Novel P38 MAP Kinase Inhibitor and Anti-P38 RNA Interference as Potential Therapeutic Approaches in Myelodysplastic Syndromes.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 470-470
Author(s):  
Mani Mohindru ◽  
Perry Pahanish ◽  
Efstratios Katsoulidis ◽  
Robert Collins ◽  
Thomas Rogers ◽  
...  

Abstract Cytokines such as TNF α, IFN γ and others have been implicated in the pathogenesis of ineffective hematopoiesis in MDS and are thought to lead to the high rate of apoptosis in hematopoietic progenitors. The p38 Mitogen Activated Protein Kinase (MAPK) is an evolutionary conserved enzyme that is involved in many cellular processes including stress signaling. We have previously shown that the p38 MAP kinase is strongly activated by IFNs, TNF α, TGF β and other inhibitory cytokines in normal primary hematopoietic progenitors and plays an important role in the negative regulation of normal hematopoiesis. In the present study, we determined the role of the p38 MAPK in the pathogenesis of MDS evaluated its inhibition as a potential therapeutic strategy in this disease. p38 MAPK inhibition was achieved by the use of a novel p38 inhibitor - SD-282, a specific inhibitor of p38α MAP kinase. SD-282 performs very similarly in animal and cell models to a p38 inhibitor now in the clinic. We also transfected primary hematopoietic cells with flurescent labeled siRNAs against p38 and successfully downregulated the levels of the protein. Using these approaches, we demonstrate that pharmacological inhibition of the p38 MAPK can reverse the growth inhibitory effects of TNF α and IFN γ on erythroid and myeloid colony formation. This reversal of TNF α mediated inhibition correlates with significant reduction of apoptosis seen in human hematopoeitic progenitors pretreated with p38 inhibitor SD-282. Having established the importance of p38 MAPK in cytokine mediated inhibition of normal hematopoiesis, we performed colony forming assays with bone marrow CD34+ cells from 8 patients with MDS in the presence of either pharmacologic or siRNA based inhibitors of p38. All patients had refractory cytopenias with multilineage dysplasia. Our data indicates that SD-282 treatment strongly enhances both erythroid and myeloid colony formation in MDS CD34+ bone marrow cells in vitro. This increase was not observed when these progenitors were grown in the presence of negative controls - SB 202474 and the MEK inhibitor PD 98059. Similarly, an increase in hematopoietic colony formation, though of a lesser magnitude was seen when MDS bone marrow progenitors were transfected with siRNAs against p38 MAPK. To further determine the role of cytokines in the pathogenesis of MDS, we also used bone marrow derived sera from the same MDS patients. Our studies show exposure to patient derived sera led to the phosphorylation/activation of p38 MAPK in normal hematopoietic progenitors when compared to sera from healthy volunteers. Our studies also demonstrate that bone marrow derived sera from MDS patients can inhibit erythroid and myeloid colony formation of normal hematopoietic progenitors. This inhibition can be reversed by blocking p38 MAPK using SD-282, other p38 inhibitors and siRNAs. This finding confirms the role of marrow cytokine /serum factors in the ineffective hematopoiesis seen in MDS and suggests the importance of p38 MAPK activation in this phenomenon. Thus our studies show the p38 MAPK may be a common effector of inhibitory cytokine signaling in normal and MDS hematopoietic cells. These results provide a strong rationale for using p38 inhibition as a novel treatment strategy for MDS. Supported by Harris Methodist Foundation Grant, VISN-17 New Investigator Grant and VA Research Corp Grant to AV.

Blood ◽  
2014 ◽  
Vol 124 (25) ◽  
pp. 3791-3798 ◽  
Author(s):  
Elena Bibikova ◽  
Min-Young Youn ◽  
Nadia Danilova ◽  
Yukako Ono-Uruga ◽  
Yoan Konto-Ghiorghi ◽  
...  

Key Points GATA1 is downregulated in RPS19-deficient cells and zebrafish through upregulation of p53, TNF-α, and p38 MAPK. Treatment of rps19-deficient zebrafish with the TNF-α inhibitor etanercept rescues their erythroid and developmental defects.


Blood ◽  
2006 ◽  
Vol 108 (13) ◽  
pp. 4170-4177 ◽  
Author(s):  
Tony A. Navas ◽  
Mani Mohindru ◽  
Myka Estes ◽  
Jing Ying Ma ◽  
Lubomir Sokol ◽  
...  

