PKC412 Is a Multi-Targeting Kinase Inhibitor with Activity Against Multiple Myeloma In Vitro and In Vivo.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 247-247 ◽  
Author(s):  
Joseph Negri ◽  
Nicholas Mitsiades ◽  
Qingwei Deng ◽  
Zhaoqin Wen ◽  
David C. Geer ◽  
...  

Abstract Multiple myeloma (MM) remains an incurable neoplasia and exhibits high propensity for de novo/acquired refractoriness even to novel agents, e.g. thalidomide (Thal) or proteasome inhibitors. This may be due to complex and evolving patterns of molecular lesions potentially conferring hyperactive antiapoptotic signaling with high degree of redundancy upon inhibition of isolated targets within those pathways. We thus hypothesized that, for genetically complex neoplasias such as MM, patient outcome might improved by addition, in the therapeutic armamentarium, of agents that simultaneously inhibit multiple proliferative/antiapoptotic targets. Towards this effort of multi-targeted therapies, we studied the tyrosine kinase inhibitor PKC412 (midausporin, Novartis, Basel, Switzerland). Low-nM levels of PKC412 selectively inhibit tyrosine kinase receptors, such as FLT3. But higher PKC412 concentrations (in μM range), which presumably inhibit (at least partly) other kinases, are achieved in clinical trials without catastrophic toxicities. This suggests that PKC412 can safely suppress in vivo the activity of, not just FLT3, but a broader spectrum of kinases, some of which (individually or cooperatively) might be critical for survival/proliferation of MM cells. Indeed, in vitro kinase activity assays showed that clinically achievable (high nM or low μM) PKC412 concentrations inhibit by >20% important kinases, including p70S6K, IKK-a and Akt,. Consistent with such multi-targeted effect, in vitro MTT colorimetric survival assays showed activity of PKC412 (at sub-μM levels) against panel of 40 MM cell lines and 10 primary tumor cells from MM patients (including cells resistant to Dex, alkylating agents, anthracyclines, Thal or its immunomodulatory derivatives, bortezomib, and/or Apo2L/TRAIL), and cell lines from hematologic neoplasias, e.g. B- and T-ALL, CML, various non-Hodgkin’s lymphoma subtypes, and solid tumors (e.g. breast, prostate, lung, thyroid, ovarian, renal Ca, retinoblastoma and sarcomas)). Mechanistic studies confirmed that PKC412 blocks key growth/survival pathways (e.g. PI-3K/Akt, IKK-α/NF-κB), coupled with by downstream effects on suppression of diverse inhibitors of apoptosis (e.g. FLIP, XIAP, cIAP-2, survivin). These molecular sequelae explain, at least partly, the ability of PKC412 to sensitize MM cells to other anti-MM agents (such as Dex, cytotoxic chemotherapy or proteasome inhibitor bortezomib) and overcome protective effects of cytokines (e.g. IL-6) or bone marrow stromal cells. Importantly, PKC412 significantly prolonged the overall survival (p<0.03, Kaplan-Meier analysis) of SCID/NOD mice in a clinically relevant model of diffuse MM bones lesions. These studies provide basis for clinical studies of PKC412 in MM and indicate that kinase inhibitors selectively blocking specific targets at low drug levels, may also have potent anti-tumor activities related to inhibition of multiple other, less specific, nonetheless important targets, thus allowing for anti-tumor activity in a much broader spectrum of tumor types than previously appreciated.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 641-641 ◽  
Author(s):  
Suzanne Trudel ◽  
Zhi Hua Li ◽  
Ellen Wei ◽  
Marion Wiesmann ◽  
Katherine Rendahl ◽  
...  

