Vav1, but not Vav2, contributes to platelet aggregation by CRP and thrombin, but neither is required for regulation of phospholipase C

Blood ◽  
2002 ◽  
Vol 100 (10) ◽  
pp. 3561-3569 ◽  
Author(s):  
Andrew C. Pearce ◽  
Jonathan I. Wilde ◽  
Gina M. Doody ◽  
Denise Best ◽  
Osamu Inoue ◽  
...  

We have investigated the role of the Rho and Rac family small guanine triphosphate (GTP) exchange factors (RhoGEFs), Vav1 and Vav2, in the activation of platelets by the immunoreceptor tyrosine-based activation motif (ITAM)–coupled collagen receptor GPVI and by the G protein–coupled receptor agonist thrombin. The glycoprotein VI (GPVI)–specific agonist collagen-related peptide (CRP) and thrombin stimulated tyrosine phosphorylation of Vav1 but not Vav2 in human platelets. Surprisingly, however, CRP did not activate the low-molecular-weight G protein Rac and stimulated only a small increase in activity of p21-associated kinase 2 (PAK2), despite the fact that both proteins are regulated downstream of Vav1 in other cells. Further, activation of Rac and PAK2 by thrombin was maintained in platelets from mice deficient in Vav1. Activation of phospholipase C (PLC) by GPVI and thrombin was unaltered in Vav1-, Vav2-, and Vav1/Vav2-deficient platelets. A weak inhibition of late-stage aggregation to CRP and thrombin was observed in platelets deficient in Vav1 but not Vav2, whereas spreading on fibrinogen was not changed. The present results demonstrate that neither Vav1 nor Vav2 lie upstream of PLC or Rac in platelets, highlighting an important difference in their role in signaling by ITAM-coupled receptors in other cell types. The present study has provided evidence for a possible role of Vav1 but not Vav2 in the later stages of platelet aggregation.

Author(s):  
Layla Van Doren ◽  
Nga Nguyen ◽  
Christopher Garzia ◽  
Elizabeth Fletcher ◽  
Ryan Stevenson ◽  
...  

Objective: 12-LOX (12-lipoxygenase) produces a number of bioactive lipids including 12(S)-HETE that are involved in inflammation and platelet reactivity. The GPR31 (G-protein–coupled receptor 31) is the proposed receptor of 12(S)-HETE; however, it is not known whether the 12(S)-HETE-GPR31 signaling axis serves to enhance or inhibit platelet activity. Approach and Results: Using pepducin technology and biochemical approaches, we provide evidence that 12(S)-HETE-GPR31 signals through Gi to enhance PAR (protease-activated receptor)-4–mediated platelet activation and arterial thrombosis using both human platelets and mouse carotid artery injury models. 12(S)-HETE suppressed AC (adenylyl cyclase) activity through GPR31 and resulted in Rap1 and p38 activation and low but detectable calcium flux but did not induce platelet aggregation. A GPR31 third intracellular (i3) loop–derived pepducin, GPR310 (G-protein–coupled receptor 310), significantly inhibited platelet aggregation in response to thrombin, collagen, and PAR4 agonist, AYPGKF, in human and mouse platelets but relative sparing of PAR1 agonist SFLLRN in human platelets. GPR310 treatment gave a highly significant 80% protection ( P =0.0018) against ferric chloride–induced carotid artery injury in mice by extending occlusion time, without any effect on tail bleeding. PAR4-mediated dense granule secretion and calcium flux were both attenuated by GPR310. Consistent with these results, GPR310 inhibited 12(S)-HETE–mediated and PAR4-mediated Rap1-GTP and RASA3 translocation to the plasma membrane and attenuated PAR4-Akt and ERK activation. GPR310 caused a right shift in thrombin-mediated human platelet aggregation, comparable to the effects of inhibition of the Gi-coupled P2Y 12 receptor. Co-immunoprecipitation studies revealed that GPR31 and PAR4 form a heterodimeric complex in recombinant systems. Conclusions: The 12-LOX product 12(S)-HETE stimulates GPR31-Gi–signaling pathways, which enhance thrombin-PAR4 platelet activation and arterial thrombosis in human platelets and mouse models. Suppression of this bioactive lipid pathway, as exemplified by a GPR31 pepducin antagonist, may provide beneficial protective effects against platelet aggregation and arterial thrombosis with minimal effect on hemostasis.


