Spatiotemporal Regulation of C-Kit Signaling through Lipid Rafts.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 819-819 ◽  
Author(s):  
Thomas Jahn ◽  
Stacie Gooch ◽  
Jaqueline Rogerio ◽  
Kenneth Weinberg

Abstract Recently, the understanding of membrane receptors has been transformed by studies characterizing the topology of the plasma membrane. The T-cell receptor (TCR) has been most studied for interactions of receptors with the lipid bilayer. TCR signaling has been shown to be dependent on the localization of the TCR complex to specific cholesterol- and sphingolipid-rich membrane subdomains, also called microdomains or lipid rafts. The definition of lipid rafts as assembly platforms to initiate membrane receptor signaling has induced a novel view of the plasma membrane as a compartmentalized structure. To investigate the role of lipid rafts in the signal transduction by the prototype receptor tyrosine kinase (RTK) c-kit, lipid raft, plasma membrane and cytosol fractions were obtained by subcellular fractionation of Mo7e cells widely used to study c-kit signaling. The purity of fractions was verified by the exclusive presence of marker proteins in their respective fraction. Time course experiments using non-stimulated and kit ligand (KL)-stimulated cells harvested after 5 and 20 minutes (′) revealed that non-activated c-kit was mainly localized within the membrane and that KL-induced activation of c-kit resulted in the redistribution of c-kit protein from the membrane fraction into lipid rafts. Activated c-kit was seen exclusively in lipid rafts at 5′ of KL-stimulation and was redistributed to the membrane after 20′. Analysis of downstream targets of c-kit revealed that various src-family kinases previously shown to be crucially involved in c-kit activation were predominantly present within the lipid raft fraction independently of c-kit activation. Investigating the main survival/proliferation pathway activated by c-kit we found that the p85 subunit of PI3-K was recruited to lipid rafts at 5′ of c-kit stimulation and was redistributed to the membrane fraction after 20′. Accordingly, PTEN, the central negative regulator of PI3-K, was present in lipid rafts in non-activated cells and was withdrawn from lipid rafts upon c-kit stimulation. PKB/Akt was not detected within lipid rafts but accumulated within the membrane fraction after 20′ of c-kit activation. Like PKB/Akt, PKC, Plcγ as well as PDK and adaptor molecules like Grb2, Grb4/Nckβ and Grb10 were predominantly localized in the cytosol and accumulated in the membrane fraction at 20′ of c-kit activation. To determine the biological role of lipid rafts in c-kit signaling we analyzed the effect of non-toxic concentrations of methyl-beta-cyclodextrin (MBCD) on c-kit dependent proliferation. MBCD has been shown to disrupt lipid rafts by removal of cholesterol from the plasma membrane. MBCD treatment of Mo7e cells resulted in complete inhibition of KL-mediated growth of Mo7e cells without inhibiting tyrosine phosphorylation of c-kit. We conclude that c-kit signaling is initiated in lipid rafts and that c-kit mediated proliferation is dependent on the integrity of lipid rafts. The predominant presence of src-family kinases in lipid rafts prior to activation of c-kit supports a crucial role for these signaling molecules in the initiation and amplification of c-kit signaling. The recruitment of p85 to lipid rafts and the synchronous withdrawal of PTEN from lipid rafts suggests that lipid rafts are the location of c-kit mediated activation of PI3-K. We propose a significant role for lipid rafts in the spatiotemporal regulation of c-kit signaling and hypothesize, that cell type- and cell state-specific compositional and topological variations of lipid rafts significantly influence the signaling outcome of c-kit and other RTKs.

2015 ◽  
Vol 211 (6) ◽  
pp. 1193-1205 ◽  
Author(s):  
Heather Miller ◽  
Thiago Castro-Gomes ◽  
Matthias Corrotte ◽  
Christina Tam ◽  
Timothy K. Maugel ◽  
...  

