The pathobiology of thrombosis, microvascular disease, and hemorrhage in the myeloproliferative neoplasms

Blood ◽  
2021 ◽  
Author(s):  
Hans C. Hasselbalch ◽  
Margitta Elvers ◽  
Andrew I. Schafer

Thrombotic, vascular, and bleeding complications are the most common causes of morbidity and mortality in the Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs). In these disorders, circulating red cells, leukocytes and platelets, as well as some vascular endothelial cells (ECs), each have abnormalities that are cell-intrinsic to the MPN driver mutations they harbor (e.g. JAK2 V617F). When these cells are activated in the MPNs, their interactions with each other create a highly pro-adhesive and prothrombotic milieu in the circulation that predisposes MPN patients to venous, arterial, and microvascular thrombosis and occlusive disease. Bleeding problems in the MPNs are caused by the MPN blood cell-initiated development of acquired von Willebrand disease. The inflammatory state created by MPN stem cells in their microenvironment extends systemically to amplify the clinical thrombotic tendency and, at the same time, preferentially promote further MPN stem cell clonal expansion, thereby generating a vicious cycle that favors a prothrombotic state in these diseases.

2021 ◽  
Vol 41 (03) ◽  
pp. 197-205
Author(s):  
Franziska C. Zeeh ◽  
Sara C. Meyer

AbstractPhiladelphia chromosome-negative myeloproliferative neoplasms are hematopoietic stem cell disorders characterized by dysregulated proliferation of mature myeloid blood cells. They can present as polycythemia vera, essential thrombocythemia, or myelofibrosis and are characterized by constitutive activation of JAK2 signaling. They share a propensity for thrombo-hemorrhagic complications and the risk of progression to acute myeloid leukemia. Attention has also been drawn to JAK2 mutant clonal hematopoiesis of indeterminate potential as a possible precursor state of MPN. Insight into the pathogenesis as well as options for the treatment of MPN has increased in the last years thanks to modern sequencing technologies and functional studies. Mutational analysis provides information on the oncogenic driver mutations in JAK2, CALR, or MPL in the majority of MPN patients. In addition, molecular markers enable more detailed prognostication and provide guidance for therapeutic decisions. While JAK2 inhibitors represent a standard of care for MF and resistant/refractory PV, allogeneic hematopoietic stem cell transplantation remains the only therapy with a curative potential in MPN so far but is reserved to a subset of patients. Thus, novel concepts for therapy are an important need, particularly in MF. Novel JAK2 inhibitors, combination therapy approaches with ruxolitinib, as well as therapeutic approaches addressing new molecular targets are in development. Current standards and recent advantages are discussed in this review.


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1037
Author(s):  
Alessandro Allegra ◽  
Giovanni Pioggia ◽  
Alessandro Tonacci ◽  
Marco Casciaro ◽  
Caterina Musolino ◽  
...  

Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) have recently been revealed to be related to chronic inflammation, oxidative stress, and the accumulation of reactive oxygen species. It has been proposed that MPNs represent a human inflammation model for tumor advancement, in which long-lasting inflammation serves as the driving element from early tumor stage (over polycythemia vera) to the later myelofibrotic cancer stage. It has been theorized that the starting event for acquired stem cell alteration may occur after a chronic inflammation stimulus with consequent myelopoietic drive, producing a genetic stem cell insult. When this occurs, the clone itself constantly produces inflammatory components in the bone marrow; these elements further cause clonal expansion. In BCR–ABL1-negative MPNs, the driver mutations include JAK 2, MPL, and CALR. Transcriptomic studies of hematopoietic stem cells from subjects with driver mutations have demonstrated the upregulation of inflammation-related genes capable of provoking the development of an inflammatory state. The possibility of acting on the inflammatory state as a therapeutic approach in MPNs appears promising, in which an intervention operating on the pathways that control the synthesis of cytokines and oxidative stress could be effective in reducing the possibility of leukemic progression and onset of complications.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2100
Author(s):  
Lasse Kjær

Myeloproliferative neoplasms (MPNs) are associated with the fewest number of mutations among known cancers. The mutations propelling these malignancies are phenotypic drivers providing an important implement for diagnosis, treatment response monitoring, and gaining insight into the disease biology. The phenotypic drivers of Philadelphia chromosome negative MPN include mutations in JAK2, CALR, and MPL. The most prevalent driver mutation JAK2V617F can cause disease entities such as essential thrombocythemia (ET) and polycythemia vera (PV). The divergent development is considered to be influenced by the acquisition order of the phenotypic driver mutation relative to other MPN-related mutations such as TET2 and DNMT3A. Advances in molecular biology revealed emergence of clonal hematopoiesis (CH) to be inevitable with aging and associated with risk factors beyond the development of blood cancers. In addition to its well-established role in thrombosis, the JAK2V617F mutation is particularly connected to the risk of developing cardiovascular disease (CVD), a pertinent issue, as deep molecular screening has revealed the prevalence of the mutation to be much higher in the background population than previously anticipated. Recent findings suggest a profound under-diagnosis of MPNs, and considering the impact of CVD on society, this calls for early detection of phenotypic driver mutations and clinical intervention.


