JS-K, a Novel Nitric Oxide (NO) Generator, Induces Cytochrome c Release and Caspase Activation in HL-60 Myeloid Leukemia Cells.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3415-3415
Author(s):  
Paul J. Shami ◽  
Vidya Udupi ◽  
Margaret Yu ◽  
Swati Malaviya ◽  
Joseph E. Saavedra ◽  
...  

Abstract NO induces differentiation and apoptosis in Acute Myelogenous Leukemia (AML) cells. Glutathione S-Transferases (GST) play an important role in multidrug resistance and are upregulated in 90% of AML cells. We have designed a novel prodrug class that releases NO on metabolism by GST. O2-(2,4-Dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, a member of this class) has potent antileukemic activity. We have previously shown that JS-K induces apoptosis in HL-60 cells by a caspase dependent mechanism (Molecular Cancer Therapeutics2:409-417,2003). The purpose of this study was to determine the pathway through which JS-K induces apoptosis. Western blot analysis showed that treatment of HL-60 cells with JS-K (0 – 1 μM) for 6 hours results in release of Cytochrome c from mitochondria in a dose dependent fashion. Treatment with JS-K resulted in a dose dependent activation of Caspase 9. Sixteen and 24 hours after exposure to 1 μM JS-K, Caspase 9 activity was induced by 393 ± 93% and 237 ± 13% of control, respectively (p = 0.03 at the 24 hours time point). Treatment with JS-K resulted in a dose dependent activation of Caspase 3. Twenty four hours after exposure to 1 μM JS-K, Caspase 3 activity was 208 ± 3.4 % of control (p = 0.02). Treatment with JS-K also resulted in a dose dependent activation of Caspase 8, but to a lesser extent than Caspase 9 and 3. Twenty four hours after exposure to 1 μM JS-K, Caspase 8 activity was 144 ± 5.3 % of control (p = 0.04). We conclude that JS-K activates the intrinsic pathway of apoptosis in leukemia cells by inducing the release of Cytochrome c from mitochondria. (NO1-CO-12400).

Blood ◽  
2003 ◽  
Vol 101 (2) ◽  
pp. 585-593 ◽  
Author(s):  
Maria Cristina Marchetti ◽  
Barbara Di Marco ◽  
Grazia Cifone ◽  
Graziella Migliorati ◽  
Carlo Riccardi

Glucocorticoid hormones (GCHs) regulate normal and neoplastic lymphocyte development by exerting antiproliferative and/or apoptotic effects. We have previously shown that dexamethasone (DEX)–activated thymocyte apoptosis requires a sequence of events including interaction with the glucocorticoid receptor (GR), phosphatidylinositol-specific phospholipase C (PI-PLC), and acidic sphingomyelinase (aSMase) activation. We analyzed the mechanisms of GCH-activated apoptosis by focusing on GR-associated Src kinase, cytochrome c release, and caspase-8, -9, and -3 activation. We show here that PI-PLC binds to GR-associated Src kinase, as indicated by coimmunoprecipitation experiments. Moreover, DEX treatment induces PI-PLC phosphorylation and activation. DEX-induced PI-PLC phosphorylation, activation, and apoptosis are inhibited by PP1, a Src kinase inhibitor, thus suggesting that Src-mediated PI-PLC activation is involved in DEX-induced apoptosis. Caspase-9, -8, and -3 activation and cytochrome c release can be detected 1 to 2 hours after DEX treatment. Caspase-9 inhibition does not counter cytochrome crelease, caspase-8 and caspase-3 activation, and apoptosis. Caspase-8 inhibition counters cytochrome c release, caspase-9 and caspase-3 activation, and apoptosis, thus suggesting that caspase-8 inhibitor can directly inhibit caspase-9 and/or that DEX-induced caspase-8 activation is upstream to mitochondria and can regulate caspase-3 directly or through cytochrome c release and the consequent caspase-9/caspase-3 activation. DEX-induced caspase-8 activation, like ceramide-induced caspase-8 activation, correlates with the formation of Fas-associated death domain protein (FADD)/caspase-8 complex. Caspase-8 activation is countered by the inhibition of macromolecular synthesis and of Src kinase, PI-PLC, and aSMase activation, suggesting it is downstream in the DEX-activated apoptotic pathway of thymocytes.


