Rapid Downregulation of c-Kit Expression Is Associated with Reduced Repopulation Potential of Donor Hematopoietic Stem Cells in Recipients after Total Body Irradiation.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1197-1197
Author(s):  
Hongmei Shen ◽  
Hui Yu ◽  
Youzhong Yuan ◽  
Paulina Huang ◽  
Tao Cheng

Abstract Homing, lodgment, survival and proliferation are critical early determinants for the later outcomes of hematopoietic stem cell (HSC) or bone marrow transplantation (BMT). The irradiated bone marrow microenvironment may also pose an exhausting effect to the repopulating potential of donor HSCs, but the mechanisms for the effect are largely unknown. To determine whether these early events contribute to the exhausting effect, we have examined the kinetics of transplanted HSCs in 10 Gy lethally irradiated (IR) mice in comparison with transplanted HSCs in non-irradiated (NR) mice. 18 hours after transplantation, we found that the absolute number of homed Lin-Sca-1+ cells was not significantly different between IR and NR recipients. To examine the cell proliferative rate, CFSE staining together with flow cytometry was used to track the cell divisions of transplanted cells in the recipient marrow. While there were no detectable cell divisions in NR hosts, we detected 3 cell divisions in the Lin-Sca-1+ cell population 48 hours after BMT, thereby excluding the possibility that proliferation of hematopoietic cells was constrained in IR hosts. Regarding the expression of HSC associated markers, despite the similar expression of Sca-1 expression in both NR and IR recipients, the c-Kit was significantly downregulated to a nearly absent level in IR recipients, but it was not altered in NR recipients 18 hours post transplantation. The downregulation appeared to be transient since c-Kit was readily detectable after short-term engraftment. To functionally correlate c-Kit downregulation with long-term engraftment and self-renewal potential of transplanted HSCs, we sorted the homogeneous c-Kit+ cells (CD45.2+) and injected them into NR or IR recipients (CD45.1) at 5x106 cells/mouse. As expected, c-Kit became absent in IR hosts but not in NR hosts 18 hours after transplantation. We then harvested the homed cells and performed a competitive repopulation experiment involving the use of different congenic mice as secondary recipients at the dose of 1.3x 104 CD45.2 cells mixed with 1x105 competitive cells per mouse (n=4). Relative to the competitor cells (CD45.2/CD45.1 F1) in a same recipient, engraftment of the cells from IR recipients was lower than from NR recipients at each monthly time point (6 months). Moreover, the relative engraftment to competitor cells from IR recipients gradually declined to a minimal ratio of 0.03 while the engraftment from NR recipients sustained at a ratio of 0.3 after long-term engraftment. Finally, to further assess the self-renewal of the repopulated cells in the secondary recipients, 2 x 105 sorted CD45.2+ cells together with an equal number of competitor cells were re-transplanted into tertiary recipients. None of the mice (0/3) transplanted with cells originating from IR hosts were engrafted, but all mice (3/3) transplanted with the cells originating from NR recipients were engrafted as assessed at 6 months after tertiary transplantation. Given the previous studies by others showing that c-Kit signaling is involved in HSC lodgment and mobilization, we propose here that c-Kit downregulation in IR hosts impairs the lodging process of donor HSCs in the “niches” and as a consequence, the quality of the transplanted HSCs may be compromised. Therefore, further defining the molecular mechanisms for c-Kit downmodulation may guide us to develop novel approaches aimed to enhance the efficacy of HSC transplantation.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3209-3209
Author(s):  
Yong Wang ◽  
Lingbo Liu ◽  
Senthil Kumar Pazhanisamy ◽  
Aimin Meng ◽  
Daohong Zhou