2020 ◽  
Vol 21 (11) ◽  
pp. 3932 ◽  
Author(s):  
Preeti Kumari Chaudhary ◽  
Sanggu Kim ◽  
Youngheun Jee ◽  
Seung-Hun Lee ◽  
Kyung-Mee Park ◽  
...  

Platelet G protein-coupled receptors (GPCRs) regulate platelet function by mediating the response to various agonists, including adenosine diphosphate (ADP), thromboxane A2, and thrombin. Although GPCR kinases (GRKs) are considered to have the crucial roles in most GPCR functions, little is known regarding the regulation of GPCR signaling and mechanisms of GPCR desensitization by GRKs in platelets. In this study, we investigated the functional role of GRK6 and the molecular basis for regulation of specific GPCR desensitization by GRK6 in platelets. We used GRK6 knockout mice to evaluate the functional role of GRK6 in platelet activation. Platelet aggregation, dense- and α-granule secretion, and fibrinogen receptor activation induced by 2-MeSADP, U46619, thrombin, and AYPGKF were significantly potentiated in GRK6−/− platelets compared to the wild-type (WT) platelets. However, collagen-related peptide (CRP)-induced platelet aggregation and secretion were not affected in GRK6−/− platelets. Interestingly, platelet aggregation induced by co-stimulation of serotonin and epinephrine which activate Gq-coupled 5HT2A and Gz-coupled α2A adrenergic receptors, respectively, was not affected in GRK6−/− platelets, suggesting that GRK6 was involved in specific GPCR regulation. In addition, platelet aggregation in response to the second challenge of ADP and AYPGKF was restored in GRK6−/− platelets whereas re-stimulation of the agonist failed to induce aggregation in WT platelets, indicating that GRK6 contributed to P2Y1, P2Y12, and PAR4 receptor desensitization. Furthermore, 2-MeSADP-induced Akt phosphorylation and AYPGKF-induced Akt, extracellular signal-related kinase (ERK), and protein kinase Cδ (PKCδ) phosphorylation were significantly potentiated in GRK6−/− platelets. Finally, GRK6−/− mice exhibited an enhanced and stable thrombus formation after FeCl3 injury to the carotid artery and shorter tail bleeding times, indicating that GRK6−/− mice were more susceptible to thrombosis and hemostasis. We conclude that GRK6 plays an important role in regulating platelet functional responses and thrombus formation through selective GPCR desensitization.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3576-3576
Author(s):  
Patricia G. Quinter ◽  
Todd M. Quinton ◽  
Carol A. Dangelmaier ◽  
Satya P. Kunapuli ◽  
James L. Daniel

Abstract The collagen receptor glycoprotein VI (GPVI), plays an essential role in platelet activation and the regulation of hemostasis. Microdomains within the plasma membrane, called lipid rafts, have been implicated in GPVI signaling. The GPVI receptor has been shown to associate with the lipid rafts in both resting and activated platelets. It has been reported that there is a reduction in GPVI signaling in raft-disrupted platelets following activation with various GPVI agonists, especially at low to moderate agonist concentrations. Since platelet aggregation is potentiated by secreted adenosine 5′-diphosphate (ADP) at low concentrations of convulxin and at all concentrations of collagen and collagen-related peptide (CRP), we wanted to determine whether the decrease in GPVI signaling found in platelets with disrupted rafts was due to the loss of agonist potentiation by ADP. We compared platelet aggregation, protein phosphorylation, and calcium mobilization in platelets with intact and disrupted lipid rafts following activation with the GPVI agonists, collagen, convulxin and CRP. We show that lipid raft disruption inhibits aggregation induced by collagen and convulxin, but this inhibition is no longer apparent in the presence of ADP feedback inhibitors. Furthermore, raft-disrupted platelets had the same level of phosphorylation of proteins involved in GPVI signaling (i.e. Syk, LAT, and PLCγ2) and the same ability to mobilize calcium following activation with collagen or convulxin. Therefore, the effects of lipid raft disruption on aggregation can be attributed to the loss of ADP feedback. Interestingly, however, raft disruption directly inhibited aggregation and Syk phosphorylation induced by CRP in the presence and absence of ADP feedback. We propose that these differences are due to the fact that CRP is a relatively small, synthesized peptide of 37 amino acids, while collagen and convulxin are large ligands. These agonists are all able to bind the GPVI receptor, but they may not have the same ability to simultaneously cluster multiple receptors due to their size differential. The lipid rafts may be important for CRP stimulation, but not for collagen or convulxin, because they may have a higher density of the GPVI receptor than nonraft membrane regions, allowing CRP to cluster multiple receptors and activate the GPVI signaling cascade. When we disrupt the lipid rafts, we are reducing the effective concentration of GPVI available for activation by CRP but not by collagen or convulxin.


