Beta-Catenin and N-Cadherin in Myeloma: Implications for Adhesion and Migration.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2497-2497
Author(s):  
Fenghuang Zhan ◽  
Simona Colla ◽  
Ya-Wei Qiang ◽  
Owen Stephens ◽  
Yongsheng Huang ◽  
...  

Abstract Increasing evidence suggests that altered Wnt signaling plays an important role in myelomagenesis. We recently discovered that myeloma plasma cells secrete soluble inhibitors of Wnt signaling and these prevent osteoblast differentiation and contribute to development of osteolytic lesions. We have also shown that myeloma plasma cells are capable of activating both canonical and non-canonical Wnt signaling pathways and that this primarily induces morphological changes, invasion and migration through non-canonical signaling. As beta-catenin is the primary effector of canonical Wnt signaling, we investigated the potential role of beta-catenin in primary myeloma. Although beta-catenin can be stabilized upon Wnt-3A treatment of both primary myeloma cells and myeloma cells lines, we were unable to note any effects on proliferation or activation of beta-catenin-TCF targets genes. Western blotting of protein extracts from plasma cells from 69 newly diagnosed cases showed highly variable levels of stable beta-catenin. Using SAM analysis with a 1% false discovery rate we correlated beta-catenin levels with global gene expression levels in these 69 samples and found that high beta-catenin levels were strongly correlated with expression of only a single gene, the neural adhesion molecule N-cadherin (CDH2). Microarray analysis on a large panel of normal and malignant B-cells showed that CDH2 expression was unique to myeloma plasma cells and that CDH2 was expressed highest in hyperdiploid and FGFR3/MMSET-positive cases. As expected CDH2 expression was high in in-vitro-expanded mesenchymal stem cells, osteoblasts and CD34-selected stem cells. In-vitro derived osteoclasts from myeloma patients and normal donors did not express CDH2. N-cadherin was immunoprecipitated from 8 primary myeloma cells and 6 myeloma cell lines and resolved by SDS-PAGE and N-cadherin and beta-catenin were detected in immunoprecipitation complexes following immunoblotting. Moreover, beta-catenin and N-cadherin protein levels showed a high degree of correlation on western blots. Flow cytometery of N-cadherin expression on primary samples showed heterogeneous expression with as little as 15% and as much as 77% of CD38+/CD45− plasma cells expressing the protein. OPM2, JJN3, and ARP1 myeloma cell lines, which express different levels of N-cadherin, were treated with the N-cadherin neutralizing antibody GC-4 and the cells subjected to the transendothelial migration assay. Maximum inhibition was observed for JJN3 cells, with 60% inhibition at 24 hrs, while OPM2 had an intermediate level of inhibition (40%) and ARP1, the only N-cadherin negative line, underwent transendothelial migration as efficiently as control cells. These data suggests that functional adherns junctions of beta-catenin and N-cadherin likely exist on myeloma plasma cells and these junctions may play a role in myeloma biology that centers on cell adhesion and migration and possibly cell-cell communication.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 808-808 ◽  
Author(s):  
Ya-Wei Qiang ◽  
Yu Chen ◽  
Bo Hu ◽  
Wei Qiang ◽  
Christoph Heuck ◽  
...  

