pp. 621-638
Author(s):  
O. I. Stepanova ◽  
D. O. Bazhenov ◽  
E. V. Khokhlova ◽  
I. Yu. Kogan ◽  
D. I. Sokolov ◽  
...  

At the present time, a broad spectrum of CD8+ T lymphocyte subsets is revealed, including naïve cells, memory cells and regulatory subpopulations. Along with cells with high cytolytic activity, some subsets with marked regulatory activity were found there. Each subpopulation is characterized by a set of produced mediators, surface and intracellular markers allowing to suggest their differential in vivo functional activity. The present review article proposes a classification of CD8+ Т cells which takes into account their morphological and functional features. According to conventional view, the CD8+ Т lymphocytes is a cell population exhibiting high cytotoxic ability which is of critical significance in pregnancy, under the conditions of semi-allogenic fetal cell invasion into the endometrium. The fraction of CD8+ T cells is rather high in decidual structures. The review discusses the known mechanisms of differentiation regulation, selective migration and activity of CD8+ T cells in decidual membrane and placenta in the course of pregnancy. Perforine and granzyme are the main cytotoxicity factors of CD8+ Т cells. IL-2, IL-5, IL-13, IFNγ, IL-17, TGF-β and IL-10 cytokines are considered regulatory mediators of CD8+ cells. To induce the effector properties of CD8+ T cells, an antigenic stimulation is required, which is provided by interactions between the CD8+ Т cells and activated CD4+ Т cells or dendritic cells, cytokine effects. Specific differentiation of the CD8+ T cells is determined by differences in microenvironvent. In the course of pregnancy, accumulation of CD8+ Т cells is observed in decidual membrane, but their phenotype and functional properties differ from CD8+ Т cells in peripheral blood. At present time, the mechanisms of selective CD8+ T cell migration to decidual membrane are studied. These events are suggested to be mediated by means of CXCR3 and CCR5 chemokine receptors, IL-6 and IL-15 cytokines. The features of CD8+ Т cell activities, and production of some cytokines, e.g., CSF2, IFNγ, IL-1β, IL-2, IL-6, IL-8,IL-10, IL-12 and TNFα in decidual membrane and is of critical significance for effective invasion of trophoblast cells. In turn, the trophoblast and placental cells promote development of regulatory CD8+ Т lymphocytes in decidual membrane, being able to induce CD8+ T cell apoptosis in decidual membrane. Hence, interaction between the maternal CD8+ T cells and trophoblast in the area of uterine-placental contact is an important link during development of immunological tolerance in the maternal/fetal system.


Blood ◽  
2021 ◽  
Author(s):  
Li Guo ◽  
Sikui Shen ◽  
Jesse W Rowley ◽  
Neal D. Tolley ◽  
Wenwen Jia ◽  
...  

Circulating platelets interact with leukocytes to modulate host immune and thrombotic responses. In sepsis, platelet-leukocyte interactions are increased, and have been associated with adverse clinical events, including increased platelet-T cell interactions. Sepsis is associated with reduced CD8+ T cell numbers and functional responses, but whether platelets regulate CD8+ T cell responses during sepsis remains unknown. In our current study, we systemically evaluated platelet antigen internalization and presentation through major histocompatibility complex class I (MHC-I) and their effects on antigen specific CD8+ T cells in sepsis in vivo and ex vivo. We discovered that both human and murine platelets internalize and proteolyze exogenous antigens, generating peptides that are loaded onto MHC-I. The expression of platelet MHC-I, but not platelet MHC-II, is significantly increased in human and murine platelets during sepsis and in human megakaryocytes stimulated with agonists generated systemically during sepsis (e.g., IFN-g and LPS). Upregulation of platelet MHC-I during sepsis increases antigen cross-presentation and interactions with CD8+ T cells in an antigen-specific manner. Using a platelet lineage specific MHC-I deficient mouse strain (B2mf/f--Pf4Cre), we demonstrate that platelet MHC-I regulates antigen-specific CD8+ T cell proliferation in vitro, as well as the number and functional responses of CD8+ T cells in vivo during sepsis. Loss of platelet MHC-I reduced sepsis-associated mortality in mice in an antigen specific setting. These data identify a new mechanism by which platelets, through MHC-I, process and cross-present antigens, engage antigen specific CD8+ T cells, and regulate CD8+ T cell number, functional responses, and outcomes during sepsis.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3172-3172
Author(s):  
Melinda Roskos ◽  
Robert B. Levy

