Host-Reactive Donor CD8+ T Memory Stem Cells but Not Mature T Memory Cells Primed Against Leukemic Cells Mediate Potent Graft-Versus-Leukemia Effect.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 190-190
Author(s):  
Elizabeth O. Hexner ◽  
Dale Frank ◽  
Stephen G. Emerson ◽  
Yi Zhang

Abstract The potent ability of allogeneic hematopoietic stem cell transplantation (Allo-HSCT) and donor leukocyte infusion (DLI) to cure leukemia remains the most striking example of the ability of the immune system to recognize and destroy tumors. Unfortunately, both allo-HSCT and DLI are often complicated by graft-versus-host disease (GVHD). In addition, durable responses to conventional DLI for acute leukemias have been disappointing. A better understanding of the mechanisms of alloreactive T cell-mediated anti-leukemia activity will be important for separating the GVL effect from GVHD. Adoptive transfer of selected subsets of T cells specific for miHA- or leukemia associated antigens might offer the chance to maximize GVL while minimizing GVHD. Using mouse models of human GVHD directed against miHAs, we recently demonstrated that antigen-experienced CD44loCD62LhiCD8+ T cells contain T memory stem cells that have greater ability than naïve T cells and mature memory T cells to proliferate and generate alloreactive effector cells and all memory T cell subsets (Nature Medicine, 2005, 11:1299). Using the same mouse model, we have now found that although B6/SJL mice receiving donor CD44hiCD8+ T cells (mature memory cells) primed against B6 mouse-derived myeloid leukemia C1498 cells do not develop clinical GVHD, most will die from C1498 leukemia by day 45 following injection of C1498 cells. Adoptive transfer of CD44loCD8+ T cells primed against C1498 leukemic cells caused clinical GVHD, but the majority of recipients (75%) survived long term free of C1498 leukemia. Surprisingly, the GVL effect of donor CD44loCD8+ T cells primed against C1498 leukemia cells was significantly inhibited when C1498 leukemia cell-primed CD44hiCD8+ T cells and CD44loCD8+ T cells were co-injected into B6/SJL mice, with only 25% of the mice surviving without leukemia. These results suggest that while the GVL effect is clearly mediated by antigen experienced CD44loCD8+ T cells, CD44hiCD8+ T memory cells primed against tumor cells are not only functionally defective in eliminating leukemia cells but are also potent inhibitors of alloreactive T cell-mediated GVL activity. We found that host-reactive effector memory CD8+ T cells produced 10-fold higher IL-10 than unstimulated naïve T cells and T memory stem cells, while CD8+ T memory stem cells expressed upregulated IL-10 receptors. These findings suggest that the inhibitory effect of mature memory T cells on alloreactive T cell-mediated GVL effect may be associated with increased production of IL-10 by mature memory cells and/or enhanced susceptibility of T memory stem cells to IL-10 secreted by mature memory cells. In addition, host dendritic cell activation of donor CD8+ naïve T cells progressively induced the generation of memory stem cells (CD44loCD62LhiSca-1hi), central memory cells (CD44hiCD62Lhi) and effector memory cells (CD44hiCD62Llo). CD8+ T memory stem cells displayed a TCR V-beta repertoire similar to that of unstimulated naive T cells. In contrast, both central memory and effector memory T cells showed a skewed TCR V-beta repertoire. Thus, selective elimination of suppressive CD44hiCD8+ T cells may represent an approach to augmenting GVL activity while preserving a diverse TCR V-beta repertoire.

Blood ◽  
2010 ◽  
Vol 115 (17) ◽  
pp. 3508-3519 ◽  
Author(s):  
John C. Markley ◽  
Michel Sadelain

Abstract The γc-cytokines are critical regulators of immunity and possess both overlapping and distinctive functions. However, comparative studies of their pleiotropic effects on human T cell–mediated tumor rejection are lacking. In a xenogeneic adoptive transfer model, we have compared the therapeutic potency of CD19-specific human primary T cells that constitutively express interleukin-2 (IL-2), IL-7, IL-15, or IL-21. We demonstrate that each cytokine enhanced the eradication of systemic CD19+ B-cell malignancies in nonobese diabetic/severe combined immunodeficient (NOD/SCID)/γcnull mice with markedly different efficacies and through singularly distinct mechanisms. IL-7– and IL-21–transduced T cells were most efficacious in vivo, although their effector functions were not as enhanced as IL-2– and IL-15–transduced T cells. IL-7 best sustained in vitro T-cell accumulation in response to repeated antigenic stimulation, but did not promote long-term T-cell persistence in vivo. Both IL-15 and IL-21 overexpression supported long-term T-cell persistence in treated mice, however, the memory T cells found 100 days after adoptive transfer were phenotypically dissimilar, resembling central memory and effector memory T cells, respectively. These results support the use of γc-cytokines in cancer immunotherapy, and establish that there exists more than 1 human T-cell memory phenotype associated with long-term tumor immunity.


