Comparison of Different Strategies of MSC Isolation Revels Advantage To Expand MSC Directly from Purified CD105+ and CD271+ Cells.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2566-2566 ◽  
Author(s):  
Danuta Jarocha ◽  
Ewa Lesko ◽  
Mariusz Z. Ratajczak ◽  
Marcin Majka

Abstract The potential for multilineage differentiation together with the ability to expand in cultures are the reasons why Mesenchymal Stem Cells (MSC) are considered to be the population of stem cells for potential treatment for variety of disorders (e. g. Osteogenesis Imperfecta, Myocardium Infarction, GvHD). MSC are isolated from the bone marrow mononuclear cells (MNC) based on their adhesive properties. There have been few attempts to isolate MSC directly based on the expression of selected surface antigens, but these isolation strategies were not compared with “the gold standard” procedure which is still selection by plastic adherence. Nevertheless, it is obvious that a presence of different populations of cells “contaminating” MSC in adherent cell cultures (e.g., endothelial cells, macrophages, dendritic cells) may affect expansion of MSC. In this study we proposed new isolation strategies of bone marrow MSC based on RosetteSep Isolation Kit (Stem Cells Technologies Inc., Vancouver, Canada) and immunomagnetic isolation of CD105+ or CD271+ cell populations (Miltenyi Biotec, Germany). Four fractions of bone marrow mononuclear cells i) non-purified MNC, ii) MNC enriched in MSC by RosetteSep Isolation Kit, iii) sorted CD105+ and iv) sorted CD271+ cells were cultured for three passages. Subsequently, we evaluated i) number of CFU-F colonies, ii) expression of selected surface antigens (CD105, CD166, CD44, CD73, CD45, CD34), iii) in vitro osteogenic differentiation of expanded cells and iv) changes in the expression of genes related to osteogenesis (RQ-PCR). We found that the mean number of CFU-F colonies counted on the 9th day of culture was 26 (range 14,5–41,4), 49 (range 21,2–97,1), 105 (range 36,5–221) and 148 (range 55,3–211) per 107 MNC for non-purified MNC, MNC enriched in MSC by RosetteSep Isolation Kit, purified CD105+cells and purified CD271+cells, respectively. After 3rd passage the phenotype of cells was similar as we observed a comparable percentage of cells positive (over 90%) for CD105, CD166, CD44, CD73 and negative (below 5%) for CD45, CD34 surface antigens in all fractions. The RQ - PCR analysis of mRNA level of osteogenic (osteocalcin, PTHR, α1collagen), adipogenic (lipoprotein lipase, leptin, PPARγ2) and chondrogenic (aggrecan1) genes in all four populations revealed that MSC isolated by means of expression of 105 and CD271 antigens had higher level of mRNA for all assessed genes except for lipoprotein lipase and α1collagen prior to differentiation. After 30 days of osteogenic differentiation RQ - PCR analysis was repeated and compared with that before differentiation. We noticed an increased level of mRNA for osteocalcin and PTHR (markers of osteogenic differentiation) in all four populations, with the highest expression in MSC derived from non-purified MNC. However, this fraction had also the highest mRNA level of PPARγ2, lipoprotein lipase, and aggrecan genes (adipogenic and chondrogenic lineage respectively). Since the highest number of CFU-F was derived from purified CD105+ and CD271+ cells as well as these two populations seem to be the most homogenous based on RQ-PCR data, these cell fractions should be employed to expand most efficiently MSC for potential therapeutic purposes. Our data suggest that, non-MSC cells present in MNC and RosetteSep cultures may negatively affect both the expansion efficiency and differentiation along desired MSC lineage.