Cells rapidly repair plasma membrane (PM) damage by a process requiring Ca2+-dependent lysosome exocytosis. Acid sphingomyelinase (ASM) released from lysosomes induces endocytosis of injured membrane through caveolae, membrane invaginations from lipid rafts. How B lymphocytes, lacking any known form of caveolin, repair membrane injury is unknown. Here we show that B lymphocytes repair PM wounds in a Ca2+-dependent manner. Wounding induces lysosome exocytosis and endocytosis of dextran and the raft-binding cholera toxin subunit B (CTB). Resealing is reduced by ASM inhibitors and ASM deficiency and enhanced or restored by extracellular exposure to sphingomyelinase. B cell activation via B cell receptors (BCRs), a process requiring lipid rafts, interferes with PM repair. Conversely, wounding inhibits BCR signaling and internalization by disrupting BCR–lipid raft coclustering and by inducing the endocytosis of raft-bound CTB separately from BCR into tubular invaginations. Thus, PM repair and B cell activation interfere with one another because of competition for lipid rafts, revealing how frequent membrane injury and repair can impair B lymphocyte–mediated immune responses.


Heart ◽  
2014 ◽  
Vol 100 (Suppl 4) ◽  
pp. A17.1-A17
Author(s):  
RR Baggott ◽  
A Alfranca ◽  
MD López-Maderuelo ◽  
TMA Mohamed ◽  
A Escolano ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1398
Author(s):  
Cristian Vergallo ◽  
Elisa Panzarini ◽  
Bernardetta Anna Tenuzzo ◽  
Stefania Mariano ◽  
Ada Maria Tata ◽  
...  

One of the most relevant drawbacks in medicine is the ability of drugs and/or imaging agents to reach cells. Nanotechnology opened new horizons in drug delivery, and silver nanoparticles (AgNPs) represent a promising delivery vehicle for their adjustable size and shape, high-density surface ligand attachment, etc. AgNPs cellular uptake involves different endocytosis mechanisms, including lipid raft-mediated endocytosis. Since static magnetic fields (SMFs) exposure induces plasma membrane perturbation, including the rearrangement of lipid rafts, we investigated whether SMF could increase the amount of AgNPs able to pass the peripheral blood lymphocytes (PBLs) plasma membrane. To this purpose, the effect of 6-mT SMF exposure on the redistribution of two main lipid raft components (i.e., disialoganglioside GD3, cholesterol) and on AgNPs uptake efficiency was investigated. Results showed that 6 mT SMF: (i) induces a time-dependent GD3 and cholesterol redistribution in plasma membrane lipid rafts and modulates gene expression of ATP-binding cassette transporter A1 (ABCA1), (ii) increases reactive oxygen species (ROS) production and lipid peroxidation, (iii) does not induce cell death and (iv) induces lipid rafts rearrangement, that, in turn, favors the uptake of AgNPs. Thus, it derives that SMF exposure could be exploited to enhance the internalization of NPs-loaded therapeutic or diagnostic molecules.


2018 ◽  
Vol 217 (6) ◽  
pp. 2047-2058 ◽  
Author(s):  
Chi-Lun Chang ◽  
Yu-Ju Chen ◽  
Carlo Giovanni Quintanilla ◽  
Ting-Sung Hsieh ◽  
Jen Liou

The endoplasmic reticulum (ER) Ca2+ sensor STIM1 forms oligomers and translocates to ER–plasma membrane (PM) junctions to activate store-operated Ca2+ entry (SOCE) after ER Ca2+ depletion. STIM1 also interacts with EB1 and dynamically tracks microtubule (MT) plus ends. Nevertheless, the role of STIM1–EB1 interaction in regulating SOCE remains unresolved. Using live-cell imaging combined with a synthetic construct approach, we found that EB1 binding constitutes a trapping mechanism restricting STIM1 targeting to ER–PM junctions. We further showed that STIM1 oligomers retain EB1 binding ability in ER Ca2+-depleted cells. By trapping STIM1 molecules at dynamic contacts between the ER and MT plus ends, EB1 binding delayed STIM1 translocation to ER–PM junctions during ER Ca2+ depletion and prevented excess SOCE and ER Ca2+ overload. Our study suggests that STIM1–EB1 interaction shapes the kinetics and amplitude of local SOCE in cellular regions with growing MTs and contributes to spatiotemporal regulation of Ca2+ signaling crucial for cellular functions and homeostasis.


