Multiplex Quantitative Real-Time PCR for the Detection of t(14;18) Translocations with Breakpoints within 5 Different Regions of the BCL-2 Gene: MBR, 3′MBR, mcr, 5′mcr, icr.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2826-2826
Author(s):  
Frank Schüler ◽  
Sandra C. Dölken ◽  
Carsten Hirt ◽  
Gottfried Dolken

Abstract Follicular lymphomas (FL) are associated with the chromosomal translocation t(14;18)(q32;q21). Most breakpoints of chromosome 18 (60%) occur in the major breakpoint region (MBR) of the BCL-2 gene. Further breakpoints have been detected in the minor cluster region (mcr), less frequent breakpoints are found in regions called 3′-MBR, 5′-mcr and icr. On chromosome 14 most breakpoints are located within one of the six JH-genes. Therefore, BCL-2 translocations with breakpoints within the MBR and mcr are generally detected by PCR using combinations of different BCL-2 primers with one JH-consensus primer. We have developed a multiplex quantitative real-time PCR strategy that that can be used to detect t(14;18) translocations with breakpoints located within all regions mentioned above. To minimize the costs for expensive probes we used the JH-consensus sequence as a target for one “consensus probe” (fluorescent labelled minor groove binder probe) for all assays in combination with 6 different JH intron primers. To reduce the size of amplified PCR fragments 12 BCL-2 primers were chosen in combination with 6 JH intron primers for the detection of all 5 breakpoint regions. It is very important to choose short DNA target sequences for amplification: (a) to establish a real-time PCR with a high amplification efficacy; (b) to be able to amplify target sequences also from partially degraded DNA isolated from formaldehyde-fixed paraffin-embedded tissue sections; (c) to achieve a high sensitivity to detect 1–3 copies per assay. Peripheral bood mononuclear cells (PBMNC) and formalin fixed, paraffin embedded lymph node tissue obtained from 139 FL patients at the time of diagnosis (LN and PBMNC, n = 54; LN only, n = 3; PBMNC only, n = 82) were tested by multiplex quantitative real-time PCR. 80 breakpoints were identified within the MBR (61%) region. For comparison, 78/80 breakpoints were also detected by our standard real-time PCR assay with one BCL-2-MBR- primer and one JH consensus primer in combination with a fluorescent probe located within the BCL-2 sequence [Doelken et al., BioTechniques, 1998]. Two additional translocations with breakpoints located 5′ of the target sequence of the standard PCR were found by using two additional MBR primers. In addition, five mcr breakpoints (5%), one breakpoint in the 3′MBR region and one breakpoint in the icr region were found. Based on these results the prevalence of breakpoints in various regions of the BCL-2 gene in FL patients is: MBR = 61% (80/139); mcr = 5% (5/139); 3′MBR = 1% (1/139); icr = 1% (1/139); 5′mcr = 0%). Furthermore, based on quantitative PCR results the t(14;18) translocations detected in this study were undoubtedly lymphoma associated and did not belong to t(14;18)-positive non-lymphoma B cell clones found in healthy persons. By applying this multiplex quantitative real-time PCR strategy t(14;18) translocations with breakpoints in five different breakpoint clusters can be detected in about 70% of patients with follicular lymphoma. The assays can be used for a fast and reliable quantitative detection of t(14;18) translocations on DNA isolated from fresh lymph nodes or pathological specimens as well as blood samples at the time of diagnosis. In almost all cases quantitative results will allow a distinction whether the translocation found is lymphoma associated or not, which will in turn allow a quantitative MRD analysis on follow-up samples during and after treatment.

2005 ◽  
Vol 71 (7) ◽  
pp. 3911-3916 ◽  
Author(s):  
Mark G. Wise ◽  
Gregory R. Siragusa

ABSTRACT Strains of Clostridium perfringens are a frequent cause of food-borne disease and gas gangrene and are also associated with necrotic enteritis in chickens. To detect and quantify the levels of C. perfringens in the chicken gastrointestinal tract, a quantitative real-time PCR assay utilizing a fluorogenic, hydrolysis-type probe was developed and utilized to assay material retrieved from the broiler chicken cecum and ileum. Primers and probe were selected following an alignment of 16S rDNA sequences from members of cluster I of the genus Clostridium, and proved to be specific for C. perfringens. The assay could detect approximately 50 fg of C. perfringens genomic DNA and approximately 20 cells in pure culture. Measurements of the analytical sensitivity determined with spiked intestinal contents indicated that the consistent limit of detection with ileal samples was approximately 102 CFU/g of ileal material, but only about 104 CFU/g of cecal samples. The decreased sensitivity with the cecal samples was due to the presence of an unidentified chemical PCR inhibitor(s) in the cecal DNA purifications. The assay was utilized to rapidly detect and quantify C. perfringens levels in the gut tract of broiler chickens reared without supplementary growth-promoting antibiotics that manifested symptoms of necrotic enteritis. The results illustrated that quantitative real-time PCR correlates well with quantification via standard plate counts in samples taken from the ileal region of the gastrointestinal tract.