2021 ◽  
Author(s):  
Jingqun Tang ◽  
Ziming Ye ◽  
Yi Liu ◽  
Mengxiao Zhou ◽  
chao qin

Abstract PurposeDefective stem cells have been recognized as being associated with autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, autoimmune cytopenias and myasthenia gravis (MG). However, the differential gene expression profile of bone marrow mononuclear cells (BMMCs) and the molecular mechanisms underlying MG pathogenesis have not been fully elucidated. Therefore, we investigated the abnormal expression and potential roles and mechanisms of mRNAs in BMMCs among patients with MG with or without thymoma.MethodsTranscription profiling of BMMCs in patients with MG without thymoma (M2) and patients with thymoma-associated MG (M1) was undertaken by using high-throughput RNA sequencing (RNA-Seq), and disease-related differentially expressed genes were validated by quantitative real-time polymerase chain reaction (qRT-PCR).ResultsRNA-Seq demonstrated 60 significantly upregulated and 65 significantly downregulated genes in M2 compared with M1. Five disease-related differentially expressed genes were identified and validated by qRT-PCR analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed to predict the functions of aberrantly expressed genes. Recombination activating 1 (RAG1), RAG2, BCL2-like 11, phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform and repressor element-1-silencing transcription factor might play roles in MG pathogenesis involving the primary immunodeficiency signaling pathway, signaling pathways regulating pluripotency of stem cells and forkhead box O signaling pathway.ConclusionThe aberrantly expressed genes of BMMCs in M1 or M2 patients demonstrate the underlying mechanisms governing the pathogenesis of MG.


2022 ◽  
Vol 12 (4) ◽  
pp. 794-799
Author(s):  
Le Chang ◽  
Wei Duan ◽  
Chuang Wang ◽  
Jian Zhang

This study was to determine whether microRNA (miRNA)-126 regulates osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Rat BMSCs were extracted and stimulated for osteogenic differentiation. Functional experiments were conducted to assess miR-126’s impact on BMSCs differentiation. Western blot and RT-qPCR determined miR-126 expression. ALP activity detection and alizarin red staining detection were also performed. After osteogenic differentiation of BMSCs, miR-126 expression was gradually decreased over time. Overexpression of miR-26 decreased ALP activity, Notch signaling activity as well as declined Runx2 expression and calcium Salt nodules after treatment. Importantly, we found that Smad4 serves as a target of miR-126 while upregulation of the miRNA was accompanied with the decreased Smad4 protein expression without affecting the Smad4 mRNA level. In conclusion, miR-126 restrains osteogenic differentiation through inhibition of SMAD4 signaling, providing a novel insight into the mechanism.


2020 ◽  
Vol 10 (12) ◽  
pp. 1865-1870
Author(s):  
Yang Ying ◽  
Binghao Zhao ◽  
Wei Qian ◽  
Li Xu

Bone marrow mesenchymal stem cells (BMSCs) have self-renewal potential with multi-directional differentiation. Progranulin prevents bone degradation, inhibits inflammation and protects bone tissue. However, the role of Progranulin in osteoporotic BMSCs is unclear. Osteoporosis (OP) rat models were prepared by ovarian removal and treated with different doses (5 and 10 μM) of Progranulin followed by analysis of BMP-2 level by ELISA, bone mineral density and ALP activity. OP rat BMSCs were isolated and assigned into control group and Progranulin group followed by analysis of Progranulin level by ELISA, cell proliferation by MTT assay, RUNX2 and COL1A1 mRNA level by Real time PCR, and PI3K/Akt/PPARγ signaling protein level by Western blot. Progranulin treatment of OP rats dose-dependently increased BMP-2 expression, bone density and ALP activity. Compared with OP group, there were significant differences (P <0.05). Progranulin expression and BMSCs proliferation was increased, and RUNX2 and COL1A1 mRNA expression was elevated in Progranulin-treated OP group along with increased PI3K/Akt expression and decreased PPARγ protein expression. Compared with OP group, the difference was statistically significant, and the change was more significant with increasing concentration (P <0.05). Progranulin promotes BMSCs osteogenic differentiation and proliferation by regulating PI3K/Akt/PPARγ signaling pathway, which is beneficial for OP rats’ bone synthesis.


2019 ◽  
Vol 71 (3) ◽  
pp. 917-928
Author(s):  
E. Branco ◽  
C.M.F.C. Miranda ◽  
A.R. Lima ◽  
K.S.M. Silva ◽  
R.M. Cabral ◽  
...  