Abstract The t(4;14) translocation that occurs uniquely in a subset (15%) of multiple myeloma (MM) patients results in the ectopic expression of the receptor tyrosine kinase, Fibroblast Growth Factor Receptor3 (FGFR3). Wild-type FGFR3 induces proliferative signals in myeloma cells and appears to be weakly transforming in a hematopoeitic mouse model. The subsequent acquisition of FGFR3 activating mutations in some MM is associated with disease progression and is strongly transforming in several experimental models. The clinical impact of t(4;14) translocations has been demonstrated in several retrospective studies each reporting a marked reduction in overall survival. We have previously shown that inhibition of activated FGFR3 causes morphologic differentiation followed by apoptosis of FGFR3 expressing MM cell lines, validating activated FGFR3 as a therapeutic target in t(4;14) MM and encouraging the clinical development of FGFR3 inhibitors for the treatment of these poor-prognosis patients. CHIR258 is a small molecule kinase inhibitor that targets Class III–V RTKs and inhibits FGFR3 with an IC50 of 5 nM in an in vitro kinase assay. Potent anti-tumor and anti-angiogenic activity has been demonstrated in vitro and in vivo. We employed the IL-6 dependent cell line, B9 that has been engineered to express wild-type FGFR3 or active mutants of FGFR3 (Y373C, K650E, G384D and 807C), to screen CHIR258 for activity against FGFR3. CHIR258 differentially inhibited FGF-mediated growth of B9 expressing wild-type and mutant receptors found in MM, with an IC50 of 25 nM and 80 nM respectively as determined by MTT proliferation assay. Growth of these cells could be rescued by IL-6 demonstrating selectivity of CHIR258 for FGFR3. We then confirmed the activity of CHIR258 against FGFR3 expressing myeloma cells. CHIR258 inhibited the viability of FGFR3 expressing KMS11 (Y373C), KMS18 (G384D) and OPM-2 (K650E) cell lines with an IC50 of 100 nM, 250 nM and 80 nM, respectively. Importantly, inhibition with CHIR258 was still observed in the presence of IL-6, a potent growth factors for MM cells. U266 cells, which lack FGFR3 expression, displayed minimal growth inhibition demonstrating that at effective concentrations, CHIR258 exhibits minimal nonspecific cytotoxicity on MM cells. Further characterization of this finding demonstrated that inhibition of cell growth corresponded to G0/G1 cell cycle arrest and dose-dependent inhibition of downstream ERK phosphorylation. In responsive cell lines, CHIR258 induced apoptosis via caspase 3. In vitro combination analysis of CHIR258 and dexamethasone applied simultaneously to KMS11 cells indicated a synergistic interaction. In vivo studies demonstrated that CHIR258 induced tumor regression and inhibited growth of FGFR3 tumors in a plasmacytoma xenograft mouse model. Finally, CHIR258 produced cytotoxic responses in 4/5 primary myeloma samples derived from patients harboring a t(4;14) translocation. These data indicate that the small molecule inhibitor, CHIR258 potently inhibits FGFR3 and has activity against human MM cells setting the stage for a Phase I clinical trial of this compound in t(4;14) myeloma.


2002 ◽  
Vol 50 (6) ◽  
pp. 479-489 ◽  
Author(s):  
Ioannis A. Avramis ◽  
Garyfallia Christodoulopoulos ◽  
Atsushi Suzuki ◽  
Walter E. Laug ◽  
Ignacio Gonzalez-Gomez ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 640-640
Author(s):  
Karin Vanderkerken ◽  
Eline Menu ◽  
Thomas Stromberg ◽  
Hendrik De Raeve ◽  
Kewal Asosingh ◽  
...  

Abstract Multiple myeloma (MM) represents a B-cell malignancy, characterized by monoclonal proliferation of plasma cells in the bone marrow (BM) and is associated with osteolysis and angiogenesis. Insulin-like growth factor-1 (IGF-1), produced by the BM stromal cells, has been described as an important factor in the survival, proliferation and migration of MM cells. The latter process is involved in the homing of the MM cells to the BM. IGF-1 also induces VEGF secretion by the MM cells, thus stimulating angiogenesis in the BM. As IGF-1 is a pleiotropic factor in MM, therapeutic strategies targeting the IGF-1R may be effective as anti-tumor treatments. In this work we investigated the effect of an IGF-1 receptor tyrosine kinase inhibitor (picropodophyllin or PPP1) in the murine, syngeneic 5T33MM model of multiple myeloma. This mouse model is representative for the human disease and can combine in vitro and in vivo studies. We first investigated the effects of PPP on the MM cells in vitro. We and others have previously demonstrated that IGF-1 induced ERK activation, involved in VEGF secretion and proliferation. When the 5T33MM cells were preincubated with 1microM PPP, Western blot analysis demonstrated the blocking of this activation. Furthermore, when the 5T33MM cells were preincubated with PPP for 30 min, IGF-1 induced VEGF secretion and proliferation of the 5T33MM cells were completely blocked. Next, we used the tyrosine kinase inhibitor PPP in vivo. 5T33MM cells were injected intravenously in C57BLKaLwRij mice and the development of the disease was monitored by measuring the serum paraprotein concentration. Mice were either treated with a low (17mM, IP, twice a day) or a high dose of PPP (50mM, IP, twice a day) or with the vehicle (DMSO/oil 9/1) from the day of injection with 5T33MM onward. At week 3, vehicle controls showed signs of morbidity and were sacrificed. The presence of tumor was measured by assessing serum paraprotein concentrations and determining the proportion of idiotype positive cells in the BM by flow cytometry. Angiogenesis was assessed by measuring the microvessel density on CD31 stained paraffin sections. The tumor burden in the bone marrow in the PPP treated mice was 77% lower than in vehicle treated animals (p< 0,0001) and the serum paraprotein concentration was 90% lower (p< 0,0001). The microvessel density in the BM of the PPP treated group was reduced by 60% (p< 0,02). In a separate survival experiment the mice were either treated with the vehicle or with the high dose (50mM) of PPP, from the time of tumor injection. Kaplan-Meier analysis demonstrated a significant increase in survival after treatment with PPP when compared with vehicle (28 vs. 18 days, p<0,001). These data demonstrate that the IGF-1RTK inhibitor PPP possesses strong anti-tumor activity, as demonstrated both in vitro and in vivo in a syngeneic model of multiple myeloma, and may therefore be an effective therapeutic candidate for MM treatment.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1938-1938
Author(s):  
Jenny E Hernandez ◽  
Joan Zape ◽  
Keith Glaser ◽  
Elliot Landaw ◽  
Cecilia Fu ◽  
...  