2021 ◽  
Author(s):  
Monaj Kumar Sarkar ◽  
Amrita Kar ◽  
Adithyan Jayaraman ◽  
Karthi Shanmugam ◽  
Vadivel Vellingiri ◽  
...  

Abstract Background: Myricitrin, a naturally occurring flavonoid in Madhuca longifolia, possesses several medicinal properties. Even though our earlier work revealed its role against the proliferation of acute myelogenous leukemia cells (HL-60), its molecular mechanisms have not yet been revealed. The current study aims to explore the molecular mechanisms of myricitrin (isolated from an ethnomedicinal drug Madhuca longifolia) to induce apoptosis in HL-60 cells. Methods and Results: Treatment with IC-50 dose of myricitrin (353 µM) caused cellular shrinkage and cell wall damage in HL-60 cells compared to untreated control cells. Myricitrin treatment reduced the mitochondrial membrane potential (22.95%), increased DNA fragmentation (90.4%), inhibited the cell survival proteins (RAS, B-RAF, & BCL-2) and also induced pro-apoptotic proteins (p38, pro-caspase-3, pro-caspase-9 and caspase-3) in the HL-60 cells. Conclusions: The present study provides scientific evidence for the apoptosis caused by myricitrin in HL-60 leukemia cells. Hence, the phytochemical myricitrin could be considered as a potential candidate to develop an anticancer drug after checking its efficacy through suitable pre-clinical and clinical studies.


2003 ◽  
Vol 284 (5) ◽  
pp. G821-G829 ◽  
Author(s):  
Wenlin Deng ◽  
De-An Wang ◽  
Elvira Gosmanova ◽  
Leonard R. Johnson ◽  
Gabor Tigyi

We previously showed ( Gastroenterology 123: 206–216, 2002) that lysophosphatidic acid (LPA) protects and rescues rat intestinal epithelial cells (IEC-6) from apoptosis. Here, we provide evidence for the LPA-elicited inhibition of the mitochondrial apoptotic pathway leading to attenuation of caspase-3 activation. Pretreatment of IEC-6 cells with LPA inhibited campothecin-induced caspase-9 and caspase-3 activation and DNA fragmentation. A caspase-9 inhibitor peptide mimicked the LPA-elicited antiapoptotic activity. LPA elicited ERK1/ERK2 and PKB/Akt phosphorylation. The LPA-elicited antiapoptotic activity and inhibition of caspase-9 activity were abrogated by pertussis toxin, PD 98059, wortmannin, and LY 294002. LPA reduced cytochrome c release from mitochondria and prevented activation of caspase-9. LPA prevented translocation of Bax from cytosol to mitochondria and increased the expression of the antiapoptotic Bcl-2 mRNA and protein. LPA had no effect on Bcl-xl, Bad, and Bak mRNA or protein expression. These data indicate that LPA protects IEC-6 cells from camptothecin-induced apoptosis through Gi-coupled inhibition of caspase-3 activation mediated by the attenuation of caspase-9 activation due to diminished cytochrome c release, involving upregulation of Bcl-2 protein expression and prevention of Bax translocation.


2013 ◽  
Vol 109 (03) ◽  
pp. 532-539 ◽  
Author(s):  
Jeannine Winkler ◽  
Margaret Rand ◽  
Markus Schmugge ◽  
Oliver Speer

SummaryAlthough platelets possess the hallmarks of apoptosis such as activation of caspases, cytochrome c release and depolarisation of the mitochondrial transmembrane potential (ΔΨm), their entire apoptotic-signalling pathway is not totally understood. Therefore we studied the expression of various apoptotic proteins and found that platelets contain the pro-apoptotic proteins Omi/HtrA2 and Smac/Diablo, as well as their target the X-linked inhibitor of apoptosis XIAP. Omi/HtrA2 and Smac/Diablo were released from mitochondria into the platelet cytosol together with cytochrome c after induction of apoptosis by the Ca2+ ionophore A23187 or the BH3 mimetic ABT-737, and to a lesser extent, after platelet stimulation with collagen and thrombin. Inhibition of Omi/HtrA2 led to decreased levels of activated caspase-3/7 and caspase-9, but did not abolish loss of ΔΨm or prevent release of Omi/HtrA2 from mitochondria. These results indicate that platelets have a functional intrinsic apoptotic-signalling pathway including the pro-apoptotic protease Omi/HtrA2 and its target protein XIAP.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4988-4988
Author(s):  
Yang Yan ◽  
Ma Jing ◽  
Tian Jinju ◽  
Chen Liyi ◽  
Songmei Yin ◽  
...  