2007 ◽  
Vol 70 (6) ◽  
pp. 1373-1378 ◽  
Author(s):  
ANNA-CLARA RÖNNER ◽  
HANS LINDMARK

Campylobacter jejuni infection is a significant cause of foodborne gastroenteritis worldwide. Consumption and handling of poultry products is believed to be the primary risk factor for campylobacteriosis. Risk assessments require quantitative data, and C. jejuni is enumerated usually by direct plating, which sometimes allows growth of non-Campylobacter bacteria. The objective of the present study was to develop a quantitative real-time PCR method (q-PCR) for enumerating C. jejuni in chicken rinse without a culturing step. The procedure to obtain the template for the PCR assay involved (i) filtration of 10 ml of chicken rinse, (ii) centrifugation of the sample, and (iii) total DNA extraction from the pellet obtained using a commercial DNA extraction kit. The detection limit of the method was comparable to that for plating 100 μl of chicken rinse on modified charcoal cefoperazone deoxycholate agar, and the detection limit could be further improved 10-fold by concentrating the DNA eluate by ethanol precipitation. A close correlation for spiked chicken rinse was obtained for the results of the quantitative real-time PCR method and direct plating (r = 0.99). The coefficient of correlation for the methods was 0.87 when samples from chicken carcasses on the slaughter line were analyzed, whereas a lower correlation (r = 0.76) was obtained when samples from retail carcasses were analyzed. Greater variation in the proportion of dead and/or viable but not culturable Campylobacter types in the retail samples may explain the decreased correlation between the methods. Overall, the new method is simple and fast and the results obtained are closely correlated with those for direct plating for samples containing a low proportion of dead Campylobacter cells.


2004 ◽  
Vol 70 (3) ◽  
pp. 1366-1377 ◽  
Author(s):  
David Rodr�guez-L�zaro ◽  
Marta Hern�ndez ◽  
Mariela Scortti ◽  
Teresa Esteve ◽  
Jos� A. V�zquez-Boland ◽  
...  

ABSTRACT We developed and assessed real-time PCR (RTi-PCR) assays for the detection and quantification of the food-borne pathogen Listeria monocytogenes and the closely related nonpathogenic species L. innocua. The target genes were hly and iap for L. monocytogenes and lin02483 for L. innocua. The assays were 100% specific, as determined with 100 Listeria strains and 45 non-Listeria strains, and highly sensitive, with detection limits of one target molecule in 11 to 56% of the reactions with purified DNA and 3 CFU in 56 to 89% of the reactions with bacterial suspensions. Quantification was possible over a 5-log dynamic range, with a limit of 15 target molecules and R 2 values of >0.996. There was an excellent correspondence between the predicted and the actual numbers of CFU in the samples (deviations of <23%). The hly-based assay accurately quantified L. monocytogenes in all of the samples tested. The iap-based assay, in contrast, was unsuitable for quantification purposes, underestimating the bacterial counts by 3 to 4 log units in a significant proportion of the samples due to serovar-related target sequence variability. The combination of the two assays enabled us to classify L. monocytogenes isolates into one of the two major phylogenetic divisions of the species, I and II. We also assessed the new AmpliFluor technology for the quantitative detection of L. monocytogenes by RTi-PCR. The performance of this system was similar to that of the TaqMan system, although the former system was slightly less sensitive (detection limit of 15 molecules in 45% of the reactions) and had a higher quantification limit (60 molecules).


2006 ◽  
Vol 21 (1) ◽  
pp. 30-39 ◽  
Author(s):  
M. Labuhn ◽  
V. Vuaroqueaux ◽  
F. Fina ◽  
A. Schaller ◽  
I. Nanni-Metellus ◽  
...  

The assessment of ERα, PgR and HER2 status is routinely performed today to determine the endocrine responsiveness of breast cancer samples. Such determination is usually accomplished by means of immunohistochemistry and in case of HER2 amplification by means of fluorescent in situ hybridization (FISH). The analysis of these markers can be improved by simultaneous measurements using quantitative real-time PCR (Qrt-PCR). In this study we compared Qrt-PCR results for the assessment of mRNA levels of ERα, PgR, and the members of the human epidermal growth factor receptor family, HER1, HER2, HER3 and HER4. The results were obtained in two independent laboratories using two different methods, SYBR Green I and TaqMan probes, and different primers. By linear regression we demonstrated a good concordance for all six markers. The quantitative mRNA expression levels of ERα, PgR and HER2 also strongly correlated with the respective quantitative protein expression levels prospectively detected by EIA in both laboratories. In addition, HER2 mRNA expression levels correlated well with gene amplification detected by FISH in the same biopsies. Our results indicate that both Qrt-PCR methods were robust and sensitive tools for routine diagnostics and consistent with standard methodologies. The developed simultaneous assessment of several biomarkers is fast and labor effective and allows optimization of the clinical decision-making process in breast cancer tissue and/or core biopsies.