Abstract Abstract 808 Background: Bone disease is one of the most debilitating complications in patients with multiple myeloma (MM). The molecular mechanisms by which MM triggers bone disease are not fully understood. We have previously demonstrated that Dkk1 is highly expressed in primary MM plasma cells, and associated with bone disease in MM patients by inhibiting Wnt signaling-promoted mesenchymal stem cell differentiation and osteoprotegerin production in osteoblast cells. We have also reported that increase in Wnt signaling in the bone marrow microenvironment by overexpression of Wnt3a in myeloma cells or administration of rWnt3a, or indirectly increasing Wnt signaling by administration of anti-Dkk1 neutralizing antibody also decreased in osteoclast numbers. However, Dkk1 is less frequently expressed in MM cell lines that are derived mostly from late stage of MM; and injection of these MM cell lines into human fetal bone also is able to induce bone lesion in MM animal model. These results indicate that additional factors may be involved in induction of the bone disease at the stage of the disease. The members of the sFRPs family of secreted proteins (including sFRP-1, -2, -3 and -4) directly bind to Wnts, thereby preventing Wnts from binding to the cellular Wnt receptor complex. It has also been reported that sFRP-1 and -2 augment canonical Wnt3a activated signaling in fibroblast. MM cells from pateints with advanced bone lesions express sFRP2 mRNA. Like sFRP2, sFRP3 mRNA is highly expressed in MM plasma cells, but it's function in MM bone disease remains unknown. We sought to investigate the role of sFRP3 in MM-triggered bone lesions using the osteoblast (OB) cell lines CH3T1/2 and C2C12, and serum from MM pateints those MM cells expressed high level of sFRP3. Methods/Results: RT-PCR analysis showed that sFRP3 is expressed in primary MM plasma cells and certain MM cell lines. Recombinant sFRP3 protein did not inhibit, but synergized with Wnt3a to increase beta-catenin protein, while Dkk1 significantly inhibited this process. Similarly, sFRP3 treatment of OB cells increase Wnt-3a-induced TCF transcript activity in OB cells transfected with TOPflash luciferase report constructs. sFRP3 also increased MSC differentiation, as evidenced by increase in alkaline phosphatase activity (ALP) and increased in mineralization by Alizarin red staining. sFRP3 treatment also increases OPG mRNA and protein production in these cells. Similar to sFRP3, sFRP1 and sFRP2 synergistically acted with Wnt3a to induce MSC differentiation and OPG expression in osteoblasts, while Dkk1 significantly inhibited these processes. To confirm the synergistic effects of sFRPs with canonical Wnt signaling on MSC differentiation, we employed R-podin1, a well-known agonist of canonical Wnt signaling. Treatments of MSC cells with R-podin1 led to increase in beta-catenin protein and TCF transcriptional activity and in ALP activity, and increase in OPG mRNA and protein. Pretreatment of the cells with sFRP2 and sFPP3 proteins further enhanced the function of R-podin1. In contrast, Dkk1 protein showed negative effect on R-Spodin1 functions, indicating that sFRP2 and sFRP3 synergized with R-Spodin1 to induce activation of canonical Wnt signaling and subsequent MSC differentiation and OPG production. Conclusion: Taken together, these data suggest that sFRP2 and sFRP3 augment canonical Wnt signaling to induce MSC differentiation and indirectly inhibit osteoclastogenesis by regulating OPG in MSC cells. These results also indicate that Dkk1 may be most important in MM-induced bone disease. Disclosures: Barlogie: Celgene, Genzyme, Novartis, Millennium: Consultancy, Honoraria, Patents & Royalties. Shaughnessy:Myeloma Health, Celgene, Genzyme, Novartis: Consultancy, Employment, Equity Ownership, Honoraria, Patents & Royalties.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4874-4874
Author(s):  
Caixia Li ◽  
De Pei Wu ◽  
Junjie Cao ◽  
Xiaojin Wu ◽  
Xiao Ma ◽  
...  

