Targeting Angiogenesis in Cancer: Bevacizumab-Induced Platelet Activation as a Possible Cause for Unexpected Arterial Thromboembolic Events in Clinical Trials.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1091-1091 ◽  
Author(s):  
Todd Meyer ◽  
Theresa Robson ◽  
Ali Amirkhosravi ◽  
Florian Langer ◽  
Hina Desai ◽  
...  

Abstract The humanized monoclonal VEGF antibody, bevacizumab (Avastin, Genentech), is approved in combination with standard chemotherapy for first-line treatment of patients with metastatic colorectal cancer (CRC) and also shows promising efficacy as anti-angiogenic immunotherapy in patients with non-small-cell lung cancer (NSCLC). A pooled analysis of five randomized, controlled trials (n=1745) showed that, compared to placebo, bevacizumab was associated with an increased risk of arterial thromboembolic events, especially in patients 65 years of age and older (8.5% vs. 2.9%, P<0.01). Because platelets play a crucial role in arterial thrombosis, we hypothesized that bevacizumab has direct platelet-stimulating activity. In a washed platelet system, bevacizumab alone had no effect on platelet aggregation. However, when combined with heparin (0.3 U/ml) and recombinant human VEGF (rhVEGF165 — a homodimeric protein with heparin binding sites) in a 1:2 molar ratio of antibody to antigen to allow optimal formation of immune complexes (ICs) in solution, bevacizumab potently induced platelet aggregation (up to 80–100%; n=5). Bevacizumab-induced platelet aggregation (BIPA) was functionally dependent on Fc domain binding to the platelet low-affinity IgG receptor, FcγRIIA, as demonstrated by an inhibitory monoclonal CD32 antibody (IV.3). BIPA was potentiated in platelets pre-sensitized with low concentrations of ADP or epinephrine. In contrast, BIPA was virtually absent at excess concentrations of heparin (100 U/ml), suggesting that translocation of ICs to the platelet surface via available heparin binding sites (on platelets) was crucial for this platelet response. Unfractionated heparin and the low-molecular-weight heparin, enoxaparin, were equally effective in promoting BIPA. In a manner similar to heparin-PF4 antibodies from patients with heparin-induced thrombocytopenia (HIT), bevacizumab-rhVEGF165-heparin ICs induced significant FcγRIIA-dependent dense granule release (>80%) in a 14C-serotonin release assay (SRA). While strong platelet responses were observed in both SRA and aggregometry, in which platelets were subjected to constant movement and low shear forces, respectively, bevacizumab-rhVEGF165-heparin ICs had only negligible effects on platelet CD62P expression under static conditions, indicating a critical role for platelet-platelet contacts in bevacizumab-mediated FcγRIIA signaling. In summary, our results suggest bevacizumab can induce strong FcγRIIA-dependent platelet activation in vitro when complexed with rhVEGF165 and heparin in an optimal stoichiometry. Due to their analogy to the pathomechanism of HIT, an acquired IgG-mediated disorder potentially associated with deleterious thrombosis, these findings may have direct clinical implications for older cancer patients with cardiovascular comorbidity, especially considering that many patients receive low doses of heparin for thromboprophylaxis and that elevated serum VEGF levels have been demonstrated in various types of malignancy, including CRC and NSCLC.

Blood ◽  
1991 ◽  
Vol 78 (4) ◽  
pp. 1019-1026 ◽  
Author(s):  
P Horsewood ◽  
CP Hayward ◽  
TE Warkentin ◽  
JG Kelton