2008 ◽  
Vol 28 (18) ◽  
pp. 5710-5723 ◽  
Author(s):  
Jia-Lin Lee ◽  
Mei-Jung Wang ◽  
Putty-Reddy Sudhir ◽  
Jeou-Yuan Chen

ABSTRACT CD44 is present in detergent-resistant, cholesterol-rich microdomains, called lipid rafts, in many types of cells. However, the functional significance of CD44 in lipid rafts is still unknown. We have previously demonstrated that osteopontin-mediated engagement of CD44 spliced variant isoforms promotes an extracellular matrix-derived survival signal through integrin activation. By using a series of CD44 mutants and pharmacological inhibitors selectively targeted to various cellular pathways, we show in this study that engagement of CD44 induces lipid raft coalescence to facilitate a CD44-Src-integrin signaling axis in lipid rafts, leading to increased matrix-derived survival. Palmitoylation of the membrane-proximal cysteine residues and carboxyl-terminal linkage to the actin cytoskeleton both contribute to raft targeting of CD44. The enrichment of integrin β1 in lipid rafts is tightly coupled to CD44 ligation-elicited lipid raft reorganization and associated with temporally delayed endocytosis. Through the interaction with the CD44 carboxyl-terminal ankyrin domain, Src is cotranslocated to lipid rafts, where it induces integrin activation via an inside-out mechanism. Collectively, this study demonstrates an important role of the dynamic raft reorganization induced by CD44 clustering in eliciting the matrix-derived survival signal.


2017 ◽  
Vol 312 (5) ◽  
pp. C627-C637 ◽  
Author(s):  
Alexey M. Petrov ◽  
Violetta V. Kravtsova ◽  
Vladimir V. Matchkov ◽  
Alexander N. Vasiliev ◽  
Andrey L. Zefirov ◽  
...  

Marked loss of skeletal muscle mass occurs under various conditions of disuse, but the molecular and cellular mechanisms leading to atrophy are not completely understood. We investigate early molecular events that might play a role in skeletal muscle remodeling during mechanical unloading (disuse). The effects of acute (6–12 h) hindlimb suspension on the soleus muscles from adult rats were examined. The integrity of plasma membrane lipid rafts was tested utilizing cholera toxin B subunit or fluorescent sterols. In addition, resting intracellular Ca2+ level was analyzed. Acute disuse disturbed the plasma membrane lipid-ordered phase throughout the sarcolemma and was more pronounced in junctional membrane regions. Ouabain (1 µM), which specifically inhibits the Na-K-ATPase α2 isozyme in rodent skeletal muscles, produced similar lipid raft changes in control muscles but was ineffective in suspended muscles, which showed an initial loss of α2 Na-K-ATPase activity. Lipid rafts were able to recover with cholesterol supplementation, suggesting that disturbance results from cholesterol loss. Repetitive nerve stimulation also restores lipid rafts, specifically in the junctional sarcolemma region. Disuse locally lowered the resting intracellular Ca2+ concentration only near the neuromuscular junction of muscle fibers. Our results provide evidence to suggest that the ordering of lipid rafts strongly depends on motor nerve input and may involve interactions with the α2 Na-K-ATPase. Lipid raft disturbance, accompanied by intracellular Ca2+ dysregulation, is among the earliest remodeling events induced by skeletal muscle disuse.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3576-3576
Author(s):  
Patricia G. Quinter ◽  
Todd M. Quinton ◽  
Carol A. Dangelmaier ◽  
Satya P. Kunapuli ◽  
James L. Daniel