Author(s):  
Behnaz Nateghi ◽  
Parisa Behshood ◽  
Sima Fathullahzadeh ◽  
Omid Mardanshah

Background: MicroRNAs (miRNAs) have crucial roles in cellular and molecular processes related to different malignancies including chronic lymphocytic leukemia (CLL). Studies revealed altered miR-95 expression in several diseases. Long non-coding RNAs (lncRNAs) are a heterogeneous group of non-coding and regulatory RNAs. Aim: The present study was conducted to investigate the association of miR-95 expression with CLL by quantitative real-time PCR. Materials and Methods: Sixty samples, including 30 CLL and 30 healthy controls, were sampled during a period of 4 months. The expression of miR-95 was evaluated by quantitative real-time PCR in peripheral blood mononuclear cells from patients with CLL and in healthy subjects. Additionally, in silico pathway enrichment analysis was performed on validated and predicted targets of miR-95 in several databases, including miRecords and miRTarBase, while the interactions between predicted putative lncRNAs and genes and miRNA expression were examined with miRWalk. Results: The expression of miR-95 was found to be significantly reduced in patients with CLL compared to that in healthy controls (P < 0.005). Conclusion: miR-95 showed potential as a biomarker for the early diagnosis of patients with CLL. LncRNAs play a significant role in regulating cellular evolution, differentiation, and other processes and may be important regulators in tumorigenesis.


2006 ◽  
Vol 21 (1) ◽  
pp. 30-39 ◽  
Author(s):  
M. Labuhn ◽  
V. Vuaroqueaux ◽  
F. Fina ◽  
A. Schaller ◽  
I. Nanni-Metellus ◽  
...  

1999 ◽  
Vol 37 (6) ◽  
pp. 1958-1963 ◽  
Author(s):  
Andreas Pahl ◽  
Uta Kühlbrandt ◽  
Kay Brune ◽  
Martin Röllinghoff ◽  
André Gessner

Currently, no easy and reliable methods allowing for the quantification of Borrelia burgdorferi in tissues of infected humans or animals are available. Due to the lack of suitable assays to detect B. burgdorferi CFU and the qualitative nature of the currently performed PCR assays, we decided to exploit the recently developed real-time PCR. This technology measures the release of fluorescent oligonucleotides during the PCR. Flagellin of B. burgdorferi was chosen as the target sequence. A linear quantitative detection range of 5 logs with a calculated detection limit of one to three spirochetes per assay reaction mixture was observed. The fact that no signals were obtained with closely related organisms such as Borrelia hermsii argues for a high specificity of this newly developed method. A similar method was developed to quantify mouse actin genomic sequences to allow for the standardization of spirochete load. The specificity and sensitivity of the B. burgdorferi and the actin real-time PCR were not altered when samples were spiked with mouse cells or spirochetes, respectively. To evaluate the applicability of the real-time PCR, we used the mouse model of Lyme disease. The fate of B. burgdorferi was monitored in different tissues from inbred mice and from mice treated with antibiotics. Susceptible C3H/HeJ mice had markedly higher burdens of bacterial DNA than resistant BALB/c mice, and penicillin G treatment significantly reduced the numbers of spirochetes. Since these results show a close correlation between clinical symptoms and bacterial burden of tissues, we are currently analyzing human biopsy specimens to evaluate the real-time PCR in a diagnostic setting.


2015 ◽  
Vol 22 (6) ◽  
pp. 611-617 ◽  
Author(s):  
Annika Krengel ◽  
Valentino Cattori ◽  
Marina L. Meli ◽  
Bettina Wachter ◽  
Jürg Böni ◽  
...  

ABSTRACTThe cheetah population in Namibia is the largest free-ranging population in the world and a key population for research regarding the health status of this species. We used serological methods and quantitative real-time PCR to test free-ranging and captive Namibian cheetahs for the presence of feline leukemia virus (FeLV), a gammaretrovirus that can be highly aggressive in populations with low genetic diversity, such as cheetahs. We also assessed the presence of antibodies to other gammaretroviruses and the responses to a FeLV vaccine developed for domestic cats. Up to 19% of the free-ranging cheetahs, 27% of the captive nonvaccinated cheetahs, and 86% of the captive vaccinated cheetahs tested positive for FeLV antibodies. FeLV-antibody-positive free-ranging cheetahs also tested positive for Rauscher murine leukemia virus antibodies. Nevertheless, FeLV was not detectable by quantitative real-time PCR and no reverse transcriptase activity was detectable by product-enhanced reverse transcriptase assay in the plasma of cheetahs or the supernatants from cultures of peripheral blood mononuclear cells. The presence of antibodies to gammaretroviruses in clinically healthy specimens may be caused either by infection with a low-pathogenic retrovirus or by the expression of endogenous retroviral sequences. The strong humoral immune responses to FeLV vaccination demonstrate that cheetahs can respond to the vaccine and that vaccination against FeLV infection may be beneficial should FeLV infection ever become a threat, as was seen in Iberian lynx and Florida panthers.


Sign in / Sign up

Export Citation Format

Share Document