2014 ◽  
Vol 155 (52) ◽  
pp. 2074-2081 ◽  
Author(s):  
Tünde Krähling ◽  
Katalin Balassa ◽  
Nóra Meggyesi ◽  
András Bors ◽  
Judit Csomor ◽  
...  

Introduction: Mutations in Janus kinase 2, calreticulin and thrombopoietin receptor genes have been identified in the genetic background of Philadelphia chromosome negative, “classic” myeloproliferative neoplasms. Aim: The aim of the authors was to identify driver mutations in a large myeloproliferative cohort of 949 patients. Method: A complex array of molecular techniques (qualitative and quantitative allele-specific polymerase chain reactions, fragment analyzes, high resolution melting and Sanger sequencing) was applied. Results: All 354 patients with polycythemia vera carried Janus kinase 2 mutations (V617F 98.6%, exon 12: 1.4%). In essential thrombocythemia (n = 468), the frequency of V617F was 61.3% (n = 287), that of calreticulin 25.2% (n = 118), and that of thrombopoietin receptor mutations 2.1% (n = 10), while 11.3% (n = 53) were triple-negative. Similar distribution was observed in primary myelofibrosis (n = 127): 58.3% (n = 74) V617F, 23.6% (n = 30) calreticulin, 6.3% (n = 8) thrombopoietin receptor mutation positive and 11.8% (n = 15) triple-negative. Conclusions: The recent discovery of calreticulin gene mutations led to definite molecular diagnostics in around 90% of clonal myeloproliferative cases. Orv. Hetil., 2014, 155(52), 2074–2081.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4198-4198 ◽  
Author(s):  
Garima Pandey ◽  
Nathan Horvat ◽  
Narmin E. Amin ◽  
Afua A. Akuffo ◽  
Christelle Colin ◽  
...  