Abstract Multiple myeloma(MM) is a monoclonal expansion of malignant cells with a plasmablast-plasma cell morphology that is almost exclusively localized to the bone marrow, except at the final stages of disease, when they proliferate in the extramedullary area. The mechanisms of the selective homing of MM cells to the bone marrow compartment are poorly understood. The chemokine stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4 contribute to stem cell homing and play a role in trafficking of leukemic cells. In this study we have investigated expression and biological behavior of SDF-1/CXCR4 in MM-derived cell lines and primary MM cells. FACS and RT-PCR analysis was used to study the expression of CXCR4 and ICAM-1(CD54) on the surface of MM cells from 4 IL-6 dependant cell lines (XG1,XG2,XG6 and XG7) and 25 freshly isolated tumor samples from patients with diagnosed MM. Mononuclear cells were purified by positive selection of magnetical and FACS sorting. Chemotaxis assay through transwell bore polycaronate and ELISA assay were employed to monitor the SDF-1, IL-6, and sICAM-1 levels. We found that[circ1]Fresh MM cells and MM cell lines expressed various levels of functional CXCR4 ranging from 23.1% to 77.7%,which was correlated with the in vitro migration ability of MM cells[(23.2±1.08)%, P<0.01]; [circ2]SDF-1 levels in the bone marrow(BM) of MM patients were significantly higher than the those of healthy persons (3489.23±651.63)pg/ml, (2818.57±597.79)pg/ml, P<0.05; but plasma levels of SDF-1 in peripheral blood of MM patients were lower than those of healthy persons[(1973±133)pg/ml, (2334.857±574.92), P=0.062]; [circ3]Plasma levels of PCL(4097.14±680.71) were significantly higher than those of healthy persons, P<0.01. The results firstly demonstrated abnormal expression of SDF-1 and its receptor CXCR4 on Human MM cells, which is closely correlated with the migration of MM cells. Furthermore, we discovered that SDF-1 could up-regulate the expression of ICAM-1 on MM cells; the plasma level of soluble ICAM-1 was correlated with the expression of CXCR4 on MM cells. These findings suggested that SDF-1/CXCR4 axis play a key role on the trafficking of MM cells via mediating the effect of adhesion molecules. Moreover, we observed higher plasma levels of IL-6 in PB of 60% MM patients compared with those of healthy individuals. Finally, the levels of IL-6 were closely correlated with SDF-1 levels (γ=0.8, P<0.01), These data indicated that in the IL-6-dependent myeloma cell lines or fresh myeloma samples and myeloma cell growth triggered by SDF-1 maybe due to up-regulation of autocrine and paracrine IL-6 by myeloma cells and stromal cells in BM. The results suggested that the expression of CXCR4 have an essential role in the proliferation and migration of myeloma cells in patients with multiple myeloma.In conclusion, MM cells expressed various levels of functional CXCR4, which were correlated with the migration ability of MM cells in vitro; SDF-1/CXCR4 axis plays a key role in the trafficking of MM cells via mediating the effect of adhesion molecules; The plasma levels of IL-6 closely correlated with SDF-1 plasma levels, myeloma cell growth triggered by SDF-1 may be due to up-regulation of autocrine and paracrine IL-6 by myeloma cells and stromal cells in BM. All these suggested that the expression of CXCR4 play an essential role in the proliferation and migration of myeloma cells in patients with multiple myeloma.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3420-3420
Author(s):  
Ya-Wei Qiang ◽  
Shmuel Yaccoby ◽  
John D. Shaughnessy

Wnt signaling is a highly conserved signal transduction pathway involved in embryonic development. Inappropriate canonical Wnt signaling resulting in beta-catenin stabilization, is associated with several types of human cancers. Multiple myeloma plasma cells express Wnt receptors, Wnt ligands and soluble Wnt inhibitors. Wnt signaling is central to osteoblast and osteoclasts development and secretion of Wnt signaling inhibitors by myeloma cells is thought to contribute to the osteolytic phenotype seen in this disease and prostate cancer. While it is now clear that MM cells can signal through both canonical and non-canonical mechanisms, there are conflicting data as to the direct role of Wnt signaling in myeloma cell biology. Others have shown that Wnts cause proliferation of myeloma cells; while we have shown that canonical Wnts cause morphological changes and migration, but not cell proliferation. To further elucidate the role of canonical Wnt signaling in myeloma and myeloma bone disease we used limiting dilutions in the presence of G418 to create two independent stable clones of the myeloma cell line NCI-H929 expressing Wnt-3A (H929/W3A), which is not expressed in myeloma, and an empty vector (H929/EV). Because Wnt antibodies are not available we cloned Wnt-3A as a fusion protein with hemagglutinin (HA). Western blots against HA revealed a positive band of the expected size only in the H929/W3A clones. GST-E-cadherin binding assay and Western blot analysis revealed elevated levels of total and free beta-catenin in H929/W3A relative to H929/EV, however, there this was not associated with increased growth or proliferation by MTT assay. To determine the in-vivo growth characteristics and effects on bone resorption of Wnt-3A producing cells, we transplanted the lines into a human bone implanted the flank of SCID mice. Tumor growth rate as determined by increased production of human immunoglobulin in mice serum was significantly slower in the Wnt-3A transfected cells relative to controls (P < .05). Loss of bone mineral density (BMD) of the implanted bones engrafted with H929/W3A cells was lower than in bones engrafted with H929/EV cells (P < .05). Reduced tumor burden and BMD loss was also visualized on x-ray radiographs. Taken together these data indicate that all factors promoting bone resorption produced by or elicited by the myeloma cell line H929 are subordinate to canonical Wnt signaling and that prevention of bone destruction may help control myeloma progression.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4737-4737
Author(s):  
Abul Islam ◽  
Ken-ichiro Otsuyama ◽  
Jakia Amin ◽  
Saeid Abroun ◽  
Karim Shamsasenjan ◽  
...  