Abstract Antiplatelet antibodies can activate platelets causing platelet aggregation and the release reaction. However, the pathway of activation by these antibodies is unknown and several potential mechanisms are possible. In this report, we describe studies investigating potential pathways of platelet activation by IgG antibodies. We tested 16 different IgG monoclonal antibodies (MoAbs) against a variety of platelet surface components and found that six antibodies were capable of causing platelet aggregation and release. These included MoAbs against glycoprotein (GP) IIb/IIIa, CD9, GPIV, and two other not well-characterized platelet components. There was no relationship between the number of platelet binding sites and the ability of an MoAb to activate the platelets. By adding intact and F(ab')2 preparations of the MoAb to control or Fc receptor-blocked platelets, we found that in all instances the MoAbs initiated platelet activation via interacting with the platelet Fc receptors. Clustering of the platelet protein components using a secondary antibody did not cause activation. Studies into the pathway of Fc-dependent activation demonstrated that the MoAbs were capable of activating platelets by occupying Fc receptors on adjacent platelets (interplatelet activation), as well as on the same platelet (intraplatelet activation).


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1516-1516
Author(s):  
Todd Meyer ◽  
Ali Amirkhosravi ◽  
Theresa Robson ◽  
Mildred Amaya ◽  
Desai Hina ◽  
...  

Abstract Monoclonal antibodies are increasingly used as therapeutics, and some (anti-VEGF, anti-CD40L) have produced unexpected thrombotic side effects. For example, clinical trials with the humanized monoclonal CD40L antibody, hu5c8, in patients with systemic lupus erythematosus (SLE, a chronic inflammatory autoimmune disease) were prematurely terminated due to thromboembolic events. In SLE, elevated soluble CD40L (sCD40L) antigen levels may indicate in vivo platelet activation, putting patients at increased risk for thrombosis. We therefore hypothesized that anti-CD40L immunotherapy may represent an additional prothrombotic hit, leading to clinical manifestation of thromboembolic disease in patients with SLE. In this report, we provide experimental evidence that hu5c8, when combined with homotrimeric recombinant human sCD40L (rhsCD40L) in 1:3 molar ratio to allow formation of higher-order immune complexes (IC), activates platelets in an FcγRIIA-dependent manner. In a washed platelet system, IC formed of rhsCD40L (5 μg/mL) with hu5c8 (15 μg/mL) strongly induced platelet aggregation, while IC of rhsCD40L with hu5c8-Fab or hu5c8-F(ab’)2 did not. Similarly, IC of rhsCD40L with hu5c8-agly, an aglycosylated hu5c8 variant with reduced Fc domain binding to the low affinity platelet IgG receptor, FcγRIIA (CD32), failed to induce aggregation. FcγRIIA dependency was further demonstrated with the monoclonal CD32 antibody, IV.3. These results suggest that hu5c8-mediated platelet activation requires both antigen (CD40L) and the IgG Fc domain. Flow cytometric analysis of P-selectin (CD62P) confirmed that IC of rhsCD40L with hu5c8, but not with Fab, F(ab’)2, or hu5c8-agly, strongly activated platelets via FcγRIIA. When washed platelets were first sensitized with ADP, resulting in surface exposure of endogenous CD40L and sub-maximal aggregation of 5–25%, hu5c8 (10 μg/mL) induced strong platelet aggregation of up to 80–100% in the absence of exogenous rhsCD40L, indicating that physiologic levels of CD40L were sufficient for hu5c8-mediated platelet activation. ADP-sensitized platelets did not respond to equimolar concentrations of Fab, F(ab’)2, or hu5c8-agly. In the serotonin release assay (SRA), which is used for the detection of FcγRIIA-activating heparin-platelet factor 4 (PF4) autoantibodies in patients with heparin-induced thrombocytopenia (HIT), the experimental procedure generates close platelet-platelet contacts and causes release of α-granule proteins such as CD62P, PF4, and CD40L. In the absence of rhsCD40L, hu5c8, but not Fab, F(ab’)2, or hu5c8-agly, induced significant dense granule release, suggesting that exogenous rhsCD40L was not an absolute requirement for hu5c8-mediated platelet activation. In summary, our results show that the humanized monoclonal CD40L antibody, hu5c8, can strongly activate platelets in an Fc domain-dependent manner and that physiologically released CD40L is sufficient for this activity. This mechanism of activation is similar to that of HIT, in which homotetrameric PF4 released from prestimulated platelets provides the molecular basis for clustering of, and signaling through, FcγRIIA, resulting in a vicious cycle of platelet activation. Because thrombosis is a serious complication of HIT, it is reasonable to speculate that hu5c8-mediated platelet activation contributed to the pathophysiology of thromboembolic events in SLE patients receiving anti-CD40L immunotherapy.