Philadelphia chromosome negative myeloproliferative neoplasms (MPNs) are JAK2-driven disorders resulting from mutations in JAK2, MPL, or CALR. Ruxolitinib, the only FDA-approved JAK2 inhibitor for MPNs, alleviates patient symptomology and improves quality of life, but has little effect on reducing mutant allele burden. This persistent survival of MPN cells in the face of ruxolitinib, as well as other JAK2 inhibitors that have been clinically tested, is a major clinical bottleneck to the development of an effective targeted therapy for MPN patients. Identifying new therapeutic targets which play critical roles in MPN cells and/or in JAK2 inhibitor persistence may lead to improved MPN therapies. SHP2 is an oncogenic tyrosine phosphatase that is an effector of growth factor and cytokine receptor signaling. SHP2 plays a critical role in the activation of the RAS-ERK pathway and regulates JAK-STAT signaling via numerous phosphatase-dependent mechanisms. Activating mutations of SHP2(PTPN11) have been identified in leukemia, including 8% of MPN patients whose disease progressed to acute myeloid leukemia (AML). In addition, SHP2 has been shown to mediate adaptive resistance to targeted therapies in several cancers. Given the role of SHP2 in cytokine and JAK-STAT signaling, we envisaged a potential role of SHP2 in MPN cell growth and/or survival and ruxolitinib persistence. Treatment of JAK2-V617F-driven MPN model cell lines (UKE1, SET2, and BaF3-JAK2-V617F) with ruxolitinib blocked constitutive tyrosine phosphorylation of SHP2, including phosphorylation of Y542, a marker for activated SHP2. This phosphorylation, however, was restored in ruxolitinib persistent cells. Combination treatment of the allosteric SHP2 inhibitor RMC-4550 (Revolution Medicines) with ruxolitinib prevented the development of ruxolitinib persistent cells and pre-established persistent cells remained sensitive to SHP2 inhibition. RMC-4550 treatment led to significantly reduced levels of pERK consistent with the role of SHP2 in RAS signaling. Interestingly, pERK levels in persistent cells were more sensitive to SHP2 inhibition compared to drug naïve cells suggesting pERK was more dependent on SHP2 in ruxolitinib persistent cells. SHP2 inhibitor treatment increased pSTAT5(Y694) in drug naïve cells but this increase was not observed in similarly treated persistent cells. Furthermore, while ruxolitinib inhibited pERK levels in UKE1 and SET2 cells, pERK levels recovered within 24 hrs of treatment. SHP2 inhibition prevented the recovery of pERK in the presence of ruxolitinib. Collectively, these data suggest that signaling pathways in MPN cells treated with ruxolitinib can become rewired, gaining greater dependence on SHP2, concomitant with sustained pERK and cell survival/growth. Interestingly, we identified a known activating SHP2 mutation (F71L) in UKE1 cells obtained from two independent sources - consistent with the presence of PTPN11 mutations in post-MPN AML. The persistent survival of UKE1 cells in ruxolitinib was antagonized by CRISPR-mediated reduction of SHP2 expression, providing further evidence that SHP2 contributes to ruxolitinib persistence. To assess the effects of a SHP2 inhibitor on MPN progression in vivo, we employed the MPLW515Lbone marrow transplant mouse model of MPN. Initial assessment of therapeutic treatment of mice with an established MPN phenotype indicated that once daily treatment of RMC-4550 (10 or 30 mg/kg) antagonized the MPN phenotype. Complete blood counts indicated a significant reduction in white blood cells, monocytes, and neutrophils compared to vehicle treated mice, while flow cytometry analysis indicated RMC-4550 diminished CD11b+ cell numbers to near that observed in mice transplanted with MPLWT-transduced bone marrow. RMC-4550 improved the overall health of diseased mice, as indicated by increased weight, and significantly reduced organomegaly of the spleen and liver compared to vehicle treated MPN mice. Finally, erythropoietin independent erythroid colony formation of JAK2V617F-positive MPN patient cells was suppressed following SHP2 inhibition, which synergized or enhanced the inhibition induced by ruxolitinib in this assay. In summary, our results suggest that SHP2 inhibition may represent a potential MPN therapy in both ruxolitinib naïve and resistant patients and is an attractive therapeutic target for future clinical investigation. Disclosures Epling-Burnette: Incyte Corporation: Research Funding; Forma Therapeutics: Research Funding; Celgene Corporation: Patents & Royalties, Research Funding. Reuther:Incyte Corporation: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5373-5373
Author(s):  
Mazyad Jamal Almazyad ◽  
Aisha S Alwehaib ◽  
Salem Alshemmari

Introduction Myeloproliferative neoplasms (MPNs) are a group of hematopoietic disorders of stem-cell origin, characterized by mutations that disrupt hematopoietic signal-transduction pathways. The Middle East lacks an MPN registry representative of the disease in our area. Here we report on the epidemiology of these neoplasms in our area, including phenotype, clinical features and relevant outcomes. Methods This population-based study reports various demographic characteristics and clinical attributes of all suspected and confirmed MPN patients from all over Kuwait referred to the research hematology lab at Kuwait University & cytogenetic lab in Kuwait Cancer Control Centre (KCCC) during the period from 2007 to 2018. Molecular determination of the patients' driver mutation status currently relies on ARMS-PCR. Confirming a diagnosis follows the WHO criteria, and its refinements, for the diagnosis of MPNs. Data entry and analysis was performed using SPSS (v.22) software. Results Most patients are ≥ 40 years old (79.8%), with a median age of 55 years. Gender distribution is almost equal, with ethnic categorization as Kuwaiti and Non-Kuwaiti showing a similar pattern. ET is the most common diagnosis (40.1%), followed by PRV (32.3%). JAK2 V617F mutation is reported positive in 89.7% of cases, followed by CALR in 8.0% of MPNs. The incidence of MPNs ranged from 0.5 to 2.1 per 100,000 in 2007 through 2018. The lowest rate was recorded in 2007 (0.511) and the highest was observed in 2011 and 2016 (2.417 and 2.101, respectively). The increase in 2011 is likely due to the introduction of a more sensitive technique using ARMS-PCR for the diagnosis of MPNs, whereas the increase in 2017 may be explained by the publication of WHO 2016 modified criteria. Moreover, throughout the years, the distribution of MPNs in different age groups showed similar pattern, with the highest incidence in patients aged ≥ 60. Driver mutations can fit with a general increase in incidence from 2007-2017, which may be attributed to increased awareness among treating physicians asking suspected cases to screen for MPNs using molecular techniques.One hundred and twenty-four (18.5%) cases were documented to have a prior history of thrombosis, with roughly equal distribution between arterial and venous sites. A large proportion (89.5%) of the thrombotic events occurred in those who are ≥ 40 years old, with most events being associated with ET (34.7%) and PRV (33.1%). Almost one-third of cases of thrombosis were associated with undetermined MPN diagnosis. Participating patients were categorized as either low or high risk for thrombotic events, with the latter being defined as age ≥ 55 years and the presence of a previous thrombotic event. The results demonstrate that a total of 46 cases were defined as high risk, most of them being associated with ET (20 cases) and PRV (19 cases). A statistically significant association was reported between gender and site of occurrence of thrombotic events, with males having more arterial thromboses, and females were documented to have more venous thromboses. Conclusion JAK2 V617F driver mutation is the most common positive finding in the participating patients. Roughly one-fifth of the participants encountered thrombotic events, and the site of thrombosis is associated with gender, demonstrating statistical significance. These results should warrant a more thorough evaluation of MPNs in Kuwait to provide a better understanding of its epidemiology. This can be achieved through optimized documentation of patients' data, and testing for additional novel driver mutations and transformation; as well as encourage physicians in primary care centers to refer suspected cases for molecular diagnosis. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e18563-e18563
Author(s):  
Shahina Patel ◽  
Seo-Hyun Kim ◽  
Jamile M. Shammo ◽  
Jerald P. Radich ◽  
Howard R. Terebelo