1999 ◽  
Vol 342 (1) ◽  
pp. 171-177 ◽  
Author(s):  
Jean-Max PASQUET ◽  
Régis BOBE ◽  
Barbara GROSS ◽  
Marie-Pierre GRATACAP ◽  
Michael G. TOMLINSON ◽  
...  

The collagen receptor glycoprotein VI (GPVI) induces platelet activation through a similar pathway to that used by immune receptors. In the present study we have investigated the role of phosphatidylinositol 3-kinase (PI 3-kinase) in GPVI signalling. Our results show that collagen-related peptide {CRP: [GCP*(GPP*)10GCP*G]n; P* = hydroxyproline}, which is selective to GPVI, induces formation of phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] and phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] in platelets. The increase in the two 3-phosphorylated lipids is inhibited completely by wortmannin and by LY294002, two structurally unrelated inhibitors of PI 3-kinase. The formation of inositol phosphates and phosphatidic acid (PA), two markers of phospholipase C (PLC) activation, by CRP are inhibited by between 50 and 85% in the presence of wortmannin and LY294002. This is associated with inhibition of elevation of intracellular Ca2+ ([Ca2+]i) and aggregation. Wortmannin and LY294002 also partially inhibit elevation of Ca2+ by CRP in murine megakaryocytes. Microinjection of the pleckstrin-homology PH domain of Bruton's tyrosine kinase, which binds selectively to PI(3,4,5)P3, but not the R28C (Arg28 → Cys) mutant which binds to PI(3,4,5)P3 with low affinity, also inhibits elevation of [Ca2+]i in megakaryocytes, suggesting that it is this lipid species which mediates the action of the PI 3-kinase pathway. Studies in platelets show that the action of wortmannin and LY294002 is not mediated through an alteration in tyrosine phosphorylation of PLCγ2. These results demonstrate that PI 3-kinase is required for full activation of PLCγ2 by GPVI in platelets and megakaryocytes.


Blood ◽  
1996 ◽  
Vol 88 (5) ◽  
pp. 1684-1691 ◽  
Author(s):  
SB Lee ◽  
AK Rao ◽  
KH Lee ◽  
X Yang ◽  
YS Bae ◽  
...  

Platelets from a patient with a mild inherited bleeding disorder and abnormal platelet aggregation and secretion show reduced generation of inositol 1,4,5-trisphosphate, mobilization of intracellular Ca2+, and phosphorylation of pleckstrin in response to several G protein mediated agonists, suggesting a possible defect at the level of phospholipase C (PLC) activation (see accompanying report). A procedure was developed that allows quantitation of platelet PLC isozymes. After fractionation of platelet extracts by high-performance liquid chromatography, 7 out of 10 known PLC isoforms were detected by immunoblot analysis. The amount of these isoforms in normal platelets decreased in the order PLC- gamma 2 > PLC-beta 2 > PLC-beta 3 > PLC-beta 1 > PLC-gamma 1 > PLC- delta 1 > PLC-beta 4. Compared with normal platelets, platelets from the patient contained approximately one-third the amount of PLC-beta 2, whereas PLC-beta 4 was increased threefold. These results suggest that the impaired platelet function in the patient in response to multiple G protein mediated agonists is attributable to a deficiency of PLC-beta 2. They document for the first time a specific PLC isozyme deficiency in human platelets and provide an unique opportunity to understand the role of different PLC isozymes in normal platelet function.