Abstract There is currently significant interest in the transplant field to develop adoptive-transfer strategies utilizing T cell populations to provide immediate immune function as well as long-term immune reconstitution following hematopoietic cell transplantation (HCT). Presumably, these pre-selected T cell populations could then be further expanded in the transplant recipient as a consequence of lymphopenia-induced proliferation. However, clinical application of adoptive transfer strategies has been limited by practical (time, expense) and technical (isolation and expansion of antigen-specific T cell populations) difficulties, hence more efficient approaches need to be identified. Recent reports have demonstrated the feasibility for the rapid ex vivo generation of transgenic memory CD8 populations. We investigated the potential of applying this ex vivo approach to generate and expand an immunodominant antigen-specific memory population from primary CD8 T cells. CD8 cells recognizing the mouse H60 epitope were selected as the antigen-specific CD8 population. The H60 glycoprotein is the ligand for NKG2D and the LTFNYRNL peptide is an immunodominant minor transplantation antigen. H60 is expressed by BALB.B (H2b) hematopoietic cells and recognized by C57BL/6 (B6) CD8 cells within the context of the H2Kb molecule. CD8 T cells from normal B6 spleens were positively selected using Miltenyi beads. The purified CD8 cells (97%) were then cultured with bone marrow-derived B6 DC, rmIL-2, and H60 peptide (1μM) for 3 days. Cells were harvested and re-cultured with rmIL-15 for 2–4 days. The resultant CD8 population was enriched 10 fold for tetramer-stained H60+ CD8 T cells (average: 3.0% of CD8 T cells). The H60+ CD8 cells displayed a memory phenotype as characterized by CD44+, Ly6C+, CD62Lintermed, and CD25lo expression. We hypothesized these H60+ CD8 T cells could be further expanded in transplant recipients by lymphopenia-induced proliferation. To determine the expansion and persistence of H60+ TM post-HCT, H60+-enriched CD8 cells were co-transplanted with T cell-depleted B6 bone marrow into 9.0Gy-conditioned syngeneic recipients. The phenotype and number of H60+ cells in recipient spleens and bone marrow were assessed beginning 3 days post-HCT. Notably, the H60+ CD8 cells maintained their memory phenotype and persisted at least 2 months post-transplant. The ex vivo-generated H60+ TM underwent a relative expansion of 1.5–2 fold as assessed in recipient spleens, similar to the post-transplant expansion of H60+ CD8 TM derived in vivo from B6 mice primed to BALB.B cells. Moreover, this post-HCT expansion was also similar to that by an ex vivo-generated, transgenic CD8 TM population. Both (ex vivo and in vivo generated) H60+ TM populations also exhibited expansion (1.5–2 fold) in the bone marrow. In total, an immunodominant antigen-specific CD8 TM population was selectively generated and enriched ex vivo and found to undergo expansion following transplant into ablatively conditioned HCT recipients. The similarities in expansion and persistence between ex vivo generated H60 and in vivo primed H60 populations suggest this approach may have useful applications towards the development of successful adoptive transfer strategies.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 189-189
Author(s):  
R. Anthony Barnitz ◽  
Makoto Kurachi ◽  
Madeleine E. Lemieux ◽  
Nir Yosef ◽  
Michael A. DiIorio ◽  
...  

