A Genetic Mutation on Murine Chromosome 7 Causes Thrombocytosis Associated with Thrombopoietin Excess - A Model of Jak2V617F Negative Idiopathic Thrombocytosis.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3525-3525
Author(s):  
William S. Stevenson ◽  
Donald Metcalf ◽  
Warren S. Alexander ◽  
Douglas J. Hilton ◽  
Andrew W. Roberts

Abstract A substantial proportion of patients with Essential Thrombocythemia (ET) have evidence of an acquired Jak2V617F mutation that causes the myeloproliferative phenotype. Jak2V617F negative ET patients presumably have mutations in other related pathways or alternatively may have chronic thrombocytosis secondary to factors extrinsic to the hemopoietic system. This second hypothesis is supported by clonality studies that demonstrate at least 30% of women with ET have evidence of polyclonal granulocytes. As part of an ENU mutation screen to identify novel genes associated with thrombocytosis, we have studied a mutant mouse strain, called plt2, with autosomal recessive thrombocytosis associated with increased thrombopoietin production. This mutation is linked to mouse chromosome 7, and therefore is unrelated to mutations in Jak2, thrombopoietin or the thrombopoietin receptor, c-Mpl. plt2/plt2 mice have platelet counts of 2038±347x109/L (n=107) increased by 47% compared to wild-type mice (1386±223; n=107, p<0.001). This thrombocytosis was associated with increased numbers of megakaryocyte progenitor cells (plt2/plt2 28.8±4.6; n=4, Meg-CFC/5x105 cells to maximal cytokine stimulation compared to wild-type 18.3±5.5; n=4, p<0.05) and megakaryocytes (108±15; n=7 megakaryocytes per hpf compared to 70±13; n=7, p<0.01) that demonstrated a normal maturation profile based on ploidy measurement. plt2/plt2 mutant mice exhibited mild hepatomegaly (liver weight 1.6±0.2g; n=34 compared to 1.3±0.2g; n=23, p<0.001) and serum thrombopoietin levels were elevated by 76% (4930±1309pg/mL; n=18 compared to 2802±1031; n=15, p<0.001). There was no difference in relative TPO transcription between plt2/plt2 mice and wild-type mice in the liver (p=0.23), however, the TPO content of whole liver lysates was increased by 50% in the mutant mice (150%±50; n=8 per 1g liver weight compared to 100±32; n=8, p=0.03). To examine how the plt2 mutation interacts with other components of the TPO pathway, plt2/plt2 mice were intercrossed with mice lacking the TPO receptor (Mpl−/−). Mpl−/−plt2/plt2 mice have thrombocytopenia with platelet counts that are indistinguishable from Mpl−/−/ mice confirming that the plt2 mutation causes thrombocytosis by acting through the Mpl receptor. Surprisingly, Mpl+/−plt2/plt2 mice, with only one copy of the Mpl gene, had marked thrombocytosis with platelet counts of 2656±459x109/L (n=25) increased by 92% over wild-type mice suggesting an additive effect between excess thrombopoietin and Mpl heterozygosity on platelet count. We have utilized ENU mutagenesis to identify a novel mouse pedigree with heritable thrombocytosis linked to chromosome 7 that demonstrates altered cytokine production can mimic the chronic thrombocytosis that is the cardinal diagnostic feature of ET.

2020 ◽  
Author(s):  
Maik Hintze ◽  
Sebastian Griesing ◽  
Marion Michels ◽  
Birgit Blanck ◽  
Lena Wischhof ◽  
...  