Abstract Abstract 3209 Poster Board III-146 Ionizing radiation (IR) and/or chemotherapy cause not only acute tissue injury but also have late effects including long-term bone marrow (BM) suppression. The induction of residual BM injury is primarily attributable to induction of hematopoietic stem cell (HSC) senescence. However, neither the molecular mechanisms by which IR and/or chemotherapy induce HSC senescence have been clearly defined, nor has an effective treatment been developed to ameliorate the injury, which were investigated in the present study using a total body irradiation (TBI) mouse model. The results showed that exposure of mice to 6.5 Gy TBI induced a persistent increase in reactive oxygen species (ROS) production in HSCs only for up to 8 weeks, primarily via up-regulation of NADPH oxidase 4 (NOX4). This finding provides the foremost direct evidence demonstrating that in vivo exposure to IR causes persistent oxidative stress selectively in a specific population of BM hematopoietic cells (HSCs). The induction of chronic oxidative stress in HSCs was associated with sustained increases in oxidative DNA damage, DNA double strand breaks, inhibition of HSC clonogenic function, and induction of HSC senescence but not apoptosis. Treatment of the irradiated mice with N-acetyl-cysteine (NAC) after TBI significantly attenuated IR-induced inhibition of HSC clonogenic function and reduction of HSC long-term engraftment after transplantation. These findings suggest that selective induction of chronic oxidative stress in HSCs by TBI leads to induction of HSC senescence and residual BM injury and that antioxidant therapy may be used as an effective strategy to mitigate IR- and chemotherapy-induced residual BM injury. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1471-1471
Author(s):  
Munetada Haruyama ◽  
Kozo Yamaichi ◽  
Akira Niwa ◽  
Megumu K Saito ◽  
Tatsutoshi Nakahata

Abstract Ex vivo expansion of hematopoietic stem cells (HSCs) is an attractive therapeutic strategy for many hematologic diseases and genetic disorders. Therefore, a variety of ex vivo expansion techniques have been developed, however these systems were not well done to get long term HSCs (LT-HSCs) which have a long term hematopoietic reconstitution ability. As the reasons, it is considered that the factors associating with the proliferation and self-renewal of LT-HSCs have not been clear yet. To obtain the factors to stimulate the proliferation and self-renewal of LT-HSCs, various conditioned media were evaluated. The supernatants of COS-1 cells transfected with cDNA cording for RelA (one of nuclear factor kappa B subunits) stimulated the proliferation of human CD34+ cells derived from umbilical cord blood (UCB) and increased the number of CFU-Mix strongest of all evaluated conditioned media. 60 liters of the supernatants of COS-1 cells transfected RelA genes were separated by column chromatography purifications. LC-MS/MS analysis of the final active fraction provided the information of hepatoma-derived growth factor (HDGF) as a growth factor. HDGF is a 24kD heparin-binding protein and has reported to stimulate the proliferation in various types of cells including fibroblasts, endothelial cells and hepatoma cells, its receptor(s) and signaling remain unclear, moreover, has no known function in hematopoiesis. The recombinant human HDGF indicated the ability to enhance the proliferation of CD34+ cells dose-dependently and increased the number of CFU-Mix in combination with cytokines compared to cytokines alone, especially HDGF showed the strongest synergy effect in a combination with TPO in all combinations of cytokines. Next, uncultured (UC) CD34+ cells, the cells of an equal initial number of CD34+ cells after the serum-free condition cultures in the presence of TPO alone (T), HDGF alone (H) and HDGF+TPO (HT) were transplanted into sublethally irradiated NOG (NOD/Shi-scid,IL-2RγKO) mice. HT increased the number of CD34+CD38- cells compared to UC, T and H. Analysis of CD34+CD38- cells in bone marrow cells of NOG mice 24 weeks after transplantation revealed that the mean of absolute number of CD34+CD38- cells in HT group showed about 4-fold, that in H group showed about 3-fold compared to that in UC group, however, that in T group were not detected.These results indicated that HT increased HSCs including short term and long term HSCs. In order to investigate whether HDGF could increase the number of LT-HSCs, serial transplantation experiment was carried out. Uncultured CD34+ cells and the CD34+ cells cultured with HT were transplanted into sublethally irradiated NOG mice. At 24 weeks after transplantation, the mean of absolute number of CD34+CD38- cells in HT group showed 6-fold compared to that in UC group, a half of total number of bone marrow cells from each mouse in both groups were transplanted into one secondary sublethally irradiated NOG mouse. Analysis of human hematopoietic cells in both group 20 weeks after transplantation revealed that multi-lineage human hematopoietic cells, such as CD3+ cells, CD19+ cells, CD33+ cells, CD235a+ cells, erythrocytes and platelets, were detected in all mice in HT group, but were not detected in all mice in UC group. The mean of absolute number of CD34+CD38- cells in bone marrow of HT group showed 30-fold compared to that of UC group. These results indicated that HDGF could increase the number of LT-HSCs. We showed here that the CD34+ cells cultured with HDGF can be transplanted to secondary hosts to give rise to long-term multilineage repopulation. Thus, HDGF is a novel factor to promote the proliferation of HSCs and plays an important role in hematopoiesis. HDGF will contribute the new HSCs expansion system development by using UCB for hematopoietic stem cell transplantation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2325-2325
Author(s):  
Joseph Yusup Shin ◽  
Wenhuo Hu ◽  
Christopher Y. Park