ABSTRACT In veterinary medicine, the cell therapy is still unexplored and there are many unanswered questions that researchers tend to extrapolate to humans in an attempt to treat certain injuries. Investigating this subject in nonhuman primates turns out to be an unparalleled opportunity to better understand the dynamics of stem cells against some diseases. Thus, we aimed to compare the efficiency of bone marrow mononuclear cells (BMMCs) and mesenchymal stem cells (MSCs) from adipose tissue of Chlorocebus aethiops in induced bone injury. Ten animals were used, male adults subjected, to bone injury the iliac crests. The MSCs were isolated by and cultured. In an autologous manner, the BMMCs were infused in the right iliac crest, and MSCs from adipose tissue in the left iliac crest. After 4.8 months, the right iliac crests fully reconstructed, while left iliac crest continued to have obvious bone defects for up to 5.8 months after cell infusion. The best option for treatment of injuries with bone tissue loss in old world primates is to use autologous MSCs from adipose tissue, suggesting we can extrapolate the results to humans, since there is phylogenetic proximity between species.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3150-3150
Author(s):  
Tetsuzo Tauchi ◽  
Seiichi Okabe ◽  
Seiichiro Katagiri ◽  
Yuko Tanaka ◽  
Kazuma Ohyashiki

Abstract Background: Myelodysplastic syndromes (MDS) are clonal hematopoietic disorders characterized by no efficient hematopoiesis and frequent progression to acute myeloid leukemia (AML). Even in low risk MDS, clonal hematopoiesis already dominates at diagnosis, and clones found in secondary AML originate from the MDS stage of disease, highlighting the need to specifically target the MDS-initiating clone. PF-0449913 is a potent and selective hedgehog pathway inhibitor that act by binding Smoothened (SMO) and blocking signal transduction. PF-04449913 demonstrated preliminary antitumor activity in a phase I trial, when given as monotherapy in patients with several hematopoietic malignancy. Jak1 tyrosine kinase plays an important role in cytokine signaling. Jak1 functions to phosphorylate STAT3 transcription factor, which triggers their dimerization and nuclear translocation. In the present study, we investigated the combining effects of PF-04449913 and Jak1 inhibitor, PF-6667291 in terminal differentiation of MDS-derived induced potent stem cells (iPSC). Methods: We generated iPSCs from bone marrow mononuclear cells of two MDS patients (RAEB1 and RAEB2 by WHO classification) with chromosome 5 deletion and complex karyotypic abnormalities, respectively. Karyotyping analysis revealed that MDS-derived iPSCs have identical abnormalities to primary MDS cells. We also generated iPSCs from bone marrow mononuclear cells of normal volunteer as control. To investigate the effects of PF-04449913 on self-renewal and the relevance as a therapeutic target in MDS initiating cells, we examined the activity of PF-04449913 against MDS-derived iPSCs transferred NOD/SCID mice in vivo. NOD/SCID mice were injected subcutaneously with MDS-derived iPSCs or normal iPSCs then treated with PF-04449913 (100 mg/kg; p.o.) from day 10 for 28 days. We also used MDS-L, a myelodysplastic cell line established from MDS patient with del (5q) and complex karyotypic abnormalities for in vitro studies. In vitro re-differentiation of MDS-iPSCs was performed with differentiation media (30 ng/ml VEGF, 30 ng/ml BMP-4, 40 ng/ml SCF, 50 ng/ml Activin) for 4 days. At day 14, a single cell suspension expressing CD34+CD38- was achieved with hematopoietic cytokines (300 ng/ml Flt-3 ligand, 10 ng/ml IL-3, 10 ng/ml IL-6, 50 ng/ml G-CSF, 25 ng/ml BMP-4). Results: Both MDS-derived iPSCs transferred NOD/SCID mice and normal iPSCs transferred NOD/SCID mice demonstrated the engraftment of CD34+CD38- positive cells by flow cytometry. However, the treatment with PF-04449913 reduced the population of CD34+CD38- positive cells in MDS-derived iPSCs transferred NOD/SCID mice. We isolated human CD45+ cells from the spleen of mice from each treatment group and injected equivalent numbers of CD45+ cells into secondary recipients. Following 50 days, all mice treated with vehicle engrafted with CD34+CD38- positive cells. In contrast, CD34+CD38- positive cells engraftment was not detected in recipient mice (n=3) from PF-04449913-treated donors. These results demonstrate the persistent effects of PF-0449913 on long term self-renewing MDS-initiating cells. Next we performed in vitro re-differentiation of MDS-iPSCs, which express CD34+CD38- population. CD34+CD38- cells from MDS-derived iPSCs were cultured with 2 μM of PF-04449913 and 1 μM of PF-6667291 in STEMdiff APEL medium for 14 days for CFC activities. Treatments with PF-04449913 and PF-6667291 significantly reduced the colony formations of mature erythroid, granulocyte-macrophage, and mixed of these hematopoietic cells. To identify the mechanisms that limit the terminal differentiation of MDS-derived iPSC by PF-04449913 and PF-6667291, MDS-L cells were cultured with PF-04449913 and PF-6667291 for 72 hrs. The treatments with PF-04449913 and PF-6667291 induced the expressions of p21Cip1, cleaved PARP and reduced the expression of BMI-1, c-Myc, Nanog, and phospho-Stat3. Conclusion: Our preclinical results indicate that the combination with PF-04449913 and PF-6667291 have potential as an important option for controlling the terminal differentiation of MDS-initiating cells. It is expected that the combination with PF-04449913 and PF-6667291 may become extremely useful therapeutic interventions in a number of hematological neoplasms, including MDS. Disclosures Tauchi: Pfizer Inc.: Research Funding. Ohyashiki:Bristol-Myers Squibb: Research Funding; Novartis International AG,: Honoraria, Research Funding.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2562-2562
Author(s):  
Xiaoyu Lai ◽  
He Huang ◽  
Li Huang ◽  
Fenfang Zeng