Blood ◽  
1991 ◽  
Vol 78 (4) ◽  
pp. 1019-1026 ◽  
Author(s):  
P Horsewood ◽  
CP Hayward ◽  
TE Warkentin ◽  
JG Kelton

Antiplatelet antibodies can activate platelets causing platelet aggregation and the release reaction. However, the pathway of activation by these antibodies is unknown and several potential mechanisms are possible. In this report, we describe studies investigating potential pathways of platelet activation by IgG antibodies. We tested 16 different IgG monoclonal antibodies (MoAbs) against a variety of platelet surface components and found that six antibodies were capable of causing platelet aggregation and release. These included MoAbs against glycoprotein (GP) IIb/IIIa, CD9, GPIV, and two other not well-characterized platelet components. There was no relationship between the number of platelet binding sites and the ability of an MoAb to activate the platelets. By adding intact and F(ab')2 preparations of the MoAb to control or Fc receptor-blocked platelets, we found that in all instances the MoAbs initiated platelet activation via interacting with the platelet Fc receptors. Clustering of the platelet protein components using a secondary antibody did not cause activation. Studies into the pathway of Fc-dependent activation demonstrated that the MoAbs were capable of activating platelets by occupying Fc receptors on adjacent platelets (interplatelet activation), as well as on the same platelet (intraplatelet activation).


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Samel Park ◽  
Md-Imtiazul Islam ◽  
Ji-Hun Jeong ◽  
Nam-Jun Cho ◽  
Ho-yeon Song ◽  
...  

Abstract Hemoperfusion (HP) is one of the important treatment modalities in extracorporeal therapy for patients with acute intoxication. Its use has declined during the past 20 years despite its efficacy, because of its side effects, especially an increased risk of bleeding. Mechanisms of hemostasis impairment have not been clearly elucidated and studies demonstrating the mechanism are lacking. It is not clear which step of the hemostatic process is impaired during HP, and whether it leads to an increased risk of bleeding. We performed both in vivo and in vitro studies to elucidate the mechanism of impairment in the hemostatic process. In patients with acute pesticide intoxication who underwent HP, the platelet count decreased rapidly during the first 30 minutes from 242.4 ± 57.7 × 103/μL to 184.8 ± 49.6 × 103/μL, then gradually decreased even lower to 145.4 ± 61.2 × 103/μL over time (p < 0.001). As markers of platelet activation, platelet distribution width increased continuously during HP from 41.98 ± 9.28% to 47.69 ± 11.18% (p < 0.05), however, mean platelet volume did not show significant change. In scanning electron microscopy, activated platelets adhered to modified charcoal were observed, and delayed closure time after HP in PFA-100 test suggested platelet dysfunction occurred during HP. To confirm these conflicting results, changes of glycoprotein expression on the platelet surface were evaluated when platelets were exposed to modified charcoal in vitro. Platelet expression of CD61, fibrinogen receptor, significantly decreased from 95.2 ± 0.9% to 73.9 ± 1.6%, while those expressing CD42b, von Willebrand factor receptor, did not show significant change. However, platelet expression of CD49b, collagen receptor, significantly increased from 24.6 ± 0.7% to 51.9 ± 2.3%. Thrombin-antithrombin complex, a marker for thrombin generation, appeared to decrease, however, it was not statistically significant. Fibrin degradation products and d-dimers, markers for fibrinolysis, increased significantly during HP. Taken together, our data suggests that hemoperfusion leads to impairment of platelet aggregation with incomplete platelet activation, which was associated with reduced thrombin generation, accompanied by increased fibrinolysis.