AbstractWe investigated the contribution of apoptosis-inducing factor (AIF), a key regulator of mitochondrial biogenesis, in supporting hair growth. We report that pelage abnormalities developed during hair follicle (HF) morphogenesis in Harlequin (Hq) mutant mice. Fragility of the hair cortex was associated with decreased expression of genes encoding structural hair proteins, though key transcriptional regulators of HF development were expressed at normal levels. Notably, Aifm1 (R200 del) knockin males and Aifm1(R200 del)/Hq females showed minor hair defects, despite substantially reduced AIF levels. Furthermore, we cloned the integrated ecotropic provirus of the Aifm1Hq allele. We found that its overexpression in wild-type keratinocyte cell lines led to down-regulation of HF-specific Krt84 and Krtap3-3 genes without altering Aifm1 or epidermal Krt5 expression. Together, our findings imply that pelage paucity in Hq mutant mice is mechanistically linked to severe AIF deficiency and is associated with the expression of retroviral elements that might potentially influence the transcriptional regulation of structural hair proteins.


Diabetes ◽  
1997 ◽  
Vol 46 (5) ◽  
pp. 887-894 ◽  
Author(s):  
M. Yoshioka ◽  
T. Kayo ◽  
T. Ikeda ◽  
A. Koizuni
Keyword(s):  

2015 ◽  
Vol 10 (2) ◽  
pp. 392-396 ◽  
Author(s):  
Francesca Toffalorio ◽  
Filippo de Marinis ◽  
Fabio Conforti ◽  
Gianluca Spitaleri ◽  
Chiara Catania ◽  
...  

Development ◽  
1997 ◽  
Vol 124 (7) ◽  
pp. 1333-1342 ◽  
Author(s):  
C.A. Nosrat ◽  
J. Blomlof ◽  
W.M. ElShamy ◽  
P. Ernfors ◽  
L. Olson

A combination of anatomical, histological and physiological data from wild-type and null-mutated mice have established crucial roles for BDNF and NT3 in gustatory and somatosensory innervation of the tongue, and indeed for proper development of the papillary surface of the tongue. BDNF is expressed in taste buds, NT3 in many surrounding epithelial structures. Absence of BDNF in mice leads to severely malformed taste bud-bearing papillae and severe reduction of taste buds, a loss of proper innervation of remaining taste buds and a loss of taste discrimination although not of the suckling reflex per se. In contrast, absence of NT3 leads to a massive loss of somatosensory innervation of lingual structures. These findings demonstrate distinct roles for BDNF and NT3 in the establishment of the complex innervation apparatus of the tongue with non-overlapping roles for the lingual gustatory and somatosensory systems. The distinction between different sensory modalities, being dependent on either BDNF or NT3 may also have clinical implications.


2002 ◽  
Vol 282 (2) ◽  
pp. H726-H733 ◽  
Author(s):  
Nina B. Radford ◽  
Bang Wan ◽  
Angela Richman ◽  
Lidia S. Szczepaniak ◽  
Jia-Ling Li ◽  
...  

Cytochrome -c oxidase subunit VIaH (COXVIaH) has been implicated in the modulation of COX activity. A gene-targeting strategy was undertaken to generate mice that lacked COXVIaH to determine its role in regulation of oxidative energy production and mechanical performance in cardiac muscle. Total COX activity was decreased in hearts from mutant mice, which appears to be a consequence of altered assembly of the holoenzyme COX. However, total myocardial ATP was not significantly different in wild-type and mutant mice. Myocardial performance was examined using the isolated working heart preparation. As left atrial filling pressure increased, hearts from mutant mice were unable to generate equivalent stroke work compared with hearts from wild-type mice. Direct measurement of left ventricular end-diastolic volume using magnetic resonance imaging revealed that cardiac dysfunction was a consequence of impaired ventricular filling or diastolic dysfunction. These findings suggest that a genetic deficiency of COXVIaH has a measurable impact on myocardial diastolic performance despite the presence of normal cellular ATP levels.