Abstract Abstract 2325 Hematopoietic stem cells (HSC) can be identified on the basis of differential cell surface protein expression, such that 10 out of 13 purified HSC (Lin−c-Kit+Sca-1+CD150+CD34−FLK2−) exhibit long-term reconstitution potential in single-cell transplants. HSCs express c-Kit, and interactions between c-Kit and its ligand, stem cell factor, have been shown to be critical for HSC self-renewal; however, HSCs express a log-fold variation in c-Kit levels. We hypothesized that differing levels of c-Kit expression on HSCs may identify functionally distinct classes of HSCs. Thus, we measured the function and cellular characteristics of c-Kithi HSCs and c-Kitlo HSCs (defined as the top 30% and bottom 30% of c-Kit expressors, respectively), including colony formation, cell cycle status, lineage fates, and serial engraftment potential. In methylcellulose colony assays, c-Kithi HSCs formed 5-fold more colonies than c-Kitlo HSCs (P=0.01), as well as 4-fold more megakaryocyte colonies in vitro. c-Kithi HSC were 2.4-fold enriched for cycling cells (G2-S-M) in comparison to c-Kitlo HSC as assessed by flow cytometry in vivo (15.4% versus 6.4%, P=0.001). Lethally irradiated mice competitively transplanted with 400 c-Kitlo HSCs and 300,000 competitor bone marrow cells exhibited increasing levels of donor chimerism, peaking at a mean of 80% peripheral blood CD45 chimerism by 16 weeks post-transplantation, whereas mice transplanted with c-Kithi HSCs reached a mean of 20% chimerism (p<0.00015). Evaluation of the bone marrow revealed an increase in HSC chimerism from 23% to 44% in mice injected with c-Kitlo HSCs from weeks 7 to 18, while HSC chimerism decreased from 18% to 3.0% in c-Kithi HSC-transplanted mice (P<0.00021). Levels of myeloid chimerism in the bone marrow and peripheral blood were not significantly different during the first 4 weeks following transplantation between mice transplanted with c-Kithi or c-Kitlo HSCs, and evaluation of HSC bone marrow lodging at 24 hours post-transplantation demonstrated no difference in the number of c-Kithi and c-Kitlo HSCs, indicating that differential homing is not the reason for the observed differences in long-term engraftment. Donor HSCs purified from mice transplanted with c-Kithi HSC maintained higher levels of c-Kit expression compared to those from mice injected with c-Kitlo HSC by week 18 post-transplantation (P=0.01). Secondary recipients serially transplanted with c-Kithi HSC exhibited a chimerism level of 40% to 3% from week 4 to 8 post-secondary transplant, whereas chimerism levels remained at 6% in mice injected with c-Kitlo HSC. These results indicate that c-Kithi HSCs exhibit reduced self-renewal capacity compared with c-Kitlo HSCs, and that the differences in c-Kithi and c-Kitlo HSC function are cell-intrinsic. Analysis of transplanted HSC fates revealed that c-Kithi HSCs produced two-fold more pre-megakaryocyte-erythroid progenitors and pluriploid megakaryocytes compared to their c-Kitlo counterparts in vivo, suggesting a megakaryocytic lineage bias in c-Kithi HSC. Consistent with this finding, the transplanted c-Kithi HSC gave rise to 10-fold more platelets and reached a maximum platelet output two days earlier than c-Kitlo HSC. To determine the potential mechanisms underlying the transition from c-Kitlo to c-Kithi HSCs, we assessed the activity of c-Cbl, an E3 ubiquitin ligase known to negatively regulate surface c-Kit expression in a Src-dependent manner. Flow cytometric analysis revealed 6-fold more activated c-Cbl in freshly purified c-Kitlo HSC compared to c-Kithi HSC (P=0.02), suggesting that functional loss of c-Cbl increases c-Kit expression on c-Kitlo HSCs. Mice treated for nine days with Src inhibitors, which inhibit c-Cbl activity, experienced a 1.5-fold and 2-fold increase in the absolute number of c-Kithi HSCs (P=0.067) and megakaryocyte progenitors (P=0.002), respectively. Thus, c-Cbl loss likely promotes the generation of c-Kithi HSCs. In summary, differential expression of c-Kit identifies HSC with distinct functional attributes with c-Kithi HSC exhibiting increased cell cycling, megakaryocyte lineage bias, decreased self-renewal capacity, and decreased c-Cbl activity. Since c-Kitlo HSC represent a population of cells enriched for long-term self-renewal capacity, characterization of this cell population provides an opportunity to better understand the mechanisms that regulate HSC function. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1748-1755 ◽  
Author(s):  
David Bryder ◽  
Sten E. W. Jacobsen