Blood ◽  
1992 ◽  
Vol 79 (8) ◽  
pp. 1995-2003 ◽  
Author(s):  
C Legrand ◽  
V Thibert ◽  
V Dubernard ◽  
B Begault ◽  
J Lawler

Abstract We have investigated the molecular requirements for thrombospondin (TSP) to bind to the platelet surface and to support the subsequent secretion-dependent platelet aggregation. For this, we used two distinct murine monoclonal antibodies (MoAbs), designated MAI and MAII, raised against human platelet TSP, and three polyclonal antibodies, designated R3, R6, and R5, directed against fusion proteins containing the type 1 (Gly 385-Ile 522), type 2 (Pro 559-Ile 669), and type 3 (Asp 784-Val 932) repeating sequences, respectively. Among them, R5 and R6, but not R3, inhibited thrombin-induced aggregation of washed platelets and the concomitant secretion of serotonin. These antibodies, however, did not inhibit the expression of TSP on thrombin-activated platelets, as measured by the binding of a radiolabeled MoAb to TSP, suggesting that they may inhibit platelet aggregation by interfering with a physiologic event subsequent to TSP binding. In contrast, MoAb MAII, which reacts with an epitope located within the heparin-binding domain of TSP, inhibited both TSP surface expression and platelet aggregation/secretion induced by thrombin. In addition, this MoAb inhibited in a dose-dependent manner (IC50 approximately 0.5 mumol/L) the interaction of 125I-TSP with immobilized fibrinogen and platelet glycoprotein IV, both potential physiologic receptors for TSP on thrombin-activated platelets. These results indicate that the interaction of TSP with the surface of activated platelets can be modulated at the level of a specific epitope located within the amino terminal heparin-binding domain of the molecule. Thus, selective inhibition of the platelet/TSP interaction may represent an alternative approach to the inhibition of platelet aggregation.


Blood ◽  
1993 ◽  
Vol 82 (9) ◽  
pp. 2704-2713 ◽  
Author(s):  
R Vezza ◽  
R Roberti ◽  
GG Nenci ◽  
P Gresele

Abstract Prostaglandin E2 (PGE2) is produced by activated platelets and by several other cells, including capillary endothelial cells. PGE2 exerts a dual effect on platelet aggregation: inhibitory, at high, supraphysiologic concentrations, and potentiating, at low concentrations. No information exists on the biochemical mechanisms through which PGE2 exerts its proaggregatory effect on human platelets. We have evaluated the activity of PGE2 on human platelets and have analyzed the second messenger pathways involved. PGE2 (5 to 500 nmol/L) significantly enhanced aggregation induced by subthreshold concentrations of U46619, thrombin, adenosine diphosphate (ADP), and phorbol 12-myristate 13-acetate (PMA) without simultaneously increasing calcium transients. At a high concentration (50 mumol/L), PGE2 inhibited both aggregation and calcium movements. PGE2 (5 to 500 nmol/L) significantly enhanced secretion of beta-thromboglobulin (beta TG) and adenosine triphosphate from U46619- and ADP-stimulated platelets, but it did not affect platelet shape change. PGE2 also increased the binding of radiolabeled fibrinogen to the platelet surface and increased the phosphorylation of the 47-kD protein in 32P- labeled platelets stimulated with subthreshold doses of U46619. Finally, the amplification of U46619-induced aggregation by PGE2 (500 nmol/L) was abolished by four different protein kinase C (PKC) inhibitors (calphostin C, staurosporine, H7, and TMB8). Our results suggest that PGE2 exerts its facilitating activity on agonist-induced platelet activation by priming PKC to activation by other agonists. PGE2 potentiates platelet activation at concentrations produced by activated platelets and may thus be of pathophysiologic relevance.