2016 ◽  
Vol 90 (15) ◽  
pp. 6699-6708 ◽  
Author(s):  
Emily K. Cartwright ◽  
David Palesch ◽  
Maud Mavigner ◽  
Mirko Paiardini ◽  
Ann Chahroudi ◽  
...  

ABSTRACTTreatment of human immunodeficiency virus (HIV) infection with antiretroviral therapy (ART) has significantly improved prognosis. Unfortunately, interruption of ART almost invariably results in viral rebound, attributed to a pool of long-lived, latently infected cells. Based on their longevity and proliferative potential, CD4+T memory stem cells (TSCM) have been proposed as an important site of HIV persistence. In a previous study, we found that in simian immunodeficiency virus (SIV)-infected rhesus macaques (RM), CD4+TSCMare preserved in number but show (i) a decrease in the frequency of CCR5+cells, (ii) an expansion of the fraction of proliferating Ki-67+cells, and (iii) high levels of SIV DNA. To understand the impact of ART on both CD4+TSCMhomeostasis and virus persistence, we conducted a longitudinal analysis of these cells in the blood and lymph nodes of 25 SIV-infected RM. We found that ART induced a significant restoration of CD4+CCR5+TSCMboth in blood and in lymph nodes and a reduction in the fraction of proliferating CD4+Ki-67+TSCMin blood (but not lymph nodes). Importantly, we found that the level of SIV DNA in CD4+transitional memory (TTM) and effector memory (TEM) T cells declined ∼100-fold after ART in both blood and lymph nodes, while the level of SIV DNA in CD4+TSCMand central memory T cells (TCM-) did not significantly change. These data suggest that ART is effective at partially restoring CD4+TSCMhomeostasis, and the observed stable level of virus in TSCMsupports the hypothesis that these cells are a critical contributor to SIV persistence.IMPORTANCEUnderstanding the roles of various CD4+T cell memory subsets in immune homeostasis and HIV/SIV persistence during antiretroviral therapy (ART) is critical to effectively treat and cure HIV infection. T memory stem cells (TSCM) are a unique memory T cell subset with enhanced self-renewal capacity and the ability to differentiate into other memory T cell subsets, such as central and transitional memory T cells (TCMand TTM, respectively). CD4+TSCMare disrupted but not depleted during pathogenic SIV infection. We find that ART is partially effective at restoring CD4+TSCMhomeostasis and that SIV DNA harbored within this subset contracts more slowly than virus harbored in shorter-lived subsets, such as TTMand effector memory (TEM). Because of their ability to persist long-term in an individual, understanding the dynamics of virally infected CD4+TSCMduring suppressive ART is important for future therapeutic interventions aimed at modulating immune activation and purging the HIV reservoir.


2018 ◽  
Vol 37 (5) ◽  
pp. 373-382 ◽  
Author(s):  
Marcin Włodarczyk ◽  
Elżbieta Ograczyk ◽  
Magdalena Kowalewicz-Kulbat ◽  
Magdalena Druszczyńska ◽  
Wiesława Rudnicka ◽  
...  

Immunological memory is a key feature of adaptive immunity. It provides the organism with long-lived and robust protection against infection. The important question is whether cyclophosphamide (CP), as immunosuppressive agent used in cancer therapy and in some autoimmune diseases, may act on the memory T-cell population. We investigated the effect of CP on the percentage of central memory T cells (TCM) and effector memory T cells (TEM) in the mouse model of CP-induced immunosuppression (8-10-week-old male C57BL/6 mice CP treated for 7 days at the daily dose of 50 μg/g body weight [bw], manifested the best immunosuppression status, as compared to lower doses of CP: 10 or 20 μg/g bw). The CP induced a significant decrease in the percentage of CD8+ (TCM), compared to nonimmunosuppressed mice. This effect was not observed in the case of CD4+ TCM population. The percentage of gated TEM with CD4 and CD8 phenotype was significantly decreased in CP-treated mice, as compared to the control ones. Taken together, the above data indicate that CP-induced immunosuppression in mice leads to a reduction in the abundance of central memory cells possessing preferentially CD8+ phenotype as well as to a reduction in the percentage of effector memory cells (splenocytes both CD4+ and CD8+), compared to the cells from nonimmunosuppressed mice. These findings in mice described in this article may contribute to the understanding of the complexity of the immunological responses in humans and extend research on the impact of the CP model of immunosuppression in mice and memory T-cell populations.