Abstract Although long-term repopulating hematopoietic stem cells (HSC) can self-renew and expand extensively in vivo, most efforts at expanding HSC in vitro have proved unsuccessful and have frequently resulted in compromised rather than improved HSC grafts. This has triggered the search for the optimal combination of cytokines for HSC expansion. Through such studies, c-kit ligand (KL), flt3 ligand (FL), thrombopoietin, and IL-11 have emerged as likely positive regulators of HSC self-renewal. In contrast, numerous studies have implicated a unique and potent negative regulatory role of IL-3, suggesting perhaps distinct regulation of HSC fate by different cytokines. However, the interpretations of these findings are complicated by the fact that different cytokines might target distinct subpopulations within the HSC compartment and by the lack of evidence for HSC undergoing self-renewal. Here, in the presence of KL+FL+megakaryocyte growth and development factor (MGDF), which recruits virtually all Lin−Sca-1+kit+ bone marrow cells into proliferation and promotes their self-renewal under serum-free conditions, IL-3 and IL-11 revealed an indistinguishable ability to further enhance proliferation. Surprisingly, and similar to IL-11, IL-3 supported KL+FL+MGDF-induced expansion of multilineage, long-term reconstituting activity in primary and secondary recipients. Furthermore, high-resolution cell division tracking demonstrated that all HSC underwent a minimum of 5 cell divisions, suggesting that long-term repopulating HSC are not compromised by IL-3 stimulation after multiple cell divisions. In striking contrast, the ex vivo expansion of murine HSC in fetal calf serum-containing medium resulted in extensive loss of reconstituting activity, an effect further facilitated by the presence of IL-3.


Blood ◽  
2015 ◽  
Vol 125 (17) ◽  
pp. 2678-2688 ◽  
Author(s):  
Marisa Bowers ◽  
Bin Zhang ◽  
Yinwei Ho ◽  
Puneet Agarwal ◽  
Ching-Cheng Chen ◽  
...  

Key Points Bone marrow OB ablation leads to reduced quiescence, long-term engraftment, and self-renewal capacity of hematopoietic stem cells. Significantly accelerated leukemia development and reduced survival are seen in transgenic BCR-ABL mice following OB ablation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2335-2335
Author(s):  
Iekuni Oh ◽  
Akira Miyazato ◽  
Hiroyuki Mano ◽  
Tadashi Nagai ◽  
Kazuo Muroi ◽  
...  