1981 ◽  
Author(s):  
Elizabeth Kornecki ◽  
Stefan Niewiarowski

Fibrinogen and calcium are required for the aggregation of platelets stimulated by ADP or pre-treated with proteolytic enzymes. Specific platelet surface fibrinogen binding sites (receptors) are exposed after platelets are stimulated by ADP or pre-treated with Chymotrypsin or pronase. It has previously been shown in our laboratory that an intact, symmetrical fibrinogen molecule is essential for fibrinogen binding and fibrinogen-induced aggregation of both ADP-stimulated and proteolytically-treated platelets. Here we propose that the mechanism by which fibrinogen and calcium aggregate platelets is by forming inter-platelet bridges linking the fibrinogen receptors of adjacent platelets together. In support of this proposition are the following new lines of evidence: 1) The fibrinogen-induced aggregations of ADP-stfiliulated or proteolytically-treated platelets are inhibited by high concentrations of fibrinogen (Ki=2.6 and 8.5 × 10 5M, respectively). The fibrinogen binding sites on adjacent platelets, at these concentrations, would be saturated by fibrinogen and therefore no inter-platelet fibrinogen bridges could be formed to hold the platelets together. 2) ADP-stimulated or chymotrypsin-treated platelets aggregated by fibrinogen are deaggregated by Chymotrypsin or pronase and this deaggregation coincides with the loss of 125I-fibrinogen from the platelet surface. 3) Preincubation of platelets with EDTA results in inhibition of both platelet aggregation and 125I-fibrinogen binding. Following the aggregations of ADP-stimulated or of chymotrypsin-treated platelets by fibrinogen, the addition of EDTA to the platelet aggregates results in both their deaggregation and their loss of bound 125I-fibrinogen. Thus it appears that divalent cations, especially calcium, are essential for the formation of fibrinogen-linked platelet aggregates.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3658-3658
Author(s):  
Guoying Zhang ◽  
Emily Welch ◽  
Asrar B. Malik ◽  
Xiaoping Du ◽  
Zhenyu Li

Abstract Bacterial lipopolysaccharide (LPS) induces rapid thrombocytopenia, hypotension and sepsis. Although growing evidence suggests that platelet activation plays a critical role in LPS-induced thrombocytopenia and tissue damage, the mechanism of LPS-mediated platelet activation is unclear. Here we show that LPS stimulated platelet secretion of dense and alpha granules as indicated by ATP release and P-selectin expression, and thus enhanced platelet activation induced by low concentrations of platelet agonists. Platelets express components of the LPS receptor-signaling complex, including Toll-like receptor (TLR4), CD14, MD2, and MyD88. The effect of LPS on platelet activation was abolished by an anti-TLR4 blocking antibody or TLR4 knockout. Furthermore, LPS-induced potentiation of platelet aggregation and FeCl3-induced thrombus formation were abolished in MyD88 knockout mice. Importantly, TLR4 mediates LPS-induced cGMP elevation and the stimulatory effect of LPS on platelet aggregation was also abolished by inhibitors of nitric oxide synthase (NOS) and the cGMP-dependent protein kinase (PKG). Thus, LPS promotes platelet secretion and aggregation through a TLR4/MyD88 and cGMP/PKG-dependent pathway.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 111-111 ◽  
Author(s):  
Meghna Ulhas Naik ◽  
Timothy J. Stalker ◽  
Lawrence F. Brass ◽  
Ulhas Pandurang Naik