Abstract The collagen receptor glycoprotein VI (GPVI), plays an essential role in platelet activation and the regulation of hemostasis. Microdomains within the plasma membrane, called lipid rafts, have been implicated in GPVI signaling. The GPVI receptor has been shown to associate with the lipid rafts in both resting and activated platelets. It has been reported that there is a reduction in GPVI signaling in raft-disrupted platelets following activation with various GPVI agonists, especially at low to moderate agonist concentrations. Since platelet aggregation is potentiated by secreted adenosine 5′-diphosphate (ADP) at low concentrations of convulxin and at all concentrations of collagen and collagen-related peptide (CRP), we wanted to determine whether the decrease in GPVI signaling found in platelets with disrupted rafts was due to the loss of agonist potentiation by ADP. We compared platelet aggregation, protein phosphorylation, and calcium mobilization in platelets with intact and disrupted lipid rafts following activation with the GPVI agonists, collagen, convulxin and CRP. We show that lipid raft disruption inhibits aggregation induced by collagen and convulxin, but this inhibition is no longer apparent in the presence of ADP feedback inhibitors. Furthermore, raft-disrupted platelets had the same level of phosphorylation of proteins involved in GPVI signaling (i.e. Syk, LAT, and PLCγ2) and the same ability to mobilize calcium following activation with collagen or convulxin. Therefore, the effects of lipid raft disruption on aggregation can be attributed to the loss of ADP feedback. Interestingly, however, raft disruption directly inhibited aggregation and Syk phosphorylation induced by CRP in the presence and absence of ADP feedback. We propose that these differences are due to the fact that CRP is a relatively small, synthesized peptide of 37 amino acids, while collagen and convulxin are large ligands. These agonists are all able to bind the GPVI receptor, but they may not have the same ability to simultaneously cluster multiple receptors due to their size differential. The lipid rafts may be important for CRP stimulation, but not for collagen or convulxin, because they may have a higher density of the GPVI receptor than nonraft membrane regions, allowing CRP to cluster multiple receptors and activate the GPVI signaling cascade. When we disrupt the lipid rafts, we are reducing the effective concentration of GPVI available for activation by CRP but not by collagen or convulxin.


1975 ◽  
Vol 142 (5) ◽  
pp. 1263-1282 ◽  
Author(s):  
F M Griffin ◽  
J A Griffin ◽  
J E Leider ◽  
S C Silverstein

These experiments were designed to evaluate the role of macrophage plasma membrane receptors for the third component of complement (C) and for the Fc portion of IgG in the ingestion phase of phagocytosis. Sheep erythrocyte (E) were coated with anti-E IgG [E(IgG)]; these E(IgG) were then attached to cultivated monolayers of mouse peritoneal macrophages under conditions which reversibly inhibit ingestion of E(IgG). The E(IgG)-macrophage complexes were further incubated under similar conditions with an antimacrophage IgG fraction which blocks Fc receptor-mediated ingestion but has no effect upon ingestion mediated by other phagocytic receptors. When these cultures were subsequently incubated under conditions optimal for particle ingestion, phagocytosis of the IgG-coated erythrocytes did not occur; the erythrocytes remained bound to the Fc receptors of the macrophage plasma membrane. To determine whether ligands must cover the entire surface of an attached particle to permit ingestion of that particle, C-coated E [E(IgM)C] were bound to the C receptors of thioglycollate-induced (activated) macrophages at 4 degrees C. E(IgM)C-macrophage complexes were then trypsinized at 4 degrees C, a procedure which resulted in cleavage of erythrocyte-bound C3b molecules to a form of C3 not recognized by the macrophage receptors for C3b. Under the conditions used, trypsin did not affect the attachment of E(IgM)C to the macrophage surface or the macrophage receptors for C3b. When these trypsin treated E(IgM)C-macrophage complexes were incubated at 37 degrees C, the bound E(IgM)C were not ingested; the erythrocytes remained attached to the macrophage plasma membrane via the macrophage's C receptors. These results indicate that attachment of a particle to specific receptors on the macrophage plasma membrane is not sufficient to trigger ingestion of that particle. Rather, ingestion requires the sequential, circumferential interaction of particle-bound ligands with specific plasma membrane receptors not involved in the initial attachment process.