2009 ◽  
Vol 284 (24) ◽  
pp. 16108-16117 ◽  
Author(s):  
Subhashini Srinivasan ◽  
Fozia Mir ◽  
Jin-Sheng Huang ◽  
Fadi T. Khasawneh ◽  
Stephen C.-T. Lam ◽  
...  

ADP plays an integral role in the process of hemostasis by signaling through two platelet G-protein-coupled receptors, P2Y1 and P2Y12. The recent use of antagonists against these two receptors has contributed a substantial body of data characterizing the ADP signaling pathways in human platelets. Specifically, the results have indicated that although P2Y1 receptors are involved in the initiation of platelet aggregation, P2Y12 receptor activation appears to account for the bulk of the ADP-mediated effects. Based on this consideration, emphasis has been placed on the development of a new class of P2Y12 antagonists (separate from clopidogrel and ticlopidine) as an approach to the treatment of thromboembolic disorders. The present work examined the molecular mechanisms by which two of these widely used adenosine-based P2Y12 antagonists (2-methylthioadenosine 5′-monophosphate triethylammonium salt (2MeSAMP) and ARC69931MX), inhibit human platelet activation. It was found that both of these compounds raise platelet cAMP to levels that substantially inhibit platelet aggregation. Furthermore, the results demonstrated that this elevation of cAMP did not require Gi signaling or functional P2Y12 receptors but was mediated through activation of a separate G protein-coupled pathway, presumably involving Gs. However, additional experiments revealed that neither 2MeSAMP nor ARC69931MX (cangrelor) increased cAMP through activation of A2a, IP, DP, or EP2 receptors, which are known to couple to Gs. Collectively, these findings indicate that 2MeSAMP and ARC69931MX interact with an unidentified platelet G protein-coupled receptor that stimulates cAMP-mediated inhibition of platelet function. This inhibition is in addition to that derived from antagonism of P2Y12 receptors.


1999 ◽  
Vol 82 (10) ◽  
pp. 1322-1326 ◽  
Author(s):  
James Daniel ◽  
Carol Dangelmaier ◽  
Jianguo Jin ◽  
Young Kim ◽  
Satya Kunapuli

SummaryHuman platelets express two distinct G protein-coupled ADP receptors, one coupled to phospholipase C through Gq, P2Y1, and the other to inhibition of adenylyl cyclase through Gi, P2TAC. We have recently shown that concomitant intracellular signaling from both the P2TAC and P2Y1 receptors is essential for ADP-induced platelet aggregation. Previous studies have tested whether ADP causes a decrease in the basal cAMP level and this reduction promotes platelet aggregation, but did not study the effect of decreased cAMP levels when the Gq pathway is selectively activated. Since we are now aware that platelet aggregation requires activation of two receptors, we investigated whether the function of P2TAC receptor activation, leading to inhibition of platelet adenylyl cyclase, could be replaced by direct inhibition of adenylyl cyclase, when Gq pathway is also activated, a possibility that has not been addressed to date. In the present study, we supplemented the P2Y1 mediated Gq signaling pathway with inhibition of the platelet adenylyl cyclase by using SQ22536 or dideoxyadenosine, or by selective activation of the α2A adrenoceptors with epinephrine. Although SQ22536, dideoxyadenosine, and epinephrine reduced the cAMP levels, only epinephrine could mimic the P2TAC receptor mediated signaling events, suggesting that reduction in basal cAMP levels does not directly contribute to ADP-induced platelet activation. Adenosine-5’-phosphate-3’-phosphosulfate, a P2Y1 receptor antagonist, completely blocked ADP-induced inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate formation suggesting that P2TAC-mediated activation of Gi (or other G proteins) does not activate phospholipase C. These results suggest that a signaling event downstream from Gi, independent of the inhibition of platelet adenylyl cyclase, contributes to αIIbβ3 activation.