Abstract The chemokine, stromal cell-derived factor 1 (SDF-1; CXCL12) and its receptor, CXCR4 are considered to be essentially required for plasma cell homing to the bone marrow (BM). It is well known that plasma cells in the BM (long-lived plasma cells) survive for a long time and have the constitutively high NF-kB activity. Since human myeloma cells are considered to be derived from these committed long-lived plasma cells, we investigated the role of SDF-1 on the survival of primary myeloma cells from myeloma patients and the possible relationship with NF-kB activity. First, we confirmed that all primary myeloma cells expressed CXCR4 but not CCR9 or CCR10 receptors on their surface and the levels of CXCR4 expression apparently correlated with maturity of BM plasma cells; mature myeloma cells (MPC-1+) as well as polyclonal plasma cells expressed higher levels of CXCR4 than those on immature myeloma cells (MPC-1-). The production of SDF-1 was found strongly in BM stromal cells but not in primary myeloma cells as well as myeloma cell lines. On the other hand, high DNA binding activity of NF-kB was constitutively detected in primary myeloma cells as well as myeloma cell lines, and these NF-kB activities significantly correlated with the expression levels of CD54 on their surface, for CD54 gene is one of the strict NF-kB target genes. Based on the expression levels of CD54 protein, interestingly, primary myeloma cells showed weaker NF-kB activities than those in monoclonal plasma cells from MGUS and polyclonal plasma cells from polyclonal gammopathy. Plasma concentrations of SDF-1 were also significantly correlated to the expression levels of CD54 on primary myeloma cells significantly (P<0.01). Furthermore, it was confirmed that addition of SDF-1 significantly increased the expression levels of CD54 in the in vitro culture of primary myeloma cells. Therefore, these results indicate that SDF-1 is responsible for high expression levels of CD54 and possibly the constitutively high NF-kB activity in primary myeloma cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1419-1419
Author(s):  
Soraya Wuilleme-Toumi ◽  
Nelly Robillard ◽  
Patricia Gomez-Bougie ◽  
Philippe Moreau ◽  
Steven Le Gouill ◽  
...  

Abstract Multiple Myeloma (MM) is a fatal malignancy of B-cell origin characterized by the accumulation of plasma cells within the bone marrow. The expression of the pro-survival members of the Bcl-2 family has been shown to be a key process in the survival of myeloma cells. More particularly, Mcl-1 expression turned out to be critical for their survival. Indeed, knockdown of Mcl-1 by antisenses induces apoptosis in myeloma cells. Finally, Mcl-1 was found to be the only anti-apoptotic Bcl-2 family member which level of expression was modified by cytokine treatment of myeloma cells. For these reasons, we have evaluated the expression of Mcl-1 in vivo in normal, reactive and malignant plasma cells (PC) i.e., myeloma cells from 55 patients with MM and 20 human myeloma cell lines using flow cytometry. We show that Mcl-1 is overexpressed in MM in comparison with normal bone marrow PC. Forty-seven percent of patients with MM at diagnosis (p=.017) and 80% at relapse (p=.014 for comparison with diagnosis) overexpress Mcl-1. Of note, only myeloma cell lines but not reactive plasmocytoses have abnormal Mcl-1 expression, although both plasmocyte expansion entities share similar high proliferation rates (&gt;20%). Of interest, Bcl-2 as opposed to Mcl-1, does not discriminate malignant from normal PC. This shows that the overexpression of Mcl-1 is clearly related to malignancy rather than to proliferation. It will be important to know whether the overexpression of Mcl-1 is related to an abnormal response to cytokines like Interleukin-6 or to mutations of the promoter of the Mcl-1 gene as already described in B chronic lymphocytic leukemia. Finally, level of Mcl-1 expression is related to disease severity, the highest values being correlated with the shortest event-free survival (p=.01). In conclusion, Mcl-1 which has been shown to be essential for the survival of human myeloma cells in vitro is overexpressed in vivo in MM and correlates with disease severity. Mcl-1 represents a major therapeutical target in MM.


Blood ◽  
1995 ◽  
Vol 85 (12) ◽  
pp. 3704-3712 ◽  
Author(s):  
N Huang ◽  
MM Kawano ◽  
MS Mahmoud ◽  
K Mihara ◽  
T Tsujimoto ◽  
...  