Abstract FLT3 is a receptor tyrosine kinase of the subclass III family that plays a vital role in the regulation of differentiation, proliferation and survival of normal hematopoietic cells. FLT3 mutations are often found in patients with acute myelogenous leukemia (AML) and confer a poor prognosis. Of these mutations, 15–35% are FLT3 ITD (internal tandem duplication) mutations and 5–7% are point mutations in the FLT3 kinase activation loop, e.g. D835V. We are studying the signaling pathways associated with a small molecule multi-targeted receptor tyrosine kinase inhibitor (RTKI), ABT-869. To determine the effects of ABT-869 in vitro and in vivo, a Ba/F3 mouse pro-B lymphocytic cell line harboring the FLT-3 ITD or FLT-3 D835V mutation was used as an isolated FLT-3 mutant model system. In vitro, ABT-869 is effective in inhibiting the proliferation of Ba/F3 Flt-3 ITD mutant cells (IC50 value of 1 nM) when compared to Ba/F3 Flt-3 D835V mutant (IC50 value between 1 and 10 μM) and Ba/F3 Flt-3 wildtype (WT) cells (IC50 value of 10 μM). Annexin V and propidium iodide staining of cells revealed that an increase in apoptosis occurred in Ba/F3 Flt-3 ITD mutant cells treated with 1μM ABT-869 for 24 hours (42.8%) when compared to untreated (4.7%) or vehicle control (4.0%) cells. Ba/F3 Flt-3 D835V mutant cell lines demonstrated a 12.5% rate of apoptosis at 1μM, compared to untreated (1.99%) and vehicle control (2.1%) cell lines. Propidium iodide staining of treated Ba/F3 Flt-3 WT cell lines revealed no difference in apoptosis when compared to untreated Ba/F3 Flt-3 WT cells or DMSO controls. PARP cleavage was observed in Ba/F3 FLT-3 ITD mutant cells, following 6 hours of treatment with 1 to 100 nM ABT-869, whereas no cleavage was observed in Ba/F3 WT cells treated with ABT-869. To study the effects of ABT-869 in vivo, we treated SCID mice injected with Ba/F3 Flt-3 ITD, Ba/F3 Flt-3 D835V, or Ba/F3 Flt-3 WT cells and monitored disease progression using bioluminescence imaging. The mice injected with the Ba/F3 FLT-3 ITD mutant cells and treated with vehicle control developed metastases and had a median survival time of 2 weeks. In contrast, the ABT-869 treated group had slower disease progression with median survival of 6.2 weeks (P&lt;0.008). Both control and treated mice injected with Ba/F3 FLT-3 D835V mutant cell lines developed metastases and had similar survival (median 1.7 and 1.9 weeks, respectively). Survival times of control and treated mice injected with Ba/F3 FLT-3 WT cells were also similar (median 8.4 and 8.1 weeks, respectively). Previous work identified that ABT-869 induced apoptosis of acute myeloid leukemia cells through inhibition of FLT-3 reception phosphorylation, which is observed as early as 3 hours after treatment. In Ba/F3 cells expressing FLT-3 ITD, ABT-869 also inhibited phosphorylation of AKT, which is upstream of the pro-apoptotic protein Bad. Therefore, our preclinical data suggest that ABT-869 induces apoptosis of FLT-3 ITD mutant cells both in vitro and in vivo. These studies provide rationale for the treatment of acute leukemia patients harboring the FLT3-ITD mutation with ABT-869 and the potential benefit of combining small molecule inhibitors that target both RTKs and AKT.