Blood ◽  
2004 ◽  
Vol 104 (5) ◽  
pp. 1335-1343 ◽  
Author(s):  
Haripriya Shankar ◽  
Swaminathan Murugappan ◽  
Soochong Kim ◽  
Jianguo Jin ◽  
Zhongren Ding ◽  
...  

Abstract The role of the Gi-coupled platelet P2Y12 receptor in platelet function has been well established. However, the functional effector or effectors contributing directly to αIIbβ3 activation in human platelets has not been delineated. As the P2Y12 receptor has been shown to activate G protein–gated, inwardly rectifying potassium (GIRK) channels, we investigated whether GIRK channels mediate any of the functional responses of the platelet P2Y12 receptor. Western blot analysis revealed that platelets express GIRK1, GIRK2, and GIRK4. In aspirin-treated and washed human platelets, 2 structurally distinct GIRK inhibitors, SCH23390 (R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride) and U50488H (trans-(±)-3,4-dichloro-N-methyl-N-[2-(pyrrolidinyl)cyclohexyl] benzeneacetamide methanesulfonate), inhibited adenosine diphosphate (ADP)–, 2-methylthioADP (2-MeSADP)–, U46619-, and low-dose thrombin–mediated platelet aggregation. However, the GIRK channel inhibitors did not affect platelet aggregation induced by high concentrations of thrombin, AYPGKF, or convulxin. Furthermore, the GIRK channel inhibitors reversed SFLLRN-induced platelet aggregation, inhibited the P2Y12-mediated potentiation of dense granule secretion and Akt phosphorylation, and did not affect the agonist-induced Gq-mediated platelet shape change and intracellular calcium mobilization. Unlike AR-C 69931MX, a P2Y12 receptor–selective antagonist, the GIRK channel blockers did not affect the ADP-induced adenlylyl cyclase inhibition, indicating that they do not directly antagonize the P2Y12 receptor. We conclude that GIRK channels are important functional effectors of the P2Y12 receptor in human platelets.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 618
Author(s):  
Aurélien Zarca ◽  
Claudia Perez ◽  
Jelle van den Bor ◽  
Jan Paul Bebelman ◽  
Joyce Heuninck ◽  
...  

Background: The atypical chemokine receptor 3 (ACKR3) belongs to the superfamily of G protein-coupled receptors (GPCRs). Unlike classical GPCRs, this receptor does not activate G proteins in most cell types but recruits β-arrestins upon activation. ACKR3 plays an important role in cancer and vascular diseases. As recruitment of β-arrestins is triggered by phosphorylation of the C-terminal tail of GPCRs, we studied the role of different potential phosphorylation sites within the ACKR3 C-tail to further delineate the molecular mechanism of internalization and trafficking of this GPCR. Methods: We used various bioluminescence and fluorescence resonance energy transfer-based sensors and techniques in Human Embryonic Kidney (HEK) 293T cells expressing WT or phosphorylation site mutants of ACKR3 to measure CXCL12-induced recruitment of β-arrestins and G-protein-coupled receptor kinases (GRKs), receptor internalization and trafficking. Results: Upon CXCL12 stimulation, ACKR3 recruits both β-arrestin 1 and 2 with equivalent kinetic profiles. We identified interactions with GRK2, 3 and 5, with GRK2 and 3 being important for β-arrestin recruitment. Upon activation, ACKR3 internalizes and recycles back to the cell membrane. We demonstrate that β-arrestin recruitment to the receptor is mainly determined by a single cluster of phosphorylated residues on the C-tail of ACKR3, and that residue T352 and in part S355 are important residues for β-arrestin1 recruitment. Phosphorylation of the C-tail appears essential for ligand-induced internalization and important for differential β-arrestin recruitment. GRK2 and 3 play a key role in receptor internalization. Moreover, ACKR3 can still internalize when β-arrestin recruitment is impaired or in the absence of β-arrestins, using alternative internalization pathways. Our data indicate that distinct residues within the C-tail of ACKR3 differentially regulate CXCL12-induced β-arrestin recruitment, ACKR3 trafficking and internalization.


Sign in / Sign up

Export Citation Format

Share Document