2013 ◽  
Vol 82 (1) ◽  
pp. 132-139 ◽  
Author(s):  
Yun Hee Jeong ◽  
Bo-Young Jeon ◽  
Sun-Hwa Gu ◽  
Sang-Nae Cho ◽  
Sung Jae Shin ◽  
...  

ABSTRACTDespite the generation ofMycobacterium tuberculosis-specific T cell immune responses during the course of infection, only 5 to 10% of exposed individuals develop active disease, while others develop a latent infection. This phenomenon suggests defectiveM. tuberculosis-specific immunity, which necessitates more careful characterization ofM. tuberculosis-specific T cell responses. Here, we longitudinally analyzed the phenotypes and functions ofM. tuberculosis-specific T cells. In contrast to the functional exhaustion of T cells observed after chronic infection,M. tuberculosis-specific CD8+T cells differentiated into either effector (CD127loCD62Llo) or effector memory (CD127hiCD62Llo) cells, but not central memory cells (CD127hiCD62Lhi), with low programmed death 1 (PD-1) expression, even in the presence of high levels of bacteria. Additionally,M. tuberculosis-specific CD8+and CD4+T cells produced substantial levels of tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ), but not interleukin 2 (IL-2), uponin vitrorestimulation. AmongM. tuberculosis-specific CD8+T cells, CD127hieffector memory cells displayed slower ongoing turnover but greater survival potential. In addition, these cells produced more IFN-γ and TNF-α and displayed lytic activity upon antigen stimulation. However, the effector function ofM. tuberculosis-specific CD8+CD127hieffector memory T cells was inferior to that of canonical CD8+CD127himemory T cells generated after acute lymphocytic choriomeningitis virus infection. Collectively, our data demonstrate thatM. tuberculosis-specific T cells can differentiate into memory T cells during the course ofM. tuberculosisinfection independent of the bacterial burden but with limited functionality. These results provide a framework for further understanding the mechanisms ofM. tuberculosisinfection that can be used to develop more effective vaccines.


2019 ◽  
Vol 21 (3) ◽  
pp. 503-516
Author(s):  
M. Sh. Barkovskaya ◽  
E. A. Blinova ◽  
L. V. Grishina ◽  
M. I. Leonova ◽  
V. M. Nepomniashchikch ◽  
...  

Bronchial asthma is a chronic inflammatory disease of the respiratory tract. T-lymphocytes play a key role in pathogenesis of this allergic disease. The reduction in number of naïve T cells and the accumulation of memory T cells in bronchial asthma are accompanied by dysregulation of T lymphocyte function. In present study, we have investigated the contents of different T lymphocyte subpopulations in peripheral blood as well as in resting and PHA-stimulated cultures, along with their proliferative capacity in patients with bronchial asthma and healthy donors. The study included 10 patients with bronchial asthma (age 45.4±11.8 years). One-half of patients was in remission state, the others having been at the stage of clinical exacerbation. The group of donors was formed by healthy individuals matched by gender and age to the patients. Based on expression of cell surface markers CD45R0, CD62L and CD197 (CCR7), the CD4+ and CD8+T lymphocytes were divided into central (Tcm) and effector memory cells (Tem), naïve T lymphocytes (Tnaïve) and terminally differentiated effector cells (Temra) using flow cytometry technique. The proliferative activity of Tcm, Tem and Tnaïve was evaluated in response to PHA as a functional marker of T cells. We have found that the percentage of peripheral CD4+TemCD62L+ and CD8+TemCD62L+ cells in the patients with asthma exacerbation was significantly reduced, if compared to the donors. Following PHA stimulation, these differences in T cell subsets between the groups of patients and donors were not detectable. We performed a correlation analysis between the memory T cell contents and age of the subjects studied. It was shown that the relative amounts of CD4+ and CD8+ memory cells increased with age in asthmatics, but not in healthy donors. Analysis of mitogen-induced proliferation showed that Tcm and Tnaïve cells proliferated more actively than other subpopulations in both groups. Meanwhile, the proliferative activity of CD4+T lymphocytes and subsets of CD8+Tcm, CD4+Tcm and CD4+Tem62L was higher in the group of asthma patients in remission state than in the patients with exacerbating disease, and healthy donors. The revealed increase in the relative number of memory T cells with age suggests that these cells participate in development of bronchial asthma. Proliferative response of the studied subpopulations, which was comparable to the donor values, suggests a functional maintenance of memory T cells and naïve T lymphocytes in bronchial asthma. The increased proliferation of some T-cell subpopulations in asthmatics in remission suggests an activated state of memory T cells. The observed decrease in the number of CD4+TemCD62L+ and CD8+TemCD62L+ in patients with asthma exacerbation may be, by our opinion, associated with an active inflammatory process in the airways.