2011 ◽  
Vol 35 (2) ◽  
pp. 237-242 ◽  
Author(s):  
Xia Yuan ◽  
Yi Zhang ◽  
Haijing Zhang ◽  
Jing Jin ◽  
Xiangyan Li ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5898
Author(s):  
Tao Yu ◽  
Junguo Cao ◽  
Montadar Alaa Eddine ◽  
Mahmoud Moustafa ◽  
Andreas Mock ◽  
...  

To date, there is no standard-of-care systemic therapy for the treatment of aggressive meningiomas. Receptor tyrosine kinases (RTK) are frequently expressed in aggressive meningiomas and are associated with poor survival. Ponatinib is a FDA- and EMA-approved RTK inhibitor and its efficacy in meningioma has not been studied so far. Therefore, we investigated ponatinib as a potential drug candidate against meningioma. Cell viability and cell proliferation of ponatinib-treated meningioma cells were assessed using crystal violet assay, manual counting and BrdU assay. Treated meningioma cell lines were subjected to flow cytometry to evaluate the effects on cell cycle and apoptosis. Meningioma-bearing mice were treated with ponatinib to examine antitumor effects in vivo. qPCR was performed to assess the mRNA levels of tyrosine kinase receptors after ponatinib treatment. Full-length cDNA sequencing was carried out to assess differential gene expression. IC50 values of ponatinib were between 171.2 and 341.9 nM in three meningioma cell lines. Ponatinib induced G0/G1 cell cycle arrest and subsequently led to an accumulation of cells in the subG1-phase. A significant induction of apoptosis was observed in vitro. In vivo, ponatinib inhibited meningioma growth by 72.6%. Mechanistically, this was associated with downregulation of PDGFRA/B and FLT3 mRNA levels, and mitochondrial dysfunction. Taken together, ponatinib is a promising candidate for targeted therapy in the treatment of aggressive meningioma.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2766-2766
Author(s):  
Iris Breitkreutz ◽  
Marc S Raab ◽  
Olaf Christensen ◽  
Alexander Zimmerhackl ◽  
Jing Zhang ◽  
...  

Abstract Agents targeting not only myeloma cells directly but also bone marrow stromal cells (BMSCs), endothelial cells, and osteoclasts (OCLs) that cause enhancement of tumor cell growth, angiogenesis, and MM bone disease, respectively, are promising new treatment modalities for multiple myeloma. Here we investigated the novel, orally available multi-kinase inhibitor BAY 73-4506 (BAY), currently in phase II clinical trials, for its therapeutic effect in MM. BAY is a potent inhibitor of angiogenic (VEGFR 1–3, PDGFR-β), as well as oncogenic, (cKIT, RET, FGFR, Raf) kinases We first tested the ability of BAY to suppress proliferation and survival in a wide array of MM cell lines, including those resistant to conventional chemotherapeutics. Our data show that BAY, in a low micromolar range that is well below concentrations achieved in patient plasma during the first clinical trial in solid tumors, induces apoptosis by caspase-9 and caspase-3 activation in all cell lines tested. Importantly, BAY also overcomes the growth advantage conferred in a BMSC-MM, as well as an endothelial cell-MM, co-culture system. BAY treatment abrogates growth factor-stimulated MEK, ERK and AKT phosphorylation at sub-micromolar concentrations. Since the VEGF signaling pathway is a potent inducer of angiogenesis and BAY targets VEGFR 1–3, we examined its anti-angiogenic properties. BAY inhibits endothelial cell growth and endothelial cell tubule formation in vitro at concentrations less than 1μM; moreover, it also markedly inhibited VEGF-induced cell migration on fibronectin. Activation of MAP kinase is a critical event during OCL differentiation, activation, and survival; and importantly, BAY also inhibits osteoclastogenesis, evidenced by blockade of M-CSF/RANKL-triggered differentiation of mononuclear cells to TRAP-positive osteoclasts. Finally, BAY significantly delays tumor growth and abrogates blood vessel formation in vivo in a xenograft mouse model of human MM. These in vitro and in vivo results provide the basis for further clinical evaluation of BAY to improve patient outcome in MM.


Blood ◽  
2005 ◽  
Vol 105 (7) ◽  
pp. 2941-2948 ◽  
Author(s):  
Suzanne Trudel ◽  
Zhi Hua Li ◽  
Ellen Wei ◽  
Marion Wiesmann ◽  
Hong Chang ◽  
...  