The mature myeloma cells express very late antigen 5 (VLA-5) and MPC-1 antigens on their surface and adhere to bone marrow (BM) stromal cells more tightly than the VLA-5-MPC-1-immature myeloma cells in vitro. The VLA-5 and MPC-1 antigens possibly function as two of the molecules responsible for interaction of mature myeloma cells with BM stromal cells. However, the immature myeloma cells do interact with BM stromal cells, and it is unclear which adhesion molecules mediate their interaction. In this study, we found that both immature and mature myeloma cells expressed CD21, an adhesion molecule known to bind to CD23. CD21 was also detected on normal plasma cells. To evaluate the role of CD21 expression on myeloma cells, two myeloma cell lines, NOP-2 (VLA-5-MPC-1-) and KMS-5 (VLA-5+MPC-1+), were used as representatives of immature and mature myeloma cell types, respectively, and an adhesion assay was performed between the myeloma cell lines and BM stromal cells. Antibody-blocking results showed that adhesion of the mature type KMS-5 to KM102, a human BM-derived stromal cell line, or to short-term cultured BM primary stromal cells was inhibited by monoclonal antibodies (MoAbs) against CD21, VLA-5, and MPC-1, and inhibition of adhesion of the immature type NOP-2 to KM102 by the anti-CD21 MoAb was observed as well. Furthermore, CD23 was detected on KM102. Treatment of KM102 with an anti-CD23 MoAb also inhibited adhesion of either KMS-5 or NOP-2 to KM102. Therefore, we propose that CD21 expressed on myeloma cells likely functions as a molecule responsible for the interaction of immature myeloma cells as well as mature myeloma cells with BM stromal cells, and CD23 may be the ligand on the stromal cells for the CD21-mediated adhesion.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5075-5075 ◽  
Author(s):  
Hiroki Chiba ◽  
Masayoshi Kobune ◽  
Kazunori Kato ◽  
Kiminori Nakamura ◽  
Yutaka Kawano ◽  
...  

Abstract Despite the tremendous effort in developing of conventional chemotherapy and molecular targeting drugs for patients with multiple myeloma (MM), it has been proven difficult to completely abrogate neoplastic cells from bone marrow (BM). Hence, patients with refractory disease still experience poor outcome due to disease progression. Principle obstacle in the treatment of this disease is a chemo-resistance which is mainly caused by the interaction of myeloma cells with BM stromal cells. However, little is known about the molecular mechanism of cell adhesion mediated drug resistance (CAM-DR) in MM. In this study, we focused on relationship between drug resistance and expression of Wnts, the factor regulating the cell adhesion and proliferation, in myeloma cells. To gain insight into involvement of Wnt signaling in CAM-DR, we first screened the expression of Wnt family in myeloma cell lines (RPMI8226, ARH77, KMS-5, HS-sultan and MM1S) by reverse transcription (RT)-polymerase chain reaction (PCR) analysis. Although the mRNAs of Wnt2b, Wnt7a and Wnt10b were variably expressed in some of myeloma cell lines, Wnt3 mRNA was detected in all the myeloma cells examined. RPMI8226, ARH77 and KMS-5 which highly expressed Wnt3 protein, tightly adhered to human BM stromal cells and accumulation of beta-catenin and GTP-bounded RhoA was observed in these myeloma cell lines. This cell adhesion was augmented by addition of Wnt3 containing conditioned medium (CM) and suppressed by Wnt-receptor competitor, secreted Frizzled related protein (sFRP)-1, but not by specific inhibitor of canonical pathway (DKK-1). These results suggest that adhesion of myeloma cells was regulated by non-canonical pathway of Wnt signaling. We further examined whether the Wnt3 mediated adhesion to stromal cells involved in CAM-DR. The drug resistance of ARH-77 for doxorubicin was 1.8 folds enhanced by adhesion to stromal cells in comparison with stroma-free condition. This CAM-DR for doxorubicin was further augmented (2.6 folds) by addition of Wnt3 CM via enhancement of adhesion to stromal cells. Moreover, although the doxorubicin sensitivity of ARH-77 in coculture with stromal cells was significantly reduced by sFRP-1, this effect was not observed in stroma-free culture, indicating that Wnt3-mediated CAM-DR is dependent on attachment with stromal cells. Additionally, CAM-DR was completely restrained by addition of Rho kinase inhibitor Y27632. These results indicate that Wnt3 augments myeloma CAM-DR by enhancement of adhesion to human BM stromal cells via Wnt/RhoA signaling. Thus, Wnt/RhoA signaling pathway could be a promising molecular target to overcome CAM-DR.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 257-257
Author(s):  
Yuan Xiao Zhu ◽  
Chung Xin ◽  
Sheng Ben Liang Lian ◽  
Wee-Joo Chng ◽  
Suzanne Trudel ◽  
...  