Abstract Following activation by antigen, costimulation, and inflammation, naïve CD8+ T cells initiate a program of clonal expansion and differentiation resulting in wide-spread changes in expression of genes involved in cell-cycle, metabolism, effector function, apoptosis, and homing. Although, several key transcription factors (TFs) have been shown to be important in effector CD8+ T cell differentiation, the precise transcriptional regulation of this differentiation program remains poorly understood. The AP-1 family member BATF plays an important role in regulating differentiation and function in CD4+ Th17 cells, CD4+ follicular helper T cells, and in Ig class switching in B cells. We now show that BATF is also required for effector CD8+ T cell differentiation and regulates a core program of genes involved in effector differentiation. We found that BATF expression is rapidly up-regulated during effector CD8+ T cell differentiation in the mouse model of lymphocytic choriomeningitis virus (LCMV) infection. To examine the role of BATF in effector differentiation, we studied congenically distinct wild type (WT) and BATF knockout (KO) naïve P14 TCR transgenic CD8+ T cells co- transferred into a WT host. Upon infection, the BATF KO cells exhibited a profound, cell-intrinsic defect in effector CD8+ T cell differentiation, with a ∼400-fold decrease in peak number of effector cells. BATF KO effectors showed sustained activation and increased cell death by the mid-expansion phase of the immune response. To address the question of how loss of BATF causes such a severely diminished antigen-specific response, we profiled the binding sites of BATF throughout the genome by chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq) in primary CD8+ effector cells. We found that BATF bound to regulatory regions in many genes critical for effector differentiation, including transcription factors (e.g. Tbx21, Eomes, Prdm1), genes involved in cytokine signaling (e.g. Il12rb2, Il2ra), homing (e.g. Sell, Selp, Ccr9), effector function (e.g. Gzmb, Ifng, Il2), apoptosis (e.g. Bcl2, Bcl2l1, Mcl1), and T cell activation (e.g. Ctla4, Cd247, Tnfrsf4), suggesting a major role for BATF in effector CD8+ T cell differentiation. Indeed, we found that genes bound by BATF were highly significantly overrepresented among genes that changed as a result of naïve CD8+ T cells differentiating into effectors in vivo (P = 10-27). Comparison of gene expression in in vitro WT and BATF KO effectors confirmed that BATF bound genes were perturbed by BATF loss of function. Analysis of the kinetics of gene expression during the first 72 hours of effector differentiation showed that loss of BATF perturbed the temporal sequence of expression of critical transcription factors, such as T-bet and Eomes, and resulted in inappropriately early cytokine expression. This suggests that BATF may be required to coordinate the earliest events in CD8+ T cell effector differentiation. To test this hypothesis, we used in vivo CFSE tracking to follow the early CD8+ T cell response during LCMV infection. We found that while BATF KO CD8+ T cells initiate cell division, there was a dramatic collapse in the ability to sustain proliferation and differentiation as early as day 3 post-infection. These results indicate that BATF ensures the orderly progression of a program of genes required by effector cells, restraining the expression of some and promoting the expression of others. More broadly, our results suggest that BATF may provide a common regulatory infrastructure for the development of effector cells in all T cell lineages. Disclosures: Wherry: Genentech: Patents & Royalties.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1019-1019
Author(s):  
Darina Ocadlikova ◽  
Mariangela Lecciso ◽  
Elisa Orioli ◽  
Elena De Marchi ◽  
Sabina Sangaletti ◽  
...  