Abstract Background: Platelets are versatile cells and play important roles in hemostasis/thrombosis, inflammation, and atherosclerosis. The pathogenesis of cardiovascular diseases (CVDs) is linked to platelet hyperactivity which is considered an independent risk factor for CVDs. Platelets are critical for promoting the progression of CVDs, and platelet apoptosis have been reported to be involved in platelet activation. Anthocyanins are major phytochemicals abundant in plant food and have been shown to play a protective role against CVDs. Our previous studies demonstrated that anthocyanins from plant food significantly inhibited platelet activation, adhesion, aggregation and granule secretion, as well as attenuated thrombus growth at both arterial and venous shear stresses in vitro and in vivo, however, the effects of anthocyanin on platelet apoptosis and its mechanisms have not been explored. In the present study, we examined whether anthocyanin Cyanidin-3-glucoside (Cy-3-g) affect platelet apoptosis and the BCL-2/BCL-XL intrinsic apoptotic pathway. Methods: Cy-3-g, the predominant bioactive compound of anthocyanin preparations, was obtained from Polyphenol AS Company in Norway.Purified gel-filtered platelets from healthy volunteers were incubated at 37oC for 40 minutes with different concentrations of Cy-3-g (0.5、5、50μM) or PBS buffer as a control. the activated platelets were triggered with 0.5U thrombin for 15min to induce apoptosis. Mitochondria membrane potential (Δψm) and membrane phospholipid phosphatidylserine (PS) exposure in both activated and resting platelets were assessed by flow cytometry. Cytochrome C release, activation of caspase-3, caspase-8, caspase-9, cleavage of gelsolin, the levels of anti-apoptotic BCL-2 family proteins such as BCL-2, BCL-XL and proapoptotic BCL-2 family proteins Bax, Bak, Bad, Bid and tBid in both activated and resting platelets were measured by western blotting. Results: Cy-3-g at 5μM and 50μM directly induced significant ΔΨm dissipation in activated platelets dose dependently. Correspondingly, 50μM Cy-3-g increased cytochrome C release compared to control. The expression of pro-caspase-8 and pro-caspase-9 decreased, activation of caspase-3, caspase-8 and caspase-9 was induced in activated platelets in both 5μM and 50μM Cy-3-g groups. Both PS exposure and the cleavage of gelsolin increased in activated platelets, however these effects were only observed at Cy-3-g doses as high as 50μM. Cy-3-g did not induce the above changes in resting platelets. The intrinsic apoptotic pathway was initiated by Cy-3-g treatment in activated platelets; Cy-3-g significantly inhibited the expression of BCL-2, BCL-XL and increased the levels of Bax, Bak, Bad and Bid in activated platelets dose dependently. No significant difference was observed in resting platelets. Conclusions: Our data demonstrate for the first time that purified anthocyanin Cy-3-g directly accelerated apoptosis in activated platelets via the BCL-2/BCL-XL pathway. Anthocyanins may possess therapeutic potential for patients suffering from thrombotic conditions. Disclosures No relevant conflicts of interest to declare.


2002 ◽  
Vol 282 (6) ◽  
pp. C1290-C1297 ◽  
Author(s):  
Qing Yuan ◽  
Ramesh M. Ray ◽  
Leonard R. Johnson

C1297, 2002; 10.1152/ajpcell.00351.2001.We have shown previously that depletion of polyamines delays apoptosis induced by camptothecin in rat intestinal epithelial cells (IEC-6). Mitochondria play an important role in the regulation of apoptosis in mammalian cells because apoptotic signals induce mitochondria to release cytochrome c. The latter interacts with Apaf-1 to activate caspase-9, which in turn activates downstream caspase-3. Bcl-2 family proteins are involved in the regulation of cytochrome c release from mitochondria. In this study, we examined the effects of polyamine depletion on the activation of the caspase cascade, release of cytochrome cfrom mitochondria, and expression and translocation of Bcl-2 family proteins. We inhibited ornithine decarboxylase, the first rate-limiting enzyme in polyamine synthesis, with α-difluoromethylornithine (DFMO) to deplete cells of polyamines. Depletion of polyamines prevented camptothecin-induced release of cytochrome c from mitochondria and decreased the activity of caspase-9 and caspase-3. The mitochondrial membrane potential was not disrupted when cytochrome c was released. Depletion of polyamines decreased translocation of Bax to mitochondria during apoptosis. The expression of antiapoptotic proteins Bcl-xL and Bcl-2 was increased in DFMO-treated cells. Caspase-8 activity and cleavage of Bid were decreased in cells depleted of polyamines. These results suggest that polyamine depletion prevents IEC-6 cells from apoptosis by preventing the translocation of Bax to mitochondria, thus preventing the release of cytochrome c.