Abstract Mesenchymal stem cells (MSCs) account for a very small population in bone marrow stroma as a non-hematopoietic component with multipotency of differentiation into adipocytes, osteocytes and chondrocytes. MSC-derived cells are known to have hematopoiesis-supporting and immunomodulatory abilities. Although clinical applications of MSCs have already been conducted for the suppression of graft versus host disease in allogeneic stem cell transplantation and for tissue regeneration, underlying mechanisms of the biological events are still obscure. Previously, we established a differentiation model of MSCs using a mouse embryo fibroblast cell line, C3H10T1/2 (10T1/2) (Nishikawa M et al: Blood81:1184–1192, 1993). Preadipocyte (A54) and myoblast (M1601) cell lines were cloned by treatment with 5-azacytidine. A54 cells and M1601 cells can terminally differentiate into adipocytes and myotubes, respectively, under appropriate conditions, while parent 10T1/2 cells remain undifferentiated. Moreover, A54 cells show a higher ability to support hematopoiesis compared with the other cell lines. In this study, we analyzed gene expression profiles of the three cell lines by using DNA microarray and real-time PCR to investigate molecular mechanisms for maintaining immaturity of parent 10T1/2 cells. In A54 cells, 202 genes were up-regulated, including those encoding critical factors for hematopoiesis such as SCF, Angiopoietin-1, and SDF-1 as well as genes known to be involved in adipocyte differentiation such as C/EBPα, C/EBPδ and PPAR-γ genes. These data are consistent with the hematopoiesis-supporting ability of A54 cells. During adipocyte differentiation, SCF and SDF-1 expression levels decreased in A54 cells while C/EBPα expression showed a steady level. Recently, osteoblasts have been reported to play crucial roles in “niche” for self-renewal of hematopoietic stem cells. Our results also implicate that precursor cells of non-hematopoietic components may have important roles for hematopoiesis in bone marrow. Meanwhile, in parent 10T1/2 cells, 105 genes were up-regulated, including CD90, Dlk, Wnt5α and many functionally unknown genes. Although C/EBPα expression was induced in 10T1/2 cells without differentiation under the adipocyte differentiation conditions, CD90 expression decreased, Dlk showed a steady level and Wnt5α was up-regulated. Assuming that some regulatory mechanisms are needed to keep an immature state of parent 10T1/2 cells even under the differentiation-inducible conditions, we performed following experiments. First, enforced Dlk expression in A54 cells did not inhibit terminal differentiation to adipocytes under the differentiation conditions. Second, when we cultured A54 cells in the conditioned media of parent 10T1/2 cells under the differentiation-inducible conditions, adipocyte differentiation was inhibited, suggesting that 10T1/2 cells produce some soluble molecules that can inhibit adipocyte differentiation. Since Wnt family is known to be involved in the regulation of self-renewal of several stem cells, Wnt5α may be one candidate for maintenance of “stemness” of MSCs. Taken together, the data of 10T1/2 cells suggest that MSCs can self-regulate their differentiation in the bone marrow stromal system. This concept may be important to investigate the fatty change of bone marrow in aging and in aplastic anemia.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 372-372
Author(s):  
Michael J. Nemeth ◽  
Stacie M. Anderson ◽  
Lisa J. Garrett-Beal ◽  
David M. Bodine