Abstract Under physiological conditions, fibrinogen receptor integrin αIIbβ3 on the circulating platelets is in a low-affinity, or resting state, unable to bind soluble ligands. During platelet activation by agonists, a cascade of signaling events induces a conformational change in the extracellular domain of αIIbβ3, thereby converting it into a high-affinity state capable of binding ligands through a process known as “inside-out signaling”. What maintains this integrin in a low-affinity state is not well understood. We have previously identified JAM-A, junctional adhesion molecule A, on the platelet surface. We have shown that an antibody blockade of JAM-A dose-dependently activates platelets. To understand the molecular mechanism through which JAM-A regulates platelet aggregation, we used Jam-A null mice. Interestingly, the mouse bleeding times were significantly shortened in Jam-A null mice compared to wildtype littermates. Furthermore, the majority of these mice showed a rebleeding phenotype. This phenotype was further confirmed by FeCl3-induced carotid artery occlusion, a well-accepted in vivo model for thrombosis. Platelets derived from Jam-A-null mice were used to evaluate the role of JAM-A in agonist-induced platelet aggregation. We found that Jam-A null platelets showed enhanced aggregation in response to physiological agonists such as PAR4 peptide, collagen, and ADP as compared to platelets from wildtype littermates. JAM-A was found to associate with αIIbβ3 in unactivated human platelets, but this association was disrupted by both agonist-induced platelet aggregation and during outside-in signaling initiated upon platelet spreading on immobilized Fg. We also found that in resting platelets, JAM-A is phosphorylated on a conserved tyrosine 280 in its cytoplasmic domain, which was dephosphorylated upon platelet activation. Furthermore, JAM-A is rapidly and transiently phosphorylated on serine 284 residue during platelet activation by agonists. Interestingly, JAM-A also formed a complex with Csk, a tyrosine kinase known to be inhibitory to Src activation, in resting platelets. This complex was dissociated upon activation of platelets by agonists. These results suggest that tyrosine-phosphorylated JAM-A recruits Csk to αIIbβ3 in resting platelets, thus maintaining a low-affinity state of integrin αIIbβ3. Agonist–induced activation of platelets results in rapid dephosphorylation of JAM-A on Y280 and phosphorylation on S284 residues. This causes dissociation of JAM-A from integrin αIIbβ3 facilitating platelet aggregation.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4016-4016
Author(s):  
José-Tomás Navarro ◽  
Shwan Tawfiq ◽  
Roland Wohlgemuth ◽  
Karin M. Hoffmeister ◽  
Robert Sackstein

Abstract Abstract 4016 Poster Board III-952 A number of glycosyltransferases are present in human plasma with the α(1→3) fucosyltransferase, Fucosyltransferase VI (FTVI), having the highest plasma concentration. Notably, elevated plasma levels of FTVI are associated with a variety of cancers and correlate with tumor load/progression. The well-known association of neoplasia with thromboembolic complications prompted us to examine whether FTVI has direct effect(s) on platelet function. We obtained human platelets from blood of healthy donors and separated from platelet-rich plasma by differential centrifugation. Freshly isolated platelets (x108/ml) were stirred and exposed at 37°C to varying concentrations (20, 40, 60 and 80 mU/mL) of glycosyltransferases FTVI, β-1-4-galactosyltransferase-I (βGalT-I), or α,2-3-N-sialyltransferase (α2,3-N-ST), or to 1 U/mL thrombin. Platelet aggregation and activation was assessed by aggregometry (light transmission) or by flow cytometry of FSC/SSC characteristics and of surface expression of P-Selectin, respectively. FT-VI reproducibly induced platelet aggregation and activation, whereas other glycosyltransferases (β4GalT-I and α2,3-N-ST) had no effect on platelets. FTVI activation of platelets was concentration-dependent, and the aggregation curve for FTVI was one wave, similar to that for thrombin. FTVI-induced platelet activation was independent of catalytic conversion of surface glycans, but was inhibited by FTVI denaturation, indicating that FTVI-induced platelet activation is a lectin-mediated process. To determine the membrane target(s) mediating FTVI-induced platelet activation, biochemical studies were performed after catalytic exofucosylation of the platelet surface. Flow cytometry after platelet exofucosylation showed formation of the carbohydrate structure sLex, detected by the mAb Heca452, but no formation of Lex (CD15). Western blot showed that enforced fucosylation induced sLex on a single platelet surface protein, and further biochemical studies revealed that this protein is GPIbα. These findings unveil a previously unrecognized property of FTVI as an activator of platelets, mediated via a specific lectin/carbohydrate interaction on GP1ba, and offer novel perspectives on the pathobiology of tumor-associated thrombogenesis. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document