2003 ◽  
Vol 285 (5) ◽  
pp. G980-G991 ◽  
Author(s):  
Sujoy Bhattacharya ◽  
Ramesh M. Ray ◽  
Mary Jane Viar ◽  
Leonard R. Johnson

Intracellular polyamine homeostasis is important for the regulation of cell proliferation and apoptosis and is necessary for the balanced growth of cells and tissues. Polyamines have been shown to play a role in the regulation of apoptosis in many cell types, including IEC-6 cells, but the mechanism is not clear. In this study, we analyzed the mechanism by which polyamines regulate the process of apoptosis in response to tumor necrosis factor-α (TNF-α). TNF-α or cycloheximide (CHX) alone did not induce apoptosis in IEC-6 cells. Significant apoptosis was observed when CHX was given along with TNF-α, as indicated by a significant increase in the detachment of cells, caspase-3 activity, and DNA fragmentation. Polyamine depletion by treatment with α-difluoromethylornithine significantly reduced the level of apoptosis, as judged by DNA fragmentation and the caspase-3 activity of attached cells. Apoptosis in IEC-6 cells was accompanied by the activation of upstream caspases-6, -8, and -9 and NH2-terminal c-Jun kinase (JNK). Inhibition of JNK activation prevented caspase-9 activation. Polyamine depletion prevented the activation of JNK and of caspases-6, -8, -9, and -3. SP-600125, a specific inhibitor of JNK activation, prevented cytochrome c release from mitochondria, JNK activation, DNA fragmentation, and caspase-9 activation in response to TNF-α/CHX. In conclusion, we have shown that polyamine depletion delays and decreases TNF-α-induced apoptosis in IEC-6 cells and that apoptosis is accompanied by the release of cytochrome c, the activation of JNK, and of upstream caspases as well as caspase-3. Polyamine depletion prevented JNK activation, which may confer protection against apoptosis by modulation of upstream caspase-9 activation.


2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Guy-Armel Bounda ◽  
Wang Zhou ◽  
Dan-dan Wang ◽  
Feng Yu

Objective. To study rhein-induced apoptosis signaling pathway and to investigate its molecular mechanisms in primary human hepatic cells.Results. Cell viability of HL-7702 cells treated with rhein showed significant decrease in dose-dependent manner. Following rhein treatment (25 μM, 50 μM, and 100 μM) for 12 h, the detection of apoptotic cells was significantly analyzed by flow cytometry and nuclear morphological changes by Hoechst 33258, respectively. Fatty degeneration studies showed upregulation level of the relevant hepatic markers (P< 0.01). Caspase activities expressed significant upregulation of caspase-3, caspase-9, and caspase-8. Moreover, apoptotic cells by rhein were significantly inhibited by Z-LEHD-FMK and Z-DEVD-FMK, caspase-9 inhibitor, and caspase-3 inhibitor, respectively. Overproduction of reactive oxygen species, lipid peroxidation, and loss of mitochondrial membrane potential were detected by fluorometry. Additionally, NAC, a ROS scavenger, significantly attenuated rhein-induced oxidative damage in HL-7702 cells. Furthermore, real-time qPCR results showed significant upregulation of p53, PUMA, Apaf-1, and Casp-9 and Casp-3 mRNA, with no significant changes of Fas and Cytochrome-c. Immunoblotting revealed significant Cytochrome-c release from mitochondria into cytosol and no change in Fas expression.Conclusion. Taken together, these observations suggested that rhein could induce apoptosis in HL-7702 cells via mitochondria-mediated signal pathway with involvement of oxidative stress mechanism.


Sign in / Sign up

Export Citation Format

Share Document