e18563 Background: Myeloproliferative Neoplasms are divided by the presence or absence of the Philadelphia Chromosome. Ph- MPN, typically possess driver mutations of JAK-2, MPL and CALR. CALR is involved with apoptosis and cell proliferation . MPL leads to TPO receptor stimulation and mutations are reported as a known cause of AA. JAK-2 mutations render hematopoietic stem cells more sensitive to growth. Though the true incidence is unknown, there are infrequent reports of pts with ET who later develop CML. CALR, MPL and JAK-2 mutations may have some further role in determining whether these are two separate events or clonally derived. We report three pts with MPN who later developed CML. Methods: Chart Review Results: Pt 1 had ET, diagnosed 21 yrs earlier treated with hydroxyurea. He then developed a rising WBC and platelets which necessitated a marrow which detected Ph+ CML. He was CALR positive. NGS was negative for nondriver mutations. Platelets initially declined from 3 million to 975K with TKI and he achieved a MMR. However, the inability to control his thrombocytosis required the addition of ruxolitinib. Pt 2 was diagnosed with ET and was treated with P32. Nine yrs later CML was diagnosed and TKI administration achieved a MMR. Subsequently, a profound anemia evaluation diagnosed PNH requiring eculizumab without benefit and repeat marrow with NGS revealed a MPLmutation and post-ET myelofibrosis. Pt 3 presented with a JAK-2 positive mutation and Polycythemia Vera. After four yrs of hydroxyurea extreme leukocytosis led to a marrow revealing a diagnosis of Ph+ CML. Dasatinib achieved a prompt MMR. NGS revealed KIT D618 V , coinciding with a diagnosis of systemic mastoytosis (SM). Conclusions: The rare observation of patients with both ET and CML have been reported by others with some recent implications of CALR as a common clone with double-mutant properties of CML. Our patients had a lead time of 21, 9, and 4 yrs, all having different mutations. Pts with MPN who develop unexplained leuko or thrombocytosis should be evaluated for CML.We plan to retrieve archival tissue to perform serial genetic analyses. Further work is required to determine whether these events are stochastic or represents clonal evolution.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e18555-e18555
Author(s):  
Andrew Peseski ◽  
Antoine Saliba ◽  
Hamid Sayar