Abstract Hmgb3 is an X-linked member of a family of sequence-independent chromatin-binding proteins that is expressed in HSC-enriched lin−, c-kitHI, Sca-1HI, IL-7Rα− (KSIL) cells and Ter119+ erythroid cells. To define Hmgb3 function, we generated hemizygous mice (Hmgb3−/Y) using 129/SvJ ES cells. Hmgb3−/Y mice contain normal numbers of KSIL cells that are capable of normal repopulation and self-renewal. However, these mice have 1.6-fold fewer common lymphoid progenitors (CLP) and 3-fold fewer common myeloid progenitors (CMP) (p < 0.05). We hypothesized that the role of Hmgb3 in early hematopoiesis involves c-kit regulation. We observed that the level of c-kit mRNA in Hmgb3−/Y HSCs increased 30% compared to wild-type (WT) (p = 0.05). We used 5-fluorouracil (5-FU), which has been shown to down-regulate c-kit on HSCs, to characterize the interaction between Hmgb3 and c-kit. We monitored Hmgb3 expression in KSIL and lin−, Sca-1+, c-kit− cells before and after 5-FU treatment (150 mg/kg) using phenotypically normal transgenic mice containing an IRES-GFP cassette knocked into the 3′ UTR of Hmgb3. Prior to 5-FU treatment, 27% of KSIL cells were GFP+ (these cells were absent 4 days post-injection {p.i.}). In contrast, 1.8% of lin−, c-kit−, Sca-1+ cells were GFP+ before 5-FU treatment whereas 26% of lin−, c-kit−, Sca-1+ cells were GFP+ 4 days p.i. The increased proportion of GFP+ lin-, c-kit−, Sca-1+ cells after 5-FU treatment is consistent with previous findings that repopulating activity resides within the c-kit−/LO population in 5-FU treated bone marrow and our finding that Hmgb3 serves as a marker for long-term repopulating activity. To determine the time course of c-kit regulation, we compared bone marrow from 5-FU injected Hmgb3−/Y and WT mice for analysis at 2, 4, and 6 days p.i. Two days p.i., both WT and Hmgb3−/Y mice contained similar numbers of bone marrow cells (7 x 106 cells/hind limb) and the KSIL population was absent. By four days p.i., the bone marrow cellularity of WT mice declined to 5.5 ± 0.9 x 106 cells/hind limb and KSIL cells were still absent. However, in Hmgb3−/Y mice 4 days p.i., bone marrow cellularity stabilized at 7.9 ± 0.8 x 106 cells/hind limb, an increase of 43% compared to WT (p < 0.01), along with the re-emergence of the KSIL population. To determine whether the Hmgb3−/Y lin−, c-kit−, Sca-1+ population contains repopulating HSCs after 4 days of 5-FU treatment similar to WT mice, we performed repopulation assays using KSIL and lin−, c-kit−, Sca-1+ cells sorted from 4 day p.i. 5-FU treated Hmgb3−/Y mice. Recipients received either 2 x 104 KSIL or 2 x 105 lin−, c-kit−, Sca-1+ cells (Ly 5.2) from 5-FU treated Hmgb3−/Y mice along with a radioprotective dose of 3 x 105 congenic (Ly 5.1) bone marrow cells. FACS analysis performed on control recipients transplanted with congenic marrow exhibited < 1% Ly 5.2 cells in the bone marrow 16 weeks after transplant. Pre-5-FU treatment, 88% of bone marrow cells were donor derived in recipients of Hmgb3−/Y KSIL cells. There was no detectable engraftment of Hmgb3−Y lin−, c-kit−, Sca-1+ cells. In contrast to WT mice, both KSIL and lin−, c-kit−, Sca-1+ cells from 5-FU treated Hmgb3−/Y mice were capable of long-term repopulation (62–82% donor derived cells). We conclude that Hmgb3 deficiency facilitates the reemergence of c-kitHI HSCs following 5-FU treatment. Mechanisms involving either enhanced HSC self-renewal or delayed differentiation into CLPs and CMPs are both consistent with our results.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1362-1362
Author(s):  
Yong Wang ◽  
Bradley A. Schulte ◽  
Amanda C. LaRue ◽  
Makio Ogawa ◽  
Daohong Zhou

Abstract Exposure to ionizing radiation (IR) and certain chemotherapeutic agents not only causes acute bone marrow (BM) suppression but also leads to long-term residual hematopoietic injury. This later effect has been attributed to the damage to hematopoietic stem cell (HSC) self-renewal. Using a mouse model, we investigated whether IR induces senescence in HSCs, as induction of HSC senescence can lead to the impairment of HSC self-renewal. The results showed that exposure of C57BL/6 mice to a sublethal dose (6.5 Gy) of total body irradiation (TBI) resulted in a long-lasting quantitative and qualitative reduction in HSCs (Lin− c-kit+ Sca-1+ or LKS+ cells). Compared to control HSCs, HSCs from irradiated BM at 4 weeks after TBI exhibited a significant reduction in day-35 CAFC frequency and deficiency in cell proliferation and colony formation in a single cell culture assay stimulated with SCF/TPO and SCF/TPO/IL-3, respectively. In addition, transplantation of irradiated HSCs (500 LKS+ cells/recipient) produced less than 1% long-term (2-month) engraftment in a competitive repopulation assay while transplantation of the same number of control HSCs resulted in 24.8% engraftment. Furthermore, HSCs from irradiated mice expressed increased levels of p16Ink4a and senescence-associated beta-galactosidase (SA-beta-gal), two commonly used biomarkers of cellular senescence. In contrast, hematopoietic progenitor cells (Lin− c-kit+ Sca-1− or LKS− cells) from irradiated mice did not show significant changes in clonogenesity in a CFU assay and expressed minimal levels of p16Ink4a and SA-beta-gal. These results suggest that exposure to IR can induce senescence selectively in HSCs but not in HPCs. Interestingly, this IR- induced HSC senescence was associated with a prolonged elevation of p21Cip1/Waf1, p16Ink4a and p19ARF mRNA expression, whereas the expression of p27Kip1, p18Ink4c and p19 Ink4d mRNA was not increased. This suggests that p21Cip1/Waf1, p16Ink4a and p19ARF may play an important role in IR-induced senescence in HSCs, since their expression has been implicated in the initiation, establishment and maintenance of cellular senescence. Therefore, these findings provide valuable insights into the mechanisms underlying IR-induced long-term BM damage. This could lead to the discovery of novel molecular targets for intervention to circumvent IR-induced BM toxicity. In addition, understanding how normal HSCs senesce after IR and chemotherapy will help us to elucidate the molecular mechanisms whereby leukemia/cancer stem cells evade these cancer treatments and provide better knowledge of organismal aging.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 614-614 ◽  
Author(s):  
Haiming Xu ◽  
Hartmut Geiger ◽  
Kathleen Szczur ◽  
Deidra Deira ◽  
Yi Zheng ◽  
...  