2007 ◽  
Vol 76 (3) ◽  
pp. 1214-1222 ◽  
Author(s):  
Christine A. Shaw ◽  
Michael N. Starnbach

ABSTRACT Memory CD8+ T cells are essential for protective immunity against many intracellular pathogens; therefore, stimulation of this population of cells is an important goal of vaccination. We have previously shown that a detoxified derivative of Bacillus anthracis anthrax lethal toxin (LT) can deliver heterologous CD8+ T-cell epitopes to the major histocompatibility complex class I processing and presentation pathway of murine host cells and that immunization of mice with these LT-antigen fusion proteins leads to the induction of antigen-specific CD8+ T cells. In this report we extend these findings to include a detailed characterization of the phenotypic and functional properties of the T cells stimulated by the LT-based system. We found that after an initial period of expansion and contraction, antigen-specific CD8+ T cells differentiated into a pool of memory cells that produced gamma interferon and displayed in vivo cytotoxic activity. The transition to memory cells appeared to be quite rapid based on an analysis of the phenotypic marker CD127 and the effectiveness of a booster immunization administered early after the initial immunization. We also investigated the composition of the memory T-cell pool induced by this system and found that while one immunization induced a mixture of effector memory T cells (CD62Llow) and central memory T cells (CD62Lhigh), a second immunization preferentially elevated the effector memory T-cell frequency. Finally, we demonstrated that mice that received prime-boost immunizations of LT-antigen proteins were more protected in a Listeria monocytogenes challenge model than mice that received only one immunization.


2018 ◽  
Author(s):  
Lisa Borkner ◽  
Anja Drabig ◽  
Xiaoyan Zheng ◽  
Julia Drylewicz ◽  
Thomas Marandu ◽  
...  

Effector-memory T-cells (TEM) are assumed to be short-lived cells that poorly proliferate upon antigenic restimulation, thus depending on central-memory T-cells (TCM) to replenish their numbers during homeostasis, largely depending on adoptive transfer evidence. Here we analyzed T cells in their natural environment and observed robust long-term in vivo cycling within the TEM subset that was stronger than the one in the TCM subset. We compared the non-persistent vaccinia virus and the persisting murine Cytomegalovirus (MCMV), which induces inflationary TEM responses that remain high during viral latency. We analyzed Ki67 expression during acute, resolved and latent infection and found Ki67hiBcl2lo TEM in acutely or latently infected mice, arguing for antigen-driven TEM proliferation. In vivo labeling with deuterium showed that TEM acquired deuterium more rapidly than TCM, and were rapidly lost during chase. Similarly, antibody-mediated depletion of primed CD8 T cells in latenly infected mice revealed that TEM replenished more rapidly than TCM, suggesting that TEM cycle faster than TCM. Finally, we utilized the ability of Tamoxifen-induced Cre-ERT2 recombinase to induce chromosomal translocations when large amounts of Tamoxifen are administered for an extended time, which resulted in a selective depletion of proliferating Ki67hi cells that hardly affected the TCM subset, but drove a selective loss of Ki67hiBcl2lo effector T-cells, and an increase in the death of TEM in the spleen, arguing that TEM preferentially proliferate in the spleen. Since our results contradicted previous evidence from adoptive transfer experiments, we tested T cell homing to the spleen upon adoptive transfer. TEM homing was substantially poorer than the one of TCM, likely explaining the previously reported expansions of TCM, but not TEM, upon transfer into latently infected mice. In conclusion, our data suggest that memory inflation is largely maintained by splenic proliferation of antigen-specific TEM, rather than by continued expansion and differentiation of TCM.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1490
Author(s):  
Victoria Matyushenko ◽  
Irina Isakova-Sivak ◽  
Igor Kudryavtsev ◽  
Arina Goshina ◽  
Anna Chistyakova ◽  
...  