Abstract Objective: Due to absence of a single definitive marker of mesenchymal stem cells (MSCs) and low incidence in human bone marrow, the primary culture of MSCs, conventionally isolated with its characteristic of adherent, were considered to be heterogeneous containing of several subpopulations, which had currently limited our understanding of their biology and therapeutic applications. In our previous study, a novel murine monoclonal antibody (McAb) ZUC3 was produced by hybridoma technology, which was specifically reactive with human MSCs, while showed negative cross-reactivity when screened against a variety of human tissues. Now, ZUC3 antigen positive MSCs population would be further identified by magnetic-activated cell sorting (MACS). Methods: Bone marrow were taken from the iliac crest of normal healthy adult volunteers, and mononuclear cells were separated by density gradient centrifugation, then separated into positively- and negatively-labelled fractions with McAb ZUC3 by immunomagnetic activated cell sorting. The purity of positive cells was analyzed by flow cytometry, then ZUC3 antigen positive and negative cells were plated respectively in human MSCs medium consisting of 10% FBS, LG-DMEM. Characteristics of ZUC3 antigen positive cells phenotype was analyzed by flow cytometry, and proliferation and multiple differentiation potential of the cells was observed in vitro. Results: Flow cytometric analysis showed that ZUC3 antigen expression by cultured MSCs and mononuclear cells derived from bone marrow were 91.31±2.92%, 0.96±0.28% respectively, and western blotting showed the molecular mass of antigen was about 33KD. The purity of the recovered fractions for ZUC3 by MACS was 76.82±6.32%. The positive cells have adhered to culture flask in vitro, and the quantity of adhered cells that had fibroblast-like morphology increased and proliferated during primary expansion period, while the negative cells were observed as round shape cells without any proliferation. It was demonstrated that ZUC3 antigen positive cells continued growth with spindle-shape, extending beyond 30 population doublings in long-term culture. Analyzed by flow cytometry, the culture-expanded positive cells were uniformly positive for CD29, CD44, CD105, CD106, and lack typical hematopoietic antigens such as CD14, CD34, CD45, HLA-DR, which demonstrated that ZUC3 postive cells sorted from bone marrow mononuclear cells by McAb were MSCs. With proper medium, the ZUC3 antigen positive cells could be successfully induced to differentiate into adipocytes, osteoblasts, and neuro-like cells which were positive of neuron markers such as nestin, NSE and NF-M. Conclusion: ZUC3 McAb was a specific surface marker against human MSCs for cell sorting. The ZUC3 antigen positive cells separated from bone marrow mononuclear cells had potential capacity of high proliferation and multiple differentiation.


Sign in / Sign up

Export Citation Format

Share Document