1982 ◽  
Vol 155 (6) ◽  
pp. 1623-1637 ◽  
Author(s):  
AB Ezekowitz ◽  
S Gordon

Bacillus Calmette-Guerin (BCG) infection alters the surface and endocytic properties of mouse peritoneal macrophages (PM) compared with thioglycollate- elicited (TPM) or resident PM (RPM). Expression of Ia antigen (Ag) is enhanced up to fourfold, but plasma membrane receptors that mediate binding and uptake of mannosyl/fucosyl-terminated glycoconjugates (MFR), Fc receptors, and the macrophage (mφ)-specific Ag F4/80 are reduced by 50-80 percent. Levels of Mac-1 remain relatively stable. These changes are accompanied by enhanced secretion of O(2)(-), after further stimulation with phorbyl myristate acetate, and of plasminogen activator. Both these products are released by TPM, but not RPM. The characteristic surface phenotype of BCG-PM can also be induced by injection of C. parvum, another mφ- activating agent, but not by thioglycollate broth, lipopolysaccharide, or proteose peptone. Purified protein derivative (PPD) and N-acetylmuramyl-L- alanyl-D-isoglutamine. 2H(2)0 are soluble agents with partial activity. Alteration of mφ markers by BCG infection depends on T lymphocyte function, although studies with nude mice indicate that other pathways may also serve to modify the surface of the mφ. Mφ from uninfected animals displayed all markers of activation after adoptive transfer of specifically-sensitised lymphocytes with PPD, intraperitoneally, or after co- cultivation. Treatment of primed lymphocytes with anti-Thy-1 antibody and complement ablated this effect. Lymphokines obtaned by Ag or mitogen stimulation induced similar changes in TPM and RPM. Mannose-specific endocytosis decayed rapidly, time 1/2 approximately equal to 16 h and stabilized at approximately 25 percent of control values. Single-cell analysis showed that residual MFR activity was uniform in the target population. Loss of Ag F4/80 after activation by lymphocyte and PPD was less marked than after infection (35 percent vs 80 percent), unlike MFR activity, which declined to a similar extent. Induction of mφ Ia by lymphokine reached a peak after 2-3 d and was lost within 2 d of its removal. Recovery of MFR and F4/80 was incomplete under these conditions. These studies establish that activated mφ known to display enhanced antimicrobial/anticellular activity express markedly different surface properties distinct from elicited or resident cells. The role of antigen- stimulated T cell products in regulating mφ function is confirmed, and down-regulation of mannosyl-receptor-mediated endocytosis provides a sensitive, quantitative, and cell-specific new marker to study their properties and mechanism of action. Extensive, but selective remodeling of mφ plasma membrane structure could play an important role in controlling recognition and effector mechanisms of the activated mφ.


2017 ◽  
Author(s):  
Chi-Lun Chang ◽  
Yu-Ju Chen ◽  
Jen Liou

AbstractThe endoplasmic reticulum (ER) Ca2+ sensor STIM1 forms oligomers and translocates to ER-plasma membrane (PM) junctions to activate store-operated Ca2+ entry (SOCE) following ER Ca2+ depletion. STIM1 also directly interacts with end binding protein 1 (EB1) at microtubule (MT) plus-ends and resembles comet-like structures during time-lapse imaging. Nevertheless, the role of STIM1-EB1 interaction in regulating SOCE remains unresolved. Using live-cell imaging combined with pharmacological perturbation and a reconstitution approach, we revealed that EB1 binding constitutes a diffusion trap mechanism restricting STIM1 targeting to ER-PM junctions. We further showed that STIM1 oligomers retain EB1 binding ability in ER Ca2+-depleted cells. EB1 binding delayed the translocation of STIM1 oligomers to ER-PM junctions and recaptured STIM1 to prevent excess SOCE and ER Ca2+ overload. Thus, the counterbalance of EB1 binding and PM targeting of STIM1 shapes the kinetics and amplitude of local SOCE in regions with growing MTs, and contributes to precise spatiotemporal regulation of Ca2+ signaling crucial for cellular functions and homeostasis.SummarySTIM1 activates store-operated Ca2+ entry (SOCE) by translocating to endoplasmic reticulum-plasma membrane junctions. Chang et al. revealed that STIM1 localization and SOCE are regulated by a diffusion trap mechanism mediated by STIM1 binding to EB1 at growing microtubule ends.


Sign in / Sign up

Export Citation Format

Share Document