2004 ◽  
Vol 17 (2) ◽  
pp. 221-229 ◽  
Author(s):  
Merav Kedmi ◽  
Arthur L. Beaudet ◽  
Avi Orr-Urtreger

Nicotine, the main addictive component of tobacco, evokes a wide range of dose-dependent behaviors in rodents, and when administrated in high doses, it can induce clonic-tonic seizures. Nicotine acts through the nicotinic acetylcholine receptors (nAChRs). Mutations in the human α4- and the β2-nAChR subunit genes cause autosomal dominant nocturnal frontal lobe epilepsy. Using transgenic mice with mutations in nAChR subunits, it was demonstrated previously that the α4-, α5-, and α7-subunits are involved in nicotine-induced seizures. To examine the possibility that the β4-subunit is also involved in this phenotype, we tested mice with homozygous β4-subunit deficiency. The β4 null mice were remarkably resistant to nicotine-induced seizures compared with wild-type and α5 null mice. We also generated mice with double deficiency of both α5- and β4-nAChR subunits and demonstrated that they were more resistant to nicotine’s convulsant effect than either the α5 or the β4 single mutant mice. In addition, the single α5 mutants and the double α5β4-deficient mice exhibited a significantly shorter latency time to seizure than that of the wild-type mice. Our results thus show that β4-containing nAChRs have a crucial role in the pathogenesis of nicotine-induced seizures. Furthermore, by comparing multiple mutant mice with single and double subunit deficiency, we suggest that nicotinic receptors containing either α5- or β4-subunits are involved in nicotine-induced seizures and that receptors containing both subunits are likely to contribute to this phenomena as well. However, the α5-subunit, but not the β4-subunit, regulates the rate of response to high doses of nicotine.


2018 ◽  
Vol 115 (52) ◽  
pp. 13240-13245 ◽  
Author(s):  
Zhihui Feng ◽  
Xuan Zou ◽  
Yaomin Chen ◽  
Hanzhi Wang ◽  
Yingli Duan ◽  
...  

Hypoxia-inducible factors (HIFs) are transcription factors in the basic helix–loop–helix PER-ARNT-SIM (bHLH-PAS) protein family that contain internal hydrophobic cavities within their PAS-A and PAS-B domains. Among HIFs, the HIF-2α PAS-B domain contains a relatively large cavity exploited for the development of specific artificial ligands such as PT2399. Administration of PT2399 could suppress HIF-2α target gene expression without affecting HIF-1 activity in mice under hypoxia conditions. A single mutation (S305M) within the HIF-2α PAS-B domain suppressed HIF-2α activity while conferring resistance to PT2399 in vivo, indicating the vital role of PAS-B domain in HIF-2α hypoxia response. In contrast, the mutant mice did not phenocopy PT2399 intervention in wild-type mice under metabolic stress. Under a high-fat diet (HFD), the mutant mice exert enhanced adipogenesis and obtain larger adipose mass and body weight gain compared to wild type. However, administration of PT2399 along with HFD feeding sufficiently suppressed HFD-induced body weight and adipose mass increase through suppression of adipogenesis and lipogenesis. The accompanying decreased lipid accumulation in the liver and improved glucose tolerance in wild-type mice were not observed in the mutant mice indicating negative regulation of HIF-2α on obesity and a complex role for the PAS-B domain in metabolic regulation. Notably, short-term administration of PT2399 to obese mice decreased adipose mass and improved metabolic condition. These results indicate a regulatory role for HIF-2α in obesity progression and suggest a therapeutic opportunity for PT2399 in obesity and associated metabolic disorders.


2021 ◽  
Vol 15 ◽  
Author(s):  
Esther Suk King Lai ◽  
Hisako Nakayama ◽  
Taisuke Miyazaki ◽  
Takanobu Nakazawa ◽  
Katsuhiko Tabuchi ◽  
...  