Abstract BACKGROUND: Overall survival of adult acute myeloid leukemia (AML) is still poor due to the lack of novel and effective therapies. In different malignancies including AML, some chemotherapy agents, such as daunorubicin (DNR) but not cytarabine (Ara-C), activate the immune response via the cross-priming of anti-tumor T cells by dendritic cells (DCs). Such process, known as immunogenic cell death (ICD), is characterized by intracellular and pericellular modifications of tumor cells, such as the cell surface translocation of calreticulin (CRT) and heat shock proteins 70/90 (HSPs 70/90), the extracellular release of ATP and pro-inflammatory factor HMGB1. Alongside with ICD, chemotherapy is known to induce inflammatory modifications within the tumor microenvironment, which may also elicit immunosuppressive pathways. In particular, DCs may be driven to acquire tolerogenic features, which may ultimately affect anti-tumor T-cell responses. In this study, we characterize ICD in AML to evaluate the involvement of some DC-related inhibitory pathways, such as the expression of indoleamine-2,3-dioxygenase 1 (IDO1) and the activation of PD-L1/PD-1 axis. METHODS: AML patients were analyzed at diagnosis.Before and after DNR-based chemotherapy, patient-derived T cells were extensively characterized by FACS and analyzed for their capacity to produce IFN-γ in response to autologous blasts. The AML cell line HL-60 and primary AML cells were then exposed, in vitro, to different drugs, including DNR and, as control drug, Ara-C. Dying cells were tested for the surface expression of CRT and HSPs 70/90, the release of HMGB1 and ATP. Functionally, immature DCs generated from healthy donors were pulsed with DNR-treated AML cells. Then, loaded DCs were tested for the expression of maturation-associated markers and of inhibitory pathways, such as IDO1 and PD-L1 and used to stimulate autologous CD3+ T cells. After co-culture, autologous healthy donor T cells were analyzed for IFN-g production, PD-1 expression and Tregs induction. A mouse model was set up to investigate in vivo the mechanism(s) underlying ICD in AML. The murine myelomonocytic leukemia cell line WEHI was transfected with luciferase PmeLUC probe, inoculated subcutaneously into BALB/c mice and used to measure in vivo ATP release after chemotherapy. Tumor-infiltrating T cells and DCs were characterized and correlated with ATP release. RESULTS: DNR treatment induced ICD-related modifications in both AML cell lines and primary blasts, including CRT, HSP70 and HSP90 exposure on cell surface, HMGB1 release from nucleus to cytoplasm and supernatant increase of ATP. Ex vivo, T-cell monitoring of DNR-treated AML patients displayed an increase in leukemia-specific IFN-g-producing CD4+ and CD8+ T cells in 20/28 evaluated patients. However, FACS analysis of CD8+ effector T cells emerging after chemotherapy showed a significant up-regulation of exhaustion marker such as LAG3 and PD-1, which paralleled with their reduced ability to produce active effector molecules, such as perforin and granzyme. Moreover, an increase of circulating Tregs was observed after DNR-based chemotherapy. In vitro, loading of chemotherapy-treated AML cells into DCs resulted not only in the induction of a maturation phenotype, but also in over-expression of inhibitory pathways, such as IDO1 and PD-L1. The silencing of IDO1 increased the capacity of DCs loaded with DNR-treated AML cells to induce leukemia-specific IFN-γ production by CD4+ and CD8+ T cells. In vivo, DNR therapy of mice inoculated with established murine AML cell line resulted in increased ATP release. Similarly to ex vivo and in vitro results, tumor-infiltrating DCs showed an increase in maturation status. Moreover, CD4+ and CD8+ T cells had increased IFN-γ production, but showed an exhausted phenotype. CONCLUSIONS: Our data confirm that chemotherapy-induced ICD may be active in AML and results in increased leukemia-specific T-cell immune response. However, a deep, ex vivo, in vitro and in vivo characterization of chemotherapy-induced T cells demonstrated an exhausted phenotype, which may be the result of the inhibitory pathways induction in DCs, such as IDO and PD-L1. The present data suggest that combination of chemotherapy with inhibitors of IDO1 and PD-L1 may represent an interesting approach to potentiate the immunogenic effect of chemotherapy, thus resulting in increased anti-leukemia immune response. Disclosures Cavo: Janssen-Cilag, Celgene, Amgen, BMS: Honoraria.


2010 ◽  
Vol 207 (1) ◽  
pp. 223-235 ◽  
Author(s):  
Sadna Budhu ◽  
John D. Loike ◽  
Ashley Pandolfi ◽  
Soo Han ◽  
Geoffrey Catalano ◽  
...  