Abstract From a high throughput RNAi screen of the human druggable genome targeting the KMS11 cell line, we identified the suppression of the vacuolar H+- ATPase (V-ATPase) family as cytotoxic to myeloma cells. In the screen, two oligos against each gene for the V-ATPase subunits ATP6V1A and ATP6V1B1 resulted in suppression of cell growth (50% and 60% inhibition of cell viability respectively). We further confirmed this result using both lentiviral shRNA knockdown and two small molecule inhibitors specific for V-ATPase. Silencing of ATP6V1A by lentiviral shRNA knock-down in KMS11 and in OPM1 myeloma cell lines caused 75–80% reduction of cell viability at 5 days post infection (measured by MTT assay). Consistent with this result, the V-ATPase specific inhibitors, bafilomycin A1 and REATA 203, both inhibited the growth of a genetically heterogeneous and standardized panel of 14 human myeloma cell lines in vitro with an IC50 ranging from 2.2 – 8.9 nM (mean 5.25 nM) for bafilomycin A1 and 46–1594 nM (mean 542.5 nM)) for REATA 203. We further demonstrated that patient samples (n=10) were sensitive to 20nM bafilomycin A1 which induced a mean of 58% of MM cells to undergo apoptosis (range 10% to 93%) after 24 hours of treatment. Similar to bafilomycin A1, treatment of primary patient-derived MM cells with 500 nM REATA 203 for 72 hours resulted in a mean 69% apoptosis (range 24% to 97%). In contrast, non-myeloma cells (the CD138- fractions of the bone marrow samples) were less sensitive - mean 9% apoptosis (range from 0% to 34%) under the same treatment conditions. Of high interest, however, unlike most drugs we have studied in pre-clinical myeloma models, the cytotoxicity induced by bafilomycin A1 in MM cell lines is abrogated by co-culture with patient bone marrow stromal cells but is not affected by IL-6 or IGF-1 treatment. Dexamethasone- or melphalan-resistant MM cell lines were also highly sensitive to both bafilomycin A1 and REATA 203. In a xenographic JJN3 mouse model, bafilomycin A1 suppresses and delays growth of tumor in a dose-dependent fashion. Gene expression analysis of normal-donor bone marrow plasma cells (n=19), primary tumor samples from MM patients (n=107) and normal somatic tissues demonstrates ubiquitous expression of most subunits of V-ATPase, however, some subunits are preferentially expressed in myeloma cells compared with normal plasma cells, including ATP6V1F (84% vs. 11%), ATP6V1E1 (29% vs. 5%), ATP6V1G2 (17% vs. 0%) and ATP6V0E 2 (36% vs. 16%). In conclusion, our data indicate that vacuolar H+-ATPase inhibitors are of interest as potential therapeutics for MM.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1698-1698
Author(s):  
Masayoshi Kobune ◽  
Kazuyuki Murase ◽  
Satoshi Iyama ◽  
Tsutomu Sato ◽  
Yutaka Kawano ◽  
...  