Neuroligin is a postsynaptic cell-adhesion molecule that is involved in synapse formation and maturation by interacting with presynaptic neurexin. Mutations in neuroligin genes, including the arginine to cystein substitution at the 451st amino acid residue (R451C) of neuroligin-3 (NLGN3), have been identified in patients with autism spectrum disorder (ASD). Functional magnetic resonance imaging and examination of post-mortem brain in ASD patients implicate alteration of cerebellar morphology and Purkinje cell (PC) loss. In the present study, we examined possible association between the R451C mutation in NLGN3 and synaptic development and function in the mouse cerebellum. In NLGN3-R451C mutant mice, the expression of NLGN3 protein in the cerebellum was reduced to about 10% of the level of wild-type mice. Elimination of redundant climbing fiber (CF) to PC synapses was impaired from postnatal day 10–15 (P10–15) in NLGN3-R451C mutant mice, but majority of PCs became mono-innervated as in wild-type mice after P16. In NLGN3-R451C mutant mice, selective strengthening of a single CF relative to the other CFs in each PC was impaired from P16, which persisted into juvenile stage. Furthermore, the inhibition to excitation (I/E) balance of synaptic inputs to PCs was elevated, and calcium transients in the soma induced by strong and weak CF inputs were reduced in NLGN3-R451C mutant mice. These results suggest that a single point mutation in NLGN3 significantly influences the synapse development and refinement in cerebellar circuitry, which might be related to the pathogenesis of ASD.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. SCI-33-SCI-33
Author(s):  
Jason R Schwartz ◽  
Marcin W. Wlodarski ◽  
Jeffery M. Klco

Acquired deletions on chromosome 7 (monosomy 7/del7q) are common in myeloid neoplasms, especially pediatric MDS and AML. Although these tumors have historically been reported to occur within families, suggesting a genetic predisposition, the genetic lesion(s) that initiate these diseases has remained elusive until the last few years. Following a series of publications in which germline mutations in SAMD9 and SAMD9L were reported in a MIRAGE syndrome and Ataxia Pancytopenia syndrome, respectively, our group and others described similar heterozygous missense germline mutations in pediatric MDS, especially non-syndromic familial MDS with monosomy 7. Mutations in SAMD9 and SAMD9L have now also been reported in transient monosomy 7, inherited bone marrow failure and AML. Collectively, it is estimated that germline mutations in these genes are present in nearly 20% of children with MDS, with a strong enrichment in those with monosomy 7. Surprisingly, SAMD9 and SAMD9L are paralogous genes adjacently located on human chromosome 7 at band 7q21, and the monosomy 7 clone that expands in children universally lacks the pathologic germline variant. Expression of the mutant proteins in cells results in profound growth suppression, suggesting that there is strong selective pressure for hematopoietic cells to not express the mutant alleles. In addition to chromosome loss, additional methods that suppress expression of the pathologic allele have been described. These include copy neutral loss of heterozygosity (CN-LOH) with duplication of the wild-type allele or the somatic acquisition of additional mutations in cis with the germline mutation that counteract the growth suppressive effect of the germline mutation. The clinical phenotype is largely dictated by the revertant mutation in the dominant hematopoietic clone within the patient's bone marrow. Those with an expansion of a CN-LOH clone are more commonly asymptomatic, in contrast to those patients with a dominant monosomy 7 clone. Progression to higher grade MDS or AML is associated with the acquisition of additional somatic mutations including mutations in SETBP1, KRAS and RUNX1. The recognition of these germline mutations has had an immediate impact on the clinical management of children with MDS, including their family members, and ongoing clinical work in the pediatric MDS community is aimed at establishing guidelines for the pathologic diagnosis, clinical monitoring and treatment for these patients. In addition to these ongoing clinical pursuits, there is significant research interest in these genes, the function of their proteins in hematopoietic cells and how the germline mutations alter the function of the wild-type protein. The SAMD9 and SAMD9L proteins are largely uncharacterized and have been shown to be important in endocytosis, growth factor signaling and to have antiviral properties. Intriguingly, SAMD9 and SAMD9L are both induced by inflammatory signals, including interferons, suggesting a link between inflammatory stress and the disease phenotype. Ongoing studies are aimed at developing models, including in vitro and in vivo models, to understand the mechanisms by which these germline mutations can ultimately lead to the development of pediatric MDS and related disorders. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document