We describe a quantitative model for assessing the cytolytic activity of antigen-specific CD8+ T cells in vitro and in vivo in which the concentration of antigen-specific CD8+ T cells determines the efficiency with which these cells kill cognate antigen–expressing melanoma cells in packed cell pellets, in three-dimensional collagen-fibrin gels in vitro, and in established melanomas in vivo. In combination with a clonogenic assay for melanoma cells, collagen-fibrin gels are 4,500–5,500-fold more sensitive than the packed cell pellet–type assays generally used to measure CD8+ T cell cytolytic activity. An equation previously used to describe neutrophil bactericidal activity in vitro and in vivo also describes antigen-specific CD8+ T cell–mediated cytolysis of cognate antigen-expressing melanoma cells in collagen-fibrin gels in vitro and in transplanted tumors in vivo. We have used this equation to calculate the critical concentration of antigen-specific CD8+ T cells, which is the concentration of these cells required to hold constant the concentration of a growing population of cognate antigen-expressing melanoma cells. It is ∼3.5 × 105/ml collagen-fibrin gel in vitro and ∼3 × 106/ml or /g melanoma for previously published studies of ex vivo–activated adoptively transferred tumor antigen–specific CD8+ T cell killing of cognate antigen–expressing melanoma cells in established tumors in vivo. The antigen-specific CD8+ T cell concentration required to kill 100% of 2 × 107/ml cognate antigen-expressing melanoma cells in collagen fibrin gels is ≥107/ml of gel.


Author(s):  
Kevin P. Maresca ◽  
Jianqing Chen ◽  
Divya Mathur ◽  
Anand Giddabasappa ◽  
Adam Root ◽  
...  

Abstract Purpose A sensitive and specific imaging biomarker to monitor immune activation and quantify pharmacodynamic responses would be useful for development of immunomodulating anti-cancer agents. PF-07062119 is a T cell engaging bispecific antibody that binds to CD3 and guanylyl cyclase C, a protein that is over-expressed by colorectal cancers. Here, we used 89Zr-Df-IAB22M2C (89Zr-Df-Crefmirlimab), a human CD8-specific minibody to monitor CD8+ T cell infiltration into tumors by positron emission tomography. We investigated the ability of 89Zr-Df-IAB22M2C to track anti-tumor activity induced by PF-07062119 in a human CRC adoptive transfer mouse model (with injected activated/expanded human T cells), as well as the correlation of tumor radiotracer uptake with CD8+ immunohistochemical staining. Procedures NOD SCID gamma mice bearing human CRC LS1034 tumors were treated with four different doses of PF-07062119, or a non-targeted CD3 BsAb control, and imaged with 89Zr-Df-IAB22M2C PET at days 4 and 9. Following PET/CT imaging, mice were euthanized and dissected for ex vivo distribution analysis of 89Zr-Df-IAB22M2C in tissues on days 4 and 9, with additional data collected on day 6 (supplementary). Data were analyzed and reported as standard uptake value and %ID/g for in vivo imaging and ex vivo tissue distribution. In addition, tumor tissues were evaluated by immunohistochemistry for CD8+ T cells. Results The results demonstrated substantial mean uptake of 89Zr-Df-IAB22M2C (%ID/g) in PF-07062119-treated tumors, with significant increases in comparison to non-targeted BsAb-treated controls, as well as PF-07062119 dose-dependent responses over time of treatment. A moderate correlation was observed between tumor tissue radioactivity uptake and CD8+ cell density, demonstrating the value of the imaging agent for non-invasive assessment of intra-tumoral CD8+ T cells and the mechanism of action for PF-07062119. Conclusion Immune-imaging technologies for quantitative cellular measures would be a valuable biomarker in immunotherapeutic clinical development. We demonstrated a qualification of 89Zr-IAB22M2C PET to evaluate PD responses (mice) to a novel immunotherapeutic.


Sign in / Sign up

Export Citation Format

Share Document