Abstract Adhesion of myeloma cells to BM stromal cells is now considered to play a critical role in chemo-resistance. However, little is known about the molecular mechanism of cell adhesion mediated drug resistance (CAM-DR) in MM. In this study, we focused on relationship between drug resistance and expression of Wnts, the factor regulating the cell adhesion and proliferation, in myeloma cells. To gain insight into involvement of Wnt signaling in CAM-DR, we first screened the expression of Wnt family in myeloma cell lines (RPMI8226, ARH77, KMS-5, and MM1S) by reverse transcription-polymerase chain reaction analysis. Although the mRNAs of Wnt2b, Wnt7a and Wnt10b were variably expressed in some of myeloma cell lines, Wnt3 mRNA was detected in all the myeloma cells examined. KMS-5 and ARH77, which highly expressed Wnt3 protein, tightly adhered to human BM stromal cells and accumulation of beta-catenin and GTP-bounded RhoA was observed in these myeloma cell lines. Conversely, RPMI8226 and MM1S, which modestly expressed Wnt3 protein, rather weakly adhered to human BM stromal cells. We then examined the relevance of Wnt3 expression to adhesive property to stromal cells and to CAM-DR of myeloma cells. KMS-5 and ARH-77 exhibited apparent CAM-DR against Doxorubicin. This CAM-DR was significantly reduced by anti-integrinβ1 antibody, a Wnt-receptor competitor, secreted Frizzled related protein-1 and Rho kinase inhibitor (Y27632 and OH-fasudil), but not by the specific inhibitor of canonical signaling (DKK-1), indicating that Wnt-mediated CAM-DR which is dependent on integrinβ1- mediated attachment to stromal cells is induced by Wnt/Rho pathway signal. This CAM-DR for doxorubicin was also significantly reduced by Wnt3 siRNA transfer to KMS-5. On the other hand, the cell adhesion of MM1S was dramatically augmented by addition of Wnt3 containing conditioned medium (CM) and suppressed by integrinα4 or β1 antibody (VLA4)(Fig 1). Furthermore, CAM-DR of MM1S was significantly augmented by Wnt3 CM or adhesion of mesenchymal stem cells which expressed Wnt3, but not BM stromal cells which did not express Wnt3 mRNA. These results suggest that adhesion of myeloma cells on stromal cells was regulated by Wnt signaling in autocrine or paracrine manner. The Wnt3 signaling pathway could be a promising molecular target to overcome CAM-DR.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2701-2701
Author(s):  
Anja Seckinger ◽  
Tobias Meißner ◽  
Jérôme Moreaux ◽  
Hartmut Goldschmidt ◽  
Axel Benner ◽  
...  

Abstract BACKGROUND: Pathogenesis of multiple myeloma is partly attributed to an aberrant expression of proliferation-, pro-angiogenic and bone-metabolism modifying factors by malignant plasma-cells. AIM. Given the long and variable time-span from first diagnosis of early-stage plasma-cell dyscrasias to overt myeloma and the low proliferation rate of malignant plasma-cells, we hypothesize these to concomitantly express a novel class of anti-proliferative factors of potential prognostic relevance. Here, bone morphogenic proteins (BMPs) represent possible candidates, as they inhibit proliferation, stimulate bone formation, and have an impact on the survival of cancer patients. PATIENTS AND METHODS. We assessed expression of BMPs and its receptors by Affymetrix DNA-microarrays (n=434) including CD138-purified primary myeloma-cell-samples, normal bone-marrow plasma-cell-samples, polyclonal plasmoblasts-samples, human myeloma-cell-lines (HMCL), and whole bone-marrow. Presence and differential gene expression was determined by PANP-algorithm and empirical Bayes statistics. Event-free (EFS) and overall survival (OAS) were investigated for the 168 patients undergoing high-dose chemotherapy (HM-group) using Cox’s proportional hazard model. Findings were validated using the same strategy on an independent group of 345 patients from the Arkansas-group. For validation, quantitative real-time PCR and flow cytometry were performed. In vitro induction of angiogenesis was assessed using the AngioKit-assay. Effect of BMP6 on proliferation of HMCL was assessed by 3H-thymidine uptake. RESULTS. BMP6 is the only BMP expressed by normal- (13/14 samples) and malignant plasma-cells (228/233 samples). It is significantly lower expressed in proliferating non-malignant plasmablastic cells and human myeloma cell-lines. In vitro, BMP6 significantly inhibits proliferation of myeloma-cell-lines with an IC50 ranged from 0.08–2.15μg/ml, survival of primary myeloma-cells, and in vitro tubule formation down to the level of the negative control. High BMP6-expression in malignant plasma cells delineates significantly superior overall-survival for patients undergoing high-dose chemotherapy in both independent series of patients (n=168, P=.02 and n=345, P=.03, respectively, see below). CONCLUSION. With BMP6 we report for the first time the autocrine expression of a prognostically relevant anti-angiogenic and anti-proliferative factor and its receptors by normal and malignant plasma-cells. Figure Figure


Sign in / Sign up

Export Citation Format

Share Document