Background: New coronavirus SARS-CoV-2, a causative agent of the COVID-19 pandemic, has been circulating among humans since November 2019. Multiple studies have assessed the qualitative and quantitative characteristics of virus-specific immunity in COVID-19 convalescents, however, some aspects of the development of memory T-cell responses after natural SARS-CoV-2 infection remain uncovered. Methods: In most of published studies T-cell immunity to the new coronavirus is assessed using peptides corresponding to SARS-CoV-1 or SARS-CoV-2 T-cell epitopes, or with peptide pools covering various parts of the viral proteins. Here, we determined the level of CD4+ and CD8+ memory T-cell responses in COVID-19 convalescents by stimulating PBMCs collected 1 to 6 months after recovery with sucrose gradient-purified live SARS-CoV-2. IFNγ production by the central and effector memory helper and cytotoxic T cells was assessed by intracellular cytokine staining assay and flow cytometry. Results: Stimulation of PBMCs with live SARS-CoV-2 revealed IFNγ-producing T-helper effector memory cells with CD4+CD45RA−CCR7− phenotype, which persisted in circulation for up to 6 month after COVID-19. In contrast, SARS-CoV-2-specific IFNγ-secreting cytotoxic effector memory T cells were found at significant levels only shortly after the disease, but rapidly decreased over time. Conclusion: The stimulation of immune cells with live SARS-CoV-2 revealed a rapid decline in the pool of effector memory CD8+, but not CD4+, T cells after recovery from COVID-19. These data provide additional information on the development and persistence of cellular immune responses after natural infection, and can inform further development of T cell-based SARS-CoV-2 vaccines.


Author(s):  
Mashael Alabed ◽  
Asma Sultana Shaik ◽  
Narjes Saheb Sharif-Askari ◽  
Fatemeh Saheb Sharif-Askari ◽  
Shirin Hafezi ◽  
...  

Memory T cells play a central role in regulating inflammatory responses during asthma. However, tissue distribution of effector memory (T<sub>EM</sub>) and central memory (T<sub>CM</sub>) T-cell subtypes, their differentiation, and their contribution to the persistence of lung tissue inflammation during asthma are not well understood. Interestingly, an increase in survival and persistence of memory T cells was reported in asthmatic lungs, which may suggest a shift toward the more persistent T<sub>CM</sub> phenotype. In this report, we investigated the differential distribution of memory T-cell subtypes during allergic lung inflammation and the mechanism regulating that. Using an OVA-sensitized asthma mouse model, we observed a significant increase in the frequency of T<sub>CM</sub> cells in inflamed lungs compared to healthy controls. Interestingly, adoptive transfer techniques confirmed substantial infiltration of T<sub>CM</sub> cells to lung tissues during allergic airway inflammation. Expression levels of T<sub>CM</sub> homing receptors, CD34 and GlyCAM-1, were also significantly upregulated in the lung tissues of OVA-sensitized mice, which may facilitate the increased T<sub>CM</sub> infiltration into inflamed lungs. Moreover, a substantial increase in the relative expression of T<sub>CM</sub> profile-associated genes (EOMES, BCL-6, ID3, TCF-7, BCL-2, BIM, and BMI-1) was noted for T<sub>EM</sub> cells during lung inflammation, suggesting a shift for T<sub>EM</sub> into the T<sub>CM</sub> state. To our knowledge, this is the first study to report an increased infiltration of T<sub>CM</sub> cells into inflamed lung tissues and to suggest differentiation of T<sub>EM</sub> to T<sub>CM</sub> cells in these tissues. Therapeutic interference at T<sub>CM</sub> infiltration or differentiations could constitute an alternative treatment approach for lung inflammation.


2008 ◽  
Vol 118 (1) ◽  
pp. 294-305 ◽  
Author(s):  
Carolina Berger ◽  
Michael C. Jensen ◽  
Peter M. Lansdorp ◽  
Mike Gough ◽  
Carole Elliott ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document