Sustained Expansion of Human Natural Killer Cells for Leukemia Therapy.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3719-3719
Author(s):  
Hiroyuki Fujisaki ◽  
Harumi Kakuda ◽  
Chihaya Imai ◽  
Dario Campana

Natural killer (NK) cells are a promising tool for cell therapy of hematologic malignancies. They have potential for enhancing graft-versus-leukemia responses in recipients of hematopoietic stem cell transplant, and can also be used in a non-transplant setting, where haploidentical donor NK cells have been shown to expand in vivo. NK cells represent a small subset of peripheral blood cells. Hence, it can be problematic to obtain them in quantities sufficient to exert significant anti-leukemic activity in patients. We sought to identify culture conditions that would stimulate vigorous, sustained and specific expansion of CD56+ CD3− NK cells. NK cell proliferation was stimulated by contact with the K562 leukemia cell line transfected with two NK stimulatory molecules: membrane-bound interleukin 15 and 4-1BB ligand. Exposure of peripheral blood cells from 23 donors to irradiated K562-mb15-41BBL cells in the presence of 10 IU/mL interleukin-2 resulted in a median expansion of CD56+ CD3− cells of 22-fold (range, 9- to 87-fold) after only 7 days of culture; expansion of CD3+ T cells was negligible. After 14 days of culture, K562-mb15-41BBL cells were completely lysed by the NK cells and no further expansion occurred. However, further NK cell expansion could be achieved by addition of fresh K562-mb15-41BBL cells to the cultures. Using this method, NK cell expansions ranged from 2,000- to 98,000-fold (n = 4) after 65 days of culture. We noted that NK cells eventually became unresponsive to stimulation and underwent senescence after 2–5 months of culture. To determine whether NK cell senescence could be overcome by enforced expression of human telomerase reverse transcriptase (hTERT), we stimulated NK cells for 1 week with K562-mb15-41BBL cells and then transfected them using an MSCV retroviral vector and the hTERT gene (gift of Dr. J. Dome, St. Jude). hTERT expression and telomerase activity was demonstrated by reverse transcriptase-polymerase chain reaction and telomerase repeat amplification protocol assay. The cultures were then stimulated with periodic pulses of K562-mb15-41BBL cells. In 2 donors, enforced expression of hTERT overcame senescence: NK cells transfected with an empty vector died after 85 and 170 days of culture, whereas hTERT-NK cells continue to grow after more than 350 days of culture, while retaining a normal karyotype. hTERT-NK cells maintained their cytotoxicity against the NK-sensitive leukemic cell lines K562, KG1, U937, HL60 and Jurkat. They could be also be genetically modified to express anti-CD19 chimeric signaling receptors, thus becoming cytotoxic against NK-resistant CD19+ B-lineage acute lymphoblastic leukemia cells. Cytotoxicity against CD19+ targets was similar to that of NK cells transfected with the signaling receptor after only one week of culture. In conclusion, coculture of human peripheral blood mononuclear cells with pulses of irradiated K562-mb15-41BBL cells allows the generation of a large numbers of NK cells which have powerful anti-leukemic capacity and can be redirected to lyse NK-resistant target cells. Although senescence eventually ensues, this can be overcome by hTERT expression. The culture system described here has now been adapted to large scale expansion for clinical use.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3036-3036
Author(s):  
Veronika Bachanova ◽  
Linda J. Burns ◽  
David H. McKenna ◽  
Julie Curtsinger ◽  
Sarah Cooley ◽  
...  

Abstract Abstract 3036 Poster Board II-1012 The potential role of allogeneic natural killer (NK) cells for therapy of refractory lymphoma is supported by the curative potential of allogeneic transplantation for lymphoid malignancies. Haploidentical donor derived NK cells may overcome Class I MHC Ag mediated inhibition and deliver an NK versus lymphoma effect. In a Phase II study we evaluated allogeneic NK cell infusions with Rituximab and IL-2 in a non-transplant setting to determine the expansion of NK cells in vivo and the clinical response in patients with refractory B-cell non-Hodgkin lymphoma (NHL). Six patients with advanced NHL received conditioