Unbalanced X Chromosome Inactivation Independent of Telomere Shortening in Mice Heterozygous for a Mutant Dyskerin Allele.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 184-184
Author(s):  
Baiwei Gu ◽  
Jun He ◽  
Monica Bessler ◽  
Philip J. Mason

Abstract X-linked Dyskeratosis Congenita (DC) is a rare recessive disorder caused by mutations in the DKC1 gene that encodes dyskerin. Dyskerin is part of ribonucleoprotein complexes that participate in two different pathways: ribosome biogenesis and telomere maintenance. It is the subject of intense debate whether disease manifestations in DC are due to dysfunctional telomere maintenances or are caused by a defect in ribosome biogenesis. Pathogenic mutations in dyskerin cause telomere shortening and patients with X-linked DC have critically short telomeres, However, whether there is an additional defect in ribosome biogenesis is difficult to investigate. To dissect the impact of a pathogenic dyskerin mutation on telomeres from the possible additional impact on ribosome biogenesis in an in vivo model, we generated mice expressing a mutant dyskerin protein. Because laboratory mice have very long telomeres a short telomere phenotype requires several generations of inbreeding, whereas a phenotype seen in the first generation is likely to be caused by the defect in ribosome biogenesis. To delete the last 21 amino acids of dyskerin (Del15) we used homologous recombination followed by conditional gene deletion in murine embryonic stem (ES) cells and in mice. Six independent ES cell clones with the deleted Dkc1 gene were obtained. In vitro analysis of the ES cells showed that the Del15 mutation led to dramatically decreased expression of a truncated dyskerin protein with decreased accumulation of the telomerase RNA. In addition, both reduction in telomerase activity and significant telomere shortening after 65 passages were observed. These findings indicate that the Del15 mutation impairs the telomerase maintenance pathway. After testing the accumulation of a series of mouse H/ACA snoRNA in Del15 ES cells, we found a decrease of the mU68 and mE1 snoRNAs suggesting the mutation may also confer effects which are outside the telomerase pathway. We therefore went on to produce a line of mice expressing the truncated Dkc1 protein and were able to obtain male mice hemizygous for the mutant Dkc1 gene as well as female heterozgotes. The male mice express the truncated dyskerin protein and show no gross abnormality up to 6 months of age. Interestingly, heterozygous female mice were healthy as well but the truncated dyskerin protein was dramatically decreased in expression compared to the wild type dyskerin in spleen, thymus, and bone marrow, but not in liver and brain. This result must derive from preferential proliferation of cells expressing wild type dyskerin after random X-inactivation in early embryogenesis. Our analysis indicates that the mutant dyskerin impairs the proliferation in hematopoietic tissues while it does not affect cells which are not rapidly proliferating such as those in liver and brain. Because of the early appearance of the skewed X-inactivation phenotype we conclude that skewing in these mice is caused by a telomere independent mechanism. Interestingly, the lack of overt DC-like abnormalities in the male hemizygous mice indicates that this proliferative disadvantage is insufficient to cause bone marrow failure but in combination with impaired telomere maintenance may accelerate the onset and severity of disease and thus explain the earlier and more severe manifestation in X-linked DC compared to autosomal dominant DC which only affects the telomerase pathway.

2021 ◽  
Vol 22 (2) ◽  
pp. 772
Author(s):  
Javier Conde ◽  
Marlene Schwarzfischer ◽  
Egle Katkeviciute ◽  
Janine Häfliger ◽  
Anna Niechcial ◽  
...  

Environmental and genetic factors have been demonstrated to contribute to the development of inflammatory bowel disease (IBD). Recent studies suggested that the food additive; titanium dioxide (TiO2) might play a causative role in the disease. Therefore, in the present study we aimed to explore the interaction between the food additive TiO2 and the well-characterized IBD risk gene protein tyrosine phosphatase non-receptor type 2 (Ptpn2) and their role in the development of intestinal inflammation. Dextran sodium sulphate (DSS)-induced acute colitis was performed in mice lacking the expression of Ptpn2 in myeloid cells (Ptpn2LysMCre) or their wild type littermates (Ptpn2fl/fl) and exposed to the microparticle TiO2. The impact of Ptpn2 on TiO2 signalling pathways and TiO2-induced IL-1β and IL-10 levels were studied using bone marrow-derived macrophages (BMDMs). Ptpn2LysMCre exposed to TiO2 exhibited more severe intestinal inflammation than their wild type counterparts. This effect was likely due to the impact of TiO2 on the differentiation of intestinal macrophages, suppressing the number of anti-inflammatory macrophages in Ptpn2 deficient mice. Moreover, we also found that TiO2 was able to induce the secretion of IL-1β via mitogen-activated proteins kinases (MAPKs) and to repress the expression of IL-10 in bone marrow-derived macrophages via MAPK-independent pathways. This is the first evidence of the cooperation between the genetic risk factor Ptpn2 and the environmental factor TiO2 in the regulation of intestinal inflammation. The results presented here suggest that the ingestion of certain industrial compounds should be taken into account, especially in individuals with increased genetic risk


Blood ◽  
2011 ◽  
Vol 118 (23) ◽  
pp. 6068-6077 ◽  
Author(s):  
Yang Wang ◽  
Mei-Feng Shen ◽  
Sandy Chang

Abstract Maintenance of mammalian telomeres requires both the enzyme telomerase and shelterin, which protect telomeres from inappropriately activating DNA damage response checkpoints. Dyskeratosis congenita is an inherited BM failure syndrome disorder because of defects in telomere maintenance. We have previously shown that deletion of the shelterin component Pot1b in the setting of telomerase haploinsufficiency results in rapid telomere shortening and fatal BM failure in mice, eliciting phenotypes that strongly resemble human syskeratosis congenita. However, it was unclear why BM failure occurred in the setting of Pot1b deletion. In this study, we show that Pot1b plays an essential role in HSC survival. Deletion of Pot1b results in increased apoptosis, leading to severe depletion of the HSC reserve. BM from Pot1bΔ/Δ mice cannot compete with BM from wild-type mice to provide multilineage reconstitution, indicating that there is an intrinsic requirement for Pot1b the maintenance of HSC function in vivo. Elimination of the p53-dependent apoptotic function increased HSC survival and significantly extended the lifespan of Pot1b-null mice deficient in telomerase function. Our results document for the first time the essential role of a component of the shelterin complex in the maintenance of HSC and progenitor cell survival.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2629-2629
Author(s):  
Ying Zhao ◽  
Flora Ling ◽  
Hong-Cheng Wang ◽  
Xiao-Hong Sun

Abstract Abstract 2629 The overall objectives of this study are to investigate the impact of inflammatory conditions on hematopoietic stem cell (HSC) maintenance and to elucidate the underlying mechanisms. HSCs are exposed to a variety of inflammatory conditions through life. How these conditions influence the integrity of HSCs is a fundamental issue of clinical importance but it is poorly understood. Equally unknown is the molecular regulation of HSC maintenance during inflammatory. In this context, our focus is on the role of basic helix-loop-helix (bHLH) proteins, which include transcription activators such as E2A proteins and their inhibitors including Id proteins. We and others have shown that these regulators are involved in normal hematopoiesis such as stem cell function and lineage specific differentiation. Recently, we have obtained evidence to suggest that signaling through Toll-like receptors (TLRs), which is closely linked to inflammation, causes down-regulation of E2A function by stimulating Id1 expression. Therefore, we hypothesize that inflammatory conditions causes down-regulation of E protein function, which disturbs the quiescence of long-term (LT)-HSC, leading to stem cell exhaustion over time. To test this hypothesis, we induced chronic inflammation in wild type and Id1-/- mice by daily injection of 1 mg of LPS, i.p. for 30 days. Peripheral blood was collected on days 15 and 30 and levels of a panel of inflammatory cytokines were assayed using a Luminex multiplex kit. On day 15, dramatic increases were found in the levels of IL-10, IL-6, KC and TNFα but not IFN-γ, IL12-p70 and IL-1β. Interestingly, levels of IL-6 and TNFα were significantly lower in Id1-/- mice compared to wild type mice. By day 30 of LPS treatment, levels of these cytokines returned to the levels in animals without LPS injection. These results suggest that this chronic LPS treatment indeed elicited an inflammatory response that included transient elevation of inflammatory cytokines. Whether secretion of these cytokines has any direct effects on HSCs remains to be determined. To measure HSC activity in these LPS-treated mice, we performed serial bone marrow transplant assays. Lin−Sca-1+c-kit+ (LSK) stem/progenitor cells were isolated from wild type or Id1-/- mice treated with or without LPS. These cells were transplanted into lethally irradiated CD45.1+ recipients along with equal numbers of YFP-expressing LSK as competitors. Six weeks later, cohorts of mice were sacrificed and bone marrow cells were collected. Pooled whole bone marrow cells within each cohort were injected into lethally irradiated secondary recipients. Secondary recipients were sacrificed 8 and 16 weeks post transplant. For assessment of primary and secondary engraftment, bone marrow cells were examined for expression of donor and lineage specific markers. Robust engraftment was observed in primary or secondary recipients. Donor derived cells were then gated for YFP− and YFP+ cells, which separate cells originated from tester and competitor LSK, respectively. While YFP− and YFP+ cells engrafted equivalently in primary recipients transplanted with cells treated with or without LPS, LPS treatment of wild type mice caused a great disparity in secondary recipients. In contrast, HSC in Id1-/- mice did not appear to be affected by the same treatment even though HSCs in Id1 deficient mice are normally lower in numbers and activities as we previously reported. These results suggest that chronic inflammation diminishes the LT-stem cell activity and this may involve the up-regulation of Id1 expression. To investigate the underlying mechanism, we performed label retaining assays to examine the quiescence of LT-HSCs. We found that BrdU-labeling in HSCs was 2-fold lower in mice treated with LPS compared to the untreated controls, suggesting that treatment with LPS promoted the cycling of HSCs, thus impairing their stem cell function. Taken together, our study illustrates that chronic inflammation has a detrimental effect on LT-stem cell activity. Although HSCs have an enormous capability to repopulate the bone marrow by compensatory proliferation, pro-longed inflammation could eventually lead to stem cell exhaustion and seriously compromise hematopoiesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3864-3864
Author(s):  
Julia E Draper ◽  
William G Wood ◽  
Catherine Porcher ◽  
Paresh Vyas

Abstract Abstract 3864 Precise regulation of Gata1 expression is required in order to control the balance between lymphoid/granulomonocytic (GM) and megakaryocytic-erythroid (MegE) specification, as well as to ensure correct differentiation of the MegE lineages. Transcriptional control is conferred in part by cis regulatory elements. An upstream enhancer, HS-3.5, and the erythroid first exon IE of Gata1 are necessary and sufficient to direct transgene expression in primitive but not definitive erythroid cells. Transgene expression in definitive red blood cells is restored by inclusion of an intronic DNaseI hypersensitive site, HS+3.5. Here we report the characterization of the HS+3.5 null embryonic stem cells and the HS+3.5 knockout mouse. In vitro differentiation of HS+3.5 null ES cells resulted in reduced myeloid and megakaryocytic colony formation compared to wild type. The ΔHS+3.5 ES cells retained normal primitive erythroid colony formation. ΔHS+3.5 definitive erythroid colony progenitors displayed a decreased sensitivity to Interleukin 3 (IL3) signalling compared to wild type. ΔHS+3.5 mice were viable and had normal blood counts and films. GM and erythroid progenitors also developed normally. However, there was a mild expansion of the E14.5 foetal liver Megakaryocytic Progenitor (MkP) compartment and an increase in Gata2 expression in both the bone marrow and foetal liver MkPs. Turning to Gata1, a decrease in Gata1 expression was observed in the following compartments: the bone marrow long term haematopoietic stem cell (LT-HSC) and the foetal liver common myeloid progenitor (CMP). The relationship between the effect of the HS+3.5 deletion on Gata1 expression and the haematopoietic phenotype will be discussed. Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 296 (1) ◽  
pp. L57-L70 ◽  
Author(s):  
Jooeun Lee ◽  
Raghava Reddy ◽  
Lora Barsky ◽  
Jessica Scholes ◽  
Hui Chen ◽  
...  

Shortened telomeres are a normal consequence of cell division. However, telomere shortening past a critical point results in cellular senescence and death. To determine the effect of telomere shortening on lung, four generations of B6.Cg- Terc tm1Rdp mice, null for the terc component of telomerase, the holoenzyme that maintains telomeres, were bred and analyzed. Generational inbreeding of terc−/− mice caused sequential shortening of telomeres. Lung histology from the generation with the shortest telomeres ( terc−/− F4) showed alveolar wall thinning and increased alveolar size. Morphometric analysis confirmed a significant increase in mean linear intercept (MLI). terc−/− F4 lung showed normal elastin deposition but had significantly decreased collagen content. Both airway and alveolar epithelial type 1 cells (AEC1) appeared normal by immunohistochemistry, and the percentage of alveolar epithelial type 2 cells (AEC2) per total cell number was similar to wild type. However, because of a decrease in distal lung cellularity, the absolute number of AEC2 in terc−/− F4 lung was significantly reduced. In contrast to wild type, terc−/− F4 distal lung epithelium from normoxia-maintained mice exhibited DNA damage by terminal deoxynucleotidyltransferase (TdT)-mediated dUTP nick end labeling (TUNEL) and 8-oxoguanine immunohistochemistry. Western blotting of freshly isolated AEC2 lysates for stress signaling kinases confirmed that the stress-activated protein kinase (SAPK)/c-Jun NH2-terminal kinase (JNK) stress response pathway is stimulated in telomerase-null AEC2 even under normoxic conditions. Expression of downstream apoptotic/stress markers, including caspase-3, caspase-6, Bax, and HSP-25, was also observed in telomerase-null, but not wild-type, AEC2. TUNEL analysis of freshly isolated normoxic AEC2 showed that DNA strand breaks, essentially absent in wild-type cells, increased with each successive terc−/− generation and correlated strongly with telomere length ( R2 = 0.9631). Thus lung alveolar integrity, particularly in the distal epithelial compartment, depends on proper telomere maintenance.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1518-1518
Author(s):  
Sangeetha Surianarayanan ◽  
Coline M Gaillard ◽  
Trevor Bentley ◽  
Matthew R. Warr ◽  
Briana Fitch ◽  
...  

Abstract The classical paradigm suggests that PML/RARA fusion protein is the main driver of pathogenesis in APL. It is believed that the fusion oncogenic protein mediates this effect by potentially repressing key myeloid maturation genes involved in differentiation processes. However, the underlying mechanism is not completely understood. We recently challenged this model re-opening fundamental questions as to understand the precise contribution of the fusion protein to leukemic transformation. This knowledge on the mechanistic pathways can lead to better tailored combinatorial therapeutics. To understand the role of the PML/RARA fusion protein in leukemogenesis, we initially did a transcriptome analysis in our murine MRP8-PML/RARA APL model. Interestingly, we observed only moderate alterations in gene expression pattern of the key myeloid genes that we thought to be actively involved in differentiation processes. Of particular note, we found significant downregulation of the Irf8 in our promyelocyte compartments. IRF8 is a known regulator of hematopoiesis. The IRF8 myeloid transcription factor (TF) is expressed in several lineages of the hematopoietic tree and plays an important role in orchestrating specification and differentiation of B cells, dendritic cells and monocytes. Herein, we speculate lower levels of IRF8 could potentially impact tumorigenesis in the context of PML/RARA. In order to address this question, technically, we employed stringent staining and sorting strategy to distinctly differentiate early and late promyelocytes and looked at the expression pattern of Irf8 gene both at the transcript and protein levels. Results from qRT-PCR demonstrated 4.8 fold decrease in Irf8 expression compared to wildtype controls both in preleukemic promyelocytes and fully differentiated leukemic cells suggesting PML/RARA could be a target of IRF8 and this association could potentially be involved in the emergence and maintenance of leukemia. We next asked whether these changes are reflective at the protein levels and performed a Western blot analysis in our highly purified promyelocyte population and found a dramatic decrease in IRF8 levels in comparison to wild type controls again suggesting a possible protein-protein interaction under normal conditions that may provide an advantage for the cells from turning oncogenic. In order to study how low levels of IRF8 impact promyelocyte expansion, we generated double knock-outs of mice harboring both PML/RARA Irf8-/- mutations and compared their phenotype with mice harboring single mutations in either PML/RARA or Irf8 gene. As previously observed, young PML/RARA mice had a substantially increased number of marrow promyelocytes in comparison to wild-type mice. Fascinatingly, loss of Irf8 alone resulted in an essentially identical expansion of promyelocytes (as well as a loss of earlier myeloid progenitors in the bone marrow, not seen in PML/RARA mice) and a combination of PML/RARA expression and IRF8 loss did not result in a statistically significant further expansion of promyelocytes. These results suggest an epistatic relationship between PML/RARA and IRF8, compatible with downregulation of IRF8 by PML/RARA as being a key mechanism by which t(15;17) expands promyelocytes in the initiation of APL. Furthermore, in order to assess the impact of single/double genetic alterations on the overall and leukemia free survival we transplanted lethally irradiated mice with bone marrow cells derived from PML/RARA, Irf8-/- and PML/RARA Irf8-/-double knock outs and followed these mice over a period of one year. We observed there is no difference in their overall survival rate among the different groups of mice. However, looking specifically at the acute leukemic deaths, we observed a reduced latency in our PML/RARA Irf8-/- cohorts compared to mice carrying single mutation at PML/RARA loci. We also noticed that all the acute leukemias in the PML/RARA Irf8-/- cohort occurred prior to the first appearance of acute leukemia in the PML/RARA cohorts. Altogether, these data support a model of APL leukemogenesis in which the translocation of chromosomes 15 and 17 initiates leukemia development, in part by downregulating IRF8, and in which the resulting expansion of the promyelocyte compartment contributes to acquisition of additional cooperating events (e.g. trisomy of chromosome 8, mutation of FLT3) that complete leukemic transformation. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Julia Schmidt ◽  
Jonas Goergens ◽  
Tatiana Pochechueva ◽  
Annika Kotter ◽  
Niko Schwenzer ◽  
...  

AbstractThe highly conserved YrdC domain-containing protein (YRDC) interacts with the well-described KEOPS complex, regulating specific tRNA modifications to ensure accurate protein synthesis. Previous studies have linked the KEOPS complex to a role in promoting telomere maintenance and controlling genome integrity. Here, we report on a newborn with a severe neonatal progeroid phenotype including generalized loss of subcutaneous fat, microcephaly, growth retardation, wrinkled skin, renal failure, and premature death at the age of 12 days. By trio whole-exome sequencing, we identified a novel homozygous missense mutation, c.662T > C, in YRDC affecting an evolutionary highly conserved amino acid (p.Ile221Thr). Functional characterization of patient-derived dermal fibroblasts revealed that this mutation impairs YRDC function and consequently results in reduced t6A modifications of tRNAs. Furthermore, we established and performed a novel and highly sensitive 3-D Q-FISH analysis based on single-telomere detection to investigate the impact of YRDC on telomere maintenance. This analysis revealed significant telomere shortening in YRDC-mutant cells. Moreover, single-cell RNA sequencing analysis of YRDC-mutant fibroblasts revealed significant transcriptome-wide changes in gene expression, specifically enriched for genes associated with processes involved in DNA repair. We next examined the DNA damage response of patient’s dermal fibroblasts and detected an increased susceptibility to genotoxic agents and a global DNA double-strand break repair defect. Thus, our data suggest that YRDC may affect the maintenance of genomic stability. Together, our findings indicate that biallelic variants in YRDC result in a developmental disorder with progeroid features and might be linked to increased genomic instability and telomere shortening.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1232-1232
Author(s):  
Susan E. Prockop ◽  
Richard J. O’Reilly ◽  
Howard Petrie

Abstract A key component of long-term outcome after stem cell transplant (SCT) is successful reconstitution of the immune system. Effective reconstitution of antigen-specific T-cell immunity requires de novo T cell generation. Bone marrow derived progenitors seed the thymus and undergo a complex process involving lineage commitment, proliferation and selection. Coordinated interaction of marrow-derived lymphoid progenitors with thymic stromal cells is required for successful T lymphopoiesis in the post-natal thymus. Disruption of the microenvironment can result in disrupted T cell lymphopoiesis. One cause of prolonged defects in generating functional T lymphocytes after BMT is damage to the thymic microenvironment induced by radiation or cytotoxic therapy. However, the impact of individual agents, administered at myeloablative or non-myeloablative doses, on the thymic microenvironment has not been fully evaluated. In addition, mechanisms by which stromal injury modifies T cell production and maturation have only begun to be understood. We have developed a model system using immunodeficient mice as a platform on which to assess thymic reconstitution. The thymus of mice deficient for the alpha chain of the IL-7 receptor (IL7R−/−) is relatively depleted of lymphoid cells and can be reconstituted following transplant of wild type marrow administered without myeloablative or immunosuppressive treatment. Injection of low doses of wild type bone marrow into these mice results in low levels of marrow chimerism and a normally cellular thymus repopulated with donor-derived lymphocytes. The ability to achieve this reconstitution appears to depend on absolute numbers of early intra-thymic precursors, rather than on total thymic cellularity. We have exploited this model to differentially assess the effects of cytotoxic agents including radiation and immunosuppressive drugs, on the capacity of the thymic microenvironment to support the maturation of normal lympoid progenitors (Figure 1). We demonstrate that some agents do not affect the ability of the thymic microenvironment to support reconstitution (eg fludarabine), others nearly ablate it (cyclophosphamide). We are also able to show dose, schedule, and synergistic effects on the ability of the thymic microenvironment to support de novo T cell lymphopoeisis. Distinct morphologic and phenotypic effects can be demonstrated by different agents (eg busulfan versus thiotepa) with preliminary data suggesting that the effects are mediated by injury to different stromal subsets. It is anticipated that this information will lead to strategies to both minimize delayed immune reconstitution and to augment T cell lymphopoiesis post-transplant. In addition, further evaluation of impaired thymic reconstitution will augment the understanding of lymphostromal interactions crucial to normal T cell lymphopoiesis.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 882-882
Author(s):  
Morgan Jones ◽  
Gail A Osawa ◽  
Ann Friedman ◽  
Wylie Luo ◽  
Catherine E Keegan ◽  
...  

Abstract Abstract 882 Bone marrow failure syndromes can be caused by loss-of-function mutations in telomerase components. Besides the enzymatic activity of telomerase, telomere maintenance requires the protective function of the shelterin protein complex. This complex consists of six proteins that bind to the telomere and prevent an inappropriate DNA damage response from being elicited by exposed telomeric DNA. Within this complex, TPP1, encoded by the gene Acd, plays a central role in complex organization as it links elements that bind the double-stranded portion of the telomere to those that bind the single-stranded overhang. We report an essential function for the shelterin complex and specifically for TPP1 in the maintenance of hematopoietic stem cells (HSCs). Utilizing adrenocortical dysplasia (acd), a spontaneous autosomal recessive mouse mutation causing profoundly hypomorphic Acd expression, we identified phenotypic and functional abnormalities in fetal hematopoietic progenitors. acd mutant Fetal liver HSCs were larger, more granular, and expressed higher levels of the cell surface protein Sca-1, as compared to wild-type counterparts. BrdU incorporation analysis showed an accumulation of Acd-deficient progenitors in the G2M phase of the cell cycle, consistent with G2M arrest. Absolute quantification of fetal liver HSCs revealed a significant reduction in stem cell numbers in acd mutants as compared to control littermates. p53 deficiency rescued the HSC depletion phenotype, but induced a paradoxical exacerbation of the increased progenitor cell size and Sca-1 expression. These findings suggest that p53-dependent and p53-independent elements contribute to the acd HSC phenotype. In competitive repopulation assays, acd HSCs failed to provide tri-lineage hematopoietic reconstitution in lethally irradiated recipients, indicating a profound functional defect. To further study the effects of Acd deficiency in adult HSCs, we generated an Acd allele in which exons 3–8 are flanked by loxP sites, allowing conditional inactivation following Mx1-Cre induction via poly(I:C) administration. Acd inactivation resulted in rapid HSC depletion within 2 weeks after initiation of poly(I:C) injections. To assess whether Acd exerted exclusively cell-autonomous effects in HSCs, we transplanted Acdf/–Mx1-Cre+ HSCs into wild-type recipients. Poly(I:C)-mediated Acd inactivation in these bone marrow chimeric mice resulted in rapid HSC loss and failure of tri-lineage hematopoiesis in animals reconstituted with Acd-deficient bone marrow. These data indicate an exquisite cell-autonomous requirement for Acd/TPP1 in adult mouse HSCs. In view of the extremely rapid HSC loss after Acd inactivation, these observations cannot be explained by telomere shortening. Together, our findings represent the first report of an essential role for Acd/TPP1 and the shelterin complex in HSC maintenance and hematopoietic homeostasis, independently of telomerase function. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 49-49
Author(s):  
Fabian Beier ◽  
Miguel Foronda ◽  
Jose A Palacios ◽  
Paula Martinez ◽  
Maria A Blasco

Abstract Abstract 49 Introduction: Mutations in the telomerase complex may cause bone marrow failure syndromes due to loss-of-function and consecutive telomere shortening. In addition to the telomerase complex, the six “shelterin” proteins (TRF1, TRF2, TIN2, RAP1, POT1 and TPP1) are required for telomere maintenance. TRF1 has a prominent role in chromosome capping function and prevents the recognition of telomeres by DNA repair mechanisms. At the moment, only TIN2 mutations have been linked to bone marrow failure. Here we aimed to identify other shelterin proteins might cause bone marrow failures. A previous study reported an clinical association between TRF1 mutations and acquired aplastic anemia, however the proof-of-principle that TRF1 can cause bone marrow failure is still missing (Savage SA Exp Hematol 2006). Material and Methods: To address this issue, we used the Mx1-Cre system in combination with the recently generated TRF1 allele in which the exon 1 of TRF1 is flanked by floxP (Martinez P Gen Dev 2009). The bone marrow of the bitransgenic mice was transplanted into B6 wildtype mice and poly (P:I) injections allowed the conditional knockout of TRF1. Results: Initiation of poly (P:I) injections 4 weeks after transplantation resulted in a failure of all three haematopoietic lineages after 17 days and histopathology revealed massive hypocellular bone marrow consistent with a bone marrow failure. Transplanted control animals showed normal histopathology and even increased neutrophil and thrombocyte counts. Further detailed FACS analysis 7 days after initiation of poly (P:I) injections showed a significant depletion of common myeloid, megakaryocte-erythocyte and common lymphoid progenitor cells, but only a slight decrease of lin-, c-kit+,Sca-1+ haematopoietic stem cells. Interesting, we found no increased rate of apoptosis for the decrease of the progenitor cells, but ß-galactosidase staining showed significant higher amounts of senescent cells in the bone marrow. Further detailed analysis of FACS sorted bone marrow cells showed that especially the c-kit positive progenitor fraction underwent senescence and cell cycle analysis showed an increased G2-M phase indicating a G2-M arrest. In line with these findings RT-PCR of FACS sorted BM revealed increased levels of p21 in the c-kit positive fraction. In addition BrdU injections into the mice on day 7 after poly (P:I) initiation showed increased incorporation and telomere length analysis of transplanted animals with and without poly (P:I) injections revealed massive telomere shortening on day 17. Conclusions: Our data indicates that TRF1 knockout especially affects haematopoietic progenitor cells by inducing G2-M arrest, induction of p21, and subsequent senescence. Further, compensation of the progenitor cell depletion leads to higher cell turnover and consecutively massive telomere shortening. Taken together this is the first report proving that TRF1 can cause a bone marrow failure and is accompanied with significant telomere shortening. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document