Abstract The t(4;14) translocation that occurs uniquely in a subset (15%) of patients with multiple myeloma (MM) results in the ectopic expression of the receptor tyrosine kinase (RTK), fibroblast growth factor receptor 3 (FGFR3). Inhibition of activated FGFR3 in MM cells induces apoptosis, validating FGFR3 as a therapeutic target in t(4;14) MM and encouraging the clinical development of FGFR3 inhibitors for the treatment of these patients, who have a poor prognosis. We describe here the characterization of a novel, small-molecule inhibitor of class III, IV, and V RTKs, CHIR-258, as an inhibitor of FGFR3. CHIR-258 potently inhibits FGFR3 with an inhibitory concentration of 50% (IC50) of 5 nM in in vitro kinase assays and selectively inhibited the growth of B9 cells and human myeloma cell lines expressing wild-type (WT) or activated mutant FGFR3. In responsive cell lines, CHIR-258 induced cytostatic and cytotoxic effects. Importantly, addition of interleukin 6 (IL-6) or insulin growth factor 1 (IGF-1) or coculture on stroma did not confer resistance to CHIR-258. In primary myeloma cells from t(4;14) patients, CHIR-258 inhibited downstream extracellular signal-regulated kinase (ERK) 1/2 phosphorylation with an associated cytotoxic response. Finally, therapeutic efficacy of CHIR-258 was demonstrated in a xenograft mouse model of FGFR3 MM. These studies support the clinical evaluation of CHIR-258 in MM.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1496-1496 ◽  
Author(s):  
Nicholas Mitsiades ◽  
Ciaran McMullan ◽  
Vassiliki Poulaki ◽  
Joseph Negri ◽  
Noopur Raje ◽  
...  

Abstract We have recently shown that tumor cell proliferation, survival and drug-resistance in multiple myeloma (MM) and a broad range of other tumors is critically influenced by insulin-like growth factors (IGFs) and their receptor (IGF-1R) (Cancer Cell2004;5:221–30). Among the pleiotropic signaling cascades downstream of IGF-1R activation, we focused on the functional implications and therapeutic targeting of the Akt/p70S6K/mTOR axis, particularly of mTOR (mammalian Target of Rapamycin), due to its regulatory role on cellular bioenergetics, a key aspect of tumor pathophysiology. Herein, we describe the in vitro and in vivo profiles of anti-tumor activity of the selective mTOR inhibitor RAD001 (Everolimus, Novartis AG). Using in vitro MTT assays, we observed that RAD001 is active (at nM concentrations) against a broad range of tumor cells, including >40 MM cell lines and >10 primary MM tumor cells (including cell lines or primary cells resistant to Dex, alkylating agents, anthracyclines, thalidomide (Thal), immunomodulatory Thal derivatives, bortezomib, and/or Apo2L/TRAIL), without significant impact on viability of normal hematopoietic cells or other normal tissues (e.g. bone marrow stromal cells), and its anti-MM effect was not blocked by forced overexpression of Bcl-2 or constitutively active Akt. While cytokine- or cell adhesion-mediated interactions with the bone marrow (BM) microenvironment (e.g. BM stromal cells) protects MM cells from conventional therapies (e.g. Dex or cytotoxic chemotherapy), RAD001 was able to overcome this protective effect in co-culture models of MM cells with BM stromal cells or in vitro MM cell exposure to survival factors, e.g. IL-6 or IGF-I. Furthermore, RAD001 sensitized MM cells to other anti-MM therapeutics, e.g. dexamethasone, cytotoxic chemotherapeutics, or the proteasome inhibitor bortezomib, even in cases of primary MM tumor cells refractory to these respective agents. Using hierarchical clustering analyses and relevance network algorithms, we found that the pattern of MM cell dose-response relationships to RAD001 is clearly distinct from the patterns of sensitivity or resistance to other conventional or investigational anti-MM drugs. This further supports the notion that RAD001 confers a constellation of pro-apoptotic/anti-proliferative molecular sequelae distinct from those of currently available anti-MM drugs, and also suggests that RAD001 may have anti-tumor activity even against subgroups of MM which may be resistant to other novel therapies which that are currently in clinical development. Importantly, administration of RAD001 in a SCID/NOD mice model of diffuse MM bone had in vivo anti-tumor activity, including suppression of MM tumor burden and prolongation of survival (p<0.01, log-rank test). These studies highlight an important role for mTOR in growth/survival of human MM cells and provide proof-of-principle for future clinical studies of mTOR inhibitors for the treatment of MM and other plasma cell dyscrasias.


Sign in / Sign up

Export Citation Format

Share Document