e18555 Background: Philadelphia-chromosome negative myeloproliferative neoplasms (MPN) are a group of hematologic malignancies with known complications of hemorrhage and thrombosis. Age and a previous history of thrombosis are well-documented risk factors for future vascular events. Variations in the rates of these complications among ethnicities and sexes have not been extensively explored. Methods: Our retrospective analysis included 301 adult patients with a diagnosis of MPN without a history of thrombosis or hemorrhagic event seen at the Indiana University Simon Cancer Center between 1992 and 2019. Relationships between ethno-racial backgrounds and vascular complications and disease outcomes were evaluated using multivariate logistic regression analysis and Cox regression models. Results: Two hundred seventy-one patients (90.0%) were Caucasian and 30 patients (10.0%) were non-Caucasian. Non-Caucasian patients were comprised of African America, Asian, and Middle Eastern ethnicities. Median age at diagnosis was 56 years, and 43.9% were male. No association was found between the incidence of thrombotic complications and ethnicity using the log-rank test ( p 0.68). The incidence of hemorrhagic events was significantly increased in non-Caucasian patients (OR = 4.33; 95% CI [1.15 – 16.36], p 0.03). Patients with higher hemoglobin concentration at diagnosis were at a significantly lower risk of bleeding complications (OR = 0.79; 95% CI [0.65 – 0.95], p 0.01). Non-Caucasian patients were at 2.98 times (95% CI [1.19 – 7.44], p 0.02) higher risk when vascular complications were pooled together. Our models also showed that male sex (OR = 0.14; 95% CI [.02 – .98], p 0.048) and a higher platelet count at the time of diagnosis (OR = 0.99; 95% CI [.993 –.999], p 0.03) had a marginally significant association with decreased rate of progression to acute myeloid leukemia. Conclusions: This study suggests that in patients without a history of thrombosis or bleeding, non-Caucasian ethnicity was associated with an increased adjusted risk of hemorrhagic complications in patients with MPN. This observation may inform future studies to further characterize those disparities in outcomes at the genetic or socioeconomic level.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5473-5473
Author(s):  
Marianna De Muro ◽  
Ambra Di Veroli ◽  
Marco Montanaro ◽  
Roberto Latagliata ◽  
Cristina Santoro ◽  
...  

Abstract Background: MPNs including Polycythemia Vera (PV), Essential Thrombocythemia (ET) and Primary Myelofibrosis (PMF), are clonal hematopoietic diseases in which the discovery of molecular driver mutations (JAK2, CALR, MPL) has deeply modified diagnostic approach in recent years. To date available data on epidemiology of MPNs and perspective analysis are rare. Our aim is to study the incidence of MPN Ph negative in a specific region of Italy named Latium and its variability across five years. Moreover we prospectively report the general features of our population. Method: We present here the prospective epidemiologic analysis of 1116 adult patients affected by MPNs (PV=289, ET=550, PMF=209) diagnosed according to 2008 WHO criteria, from January 2011 to December 2015 in 15 hematological Centers (5 academic and 10 community-based Hospitals) in Latium. A total of 289 PV, 550 ET and 209PMF were identified. The overall incidence rate of 289PV was 1.0/105 in 2011 and 2012, 1.1/105 in 2013, 0.9/105 in 2014 and 2015. The overall incidence rate of 550ET was 2.0/105 in 2011, 2.4/105 in 2012, 2.2/105 in 2013, 1.8/105 in 2014 and 1,2/105 in 2015 and the overall incidence rate of 209PMF was 0.7/105 in 2011 and 2012, 1.0/105 in 2013, 0.7/105 in 2014 and 0.5/105 in 2015. We have observed also 63 cases of MPNu (36M/32F) and the incidence rate was 0.3/105 in 2011 and 2012, 0.14/105 in 2013, 0.24/105 in 2014 and 0.22/105 in 2015. Baseline features of PV, ET and PMF patients are summarized in table 1. We have also analyzed the presence of comorbidities including obesity, arhythmia and neoplasia observed at the diagnosis in 1.6, 6.2 and 4% of all population, respectively; thirty-five percent of 1116 pts presented other comorbidities such as diabetes, inflammatory bowel disease, renal and liver failure. As thrombotic risk factors we considered diabetes, dislipidemia, smoke, essential hypertension and thrombophilia observed in 11,8, 16,2, 13,2, 51,7 and 3% of total pts, respectively. Conclusions: We confirm in our prospective observational protocol the overall incidence of MPN Ph negative, previously reported in the literature and the major incidence of male gender in PV and PMF, female in of ET. The annual incidence from 2011-2015 in Latium is remained substantially the same during the observation period. The decreasing trend observed in 2015 is probably due to the different update of some Centers that was done in October 2015 not including patients diagnosed in the last two months. Disclosures Latagliata: Novartis: Consultancy, Honoraria; Bristol Myers Squibb: Honoraria; Celgene: Honoraria; Janssen: Consultancy, Honoraria; Shire: Honoraria. Breccia:Pfizer: Honoraria; Novartis: Consultancy, Honoraria; Bristol Myers Squibb: Honoraria; Celgene: Honoraria; Ariad: Honoraria. Cimino:Celgene: Honoraria; Bristol-Mayer: Honoraria.


Sign in / Sign up

Export Citation Format

Share Document