Abstract The myelodysplastic syndromes (MDSs) are collections of heterogeneous hematologic diseases characterized by refractory cytopenias as a result of ineffective hematopoiesis. Development of effective treatments has been impeded by limited insights into any unifying pathogenic pathways. We provide evidence that the p38 MAP kinase is constitutively activated or phosphorylated in MDS bone marrows. Such activation is uniformly observed in varied morphologic subtypes of low-risk MDS and correlates with enhanced apoptosis observed in MDS hematopoietic progenitors. Most importantly, pharmacologic inhibition of p38α by a novel small molecule inhibitor, SCIO-469, decreases apoptosis in MDS CD34+ progenitors and leads to dose-dependant increases in erythroid and myeloid colony formation. Down-regulation of the dominant p38α isoform by siRNA also leads to enhancement of hematopoiesis in MDS bone marrow progenitors in vitro. These data implicate p38 MAPK in the pathobiology of ineffective hematopoiesis in lowrisk MDS and provide a strong rationale for clinical investigation of SCIO-469 in MDS.


2010 ◽  
Vol 51 (3) ◽  
pp. 1575 ◽  
Author(s):  
Mahesh Shivanna ◽  
Gangaraju Rajashekhar ◽  
Sangly P. Srinivas

2018 ◽  
Vol 49 (4) ◽  
pp. 1512-1522
Author(s):  
Jiezhong Deng ◽  
Dong Sun ◽  
Fei Luo ◽  
Qiang Zhang ◽  
Feifan Chen ◽  
...  

Background/Aims: Tuberculosis induces bone loss and activates Th1 cells that play an important role in the host defense of Bacille Calmette-Guérin tuberculosis vaccine. However, the role of tuberculosis-activated Th1 cells in differentiation of osteoclast precursors to osteoclasts is unclear. As secretion of IFN-γ in Th1 cells is induced by tuberculosis, we aimed to investigate the role of anti-IFN-γ antibody on the differentiation and activation of osteoclasts in bone marrow monocyte-derived macrophages (BMMs). Methods: BMMs were isolated and co-cultured with CD4+T helper 1 cells (Th1 cells), pretreated with anti-IFN-γ antibody. Then, cell proliferation, expression and release of cytokines, formation of actin ring, differentiation of osteoclasts and bone resorption function were measured by CCK8 assay, qRT-PCR/Western blot/flow cytometry, ELISA, immunofluorescence, tartrate-resistant acidic phosphatase (TRAP) staining and bone absorbance assay, respectively. Results: Anti-IFN-γ antibody inhibited the cell viability of BMMs, and induced the expressions of RANKL, TNF-α, NF-κB and TRAF6 in BMMs. In addition, it led to increased expression levels of RANK on cell surfaces, and increased production of RANKL, TNF-α, MCP-1 and SDF-1. Anti-IFN-γ antibody also induced the expression of osteoclast differentiation factor and actin ring formation, but inhibited the expression of osteoprotegerin. TRAP staining and bone resorption assays showed that anti-IFN-γ antibody induced an increase in osteoclast formation and bone resorption. Conclusion: The anti-IFN-γ antibody induced osteoclast formation, and is probably mediated by RANKL-induced activation of NF-κB, that induces TRAF6 in the RANKL-RANK signaling pathway. Our data suggest an inhibitory role for IFN-γ in osteoclast formation induced by tuberculosis.


1996 ◽  
Vol 319 (1) ◽  
pp. 17-20 ◽  
Author(s):  
Waltraut H WATERMAN ◽  
Thaddeus F. P. MOLSKI ◽  
Chi-Kuang HUANG ◽  
Jerry L. ADAMS ◽  
Ramadan I. SHA'AFI

The role of the newly identified p38 mitogen-activated protein kinase (MAP kinase) in terminally differentiated cells, such as human neutrophils, is totally unknown. In order to examine the possible role of this MAP kinase in the phosphorylation and activation of cytoplasmic phospholipase A2 (cPLA2), we tested the effect of the recently synthesized inhibitor of p38 MAP kinase, SB 203580, on the phosphorylation and activation of both p38 MAP kinase and cPLA2. We found that while tumour necrosis factor-α (TNF-α)-stimulated tyrosine phosphorylation of p38 MAP kinase is affected only slightly by SB 203580, its stimulated kinase activity is greatly reduced in human neutrophils in suspension treated with this inhibitor. Furthermore, the TNF-α-stimulated phosphorylation and activation of cPLA2 are completely abolished in cells treated with SB 203580. Based on these data, it is reasonable to conclude that an SB 203580-sensitive kinase, or kinases and/or phosphatases, are involved in the phosphorylation and activation of cPLA2 in intact human neutrophils in suspension stimulated by TNF-α. The possible role of the p38 MAP kinase cascade in the phosphorylation and activation of cPLA2 is discussed.


2008 ◽  
Vol 253 (1-2) ◽  
pp. 45-53 ◽  
Author(s):  
Kaoutar Leghmari ◽  
Yamina Bennasser ◽  
Jean Tkaczuk ◽  
Elmostafa Bahraoui
Keyword(s):  
Tnf Α ◽  

2009 ◽  
Vol 22 (2) ◽  
pp. 109-124 ◽  
Author(s):  
Zaher A. Radi ◽  
Rosemary A. Marusak ◽  
Dale L. Morris

Sign in / Sign up

Export Citation Format

Share Document