Abstract Hematopoietic stem cell (HSC) engraftment is a multistep process involving HSC homing to bone marrow (BM), self-renewal, proliferation and differentiation to mature blood cells. However, the molecular regulation of HSC engraftment is still poorly defined. Small Rho GTPases are critical regulator of cell migration, proliferation and differentiation in multiple cell types. While their role in HSC functions has begun to be understood, the role of their regulator in vivo has been understudied. P190-B GTPase Activating Protein (GAP), a negative regulator of Rho activity, has been implicated in regulating cell size and adipogenesis-myogenesis cell fate determination during fetal development (Sordella, Dev Cell, 2002; Cell 2003). Here, we investigated the role of p190-B in HSC/P engraftment. Since mice lacking p190-B die before birth, serial competitive repopulation assay was performed using fetal liver (FL) tissues from day E14.5 WT and p190-B−/− embryos. WT and p190-B−/− FL cells exhibited similar levels of engraftment in primary recipients. However, the level of contribution of p190-B−/− cells to peripheral blood and bone marrow was maintained between the primary and secondary recipients and still easily detectable in tertiary recipients, while the level of contribution of FL WT cells dramatically decreased with successive serial transplantion and was barely detectable in tertiary recipients. The contribution to T cell, B cell and myeloid cell reconstitution was similar between the genotypes. A pool of HSC was maintained in serially transplanted p190-B−/− animals, since LinnegScaposKitpos (LSK) cells were still present in the BM of p190-B−/− secondary engrafted mice while this population disappeared in WT controls. Importantly, this enhanced long term engraftment was due to a difference in the functional capacity of p190-B−/− HSC compared to WT HSC since highly enriched p190-B−/− HSC (LSK) demonstrated similar enhanced serial transplantation potential. Because previous studies have suggested that the loss of long term function of HSC during serial transplantation can depend, at least in part, on the upregulation of the cyclin dependent kinase inhibitor p16Ink4a (Ito et al, Nat Med 2006), the expression of p16Ink4a was examined during serial transplantation. While expression of p16Ink4a increased in WT HSC in primary and secondary recipients, p16Ink4a remained low in p190-B−/− HSC, which indicated that p190-B-deficiency represses the upregulation of p16Ink4a in HSC in primary and secondary transplant recipients. This provides a possible mechanism of p190-B-mediated HSC functions. We next examined whether p190-B-deficiency may preserve the repopulating capacity of HSC/P during ex vivo cytokine-induced culture. While freshly isolated LSK cells from WT and p190-B−/− mice exhibited comparable intrinsic clonogenic capacity, the frequency of colony-forming unit after 7 days in culture was 2 fold-higher in p190-B−/− compared with WT cultures, resulting in a net CFU expansion. Furthermore, competitive repopulation assays showed significantly higher repopulating activity in mice that received p190-B−/− cultured cells compared with WT cells equivalent to a 4.4-fold increase in the estimated frequency of repopulating units. Interestingly, p190-deficiency did not alter cell cycling rate or survival both in vivo and in vitro. Therefore, p190-B-deficiency maintains key HSC functions either in vivo or in ex vivo culture without altering cycling rate and survival of these cells. These findings define p190-B as a critical regulator of HSC functions regulating self renewal activity while maintaining a balance between proliferation and differentiation.


Sign in / Sign up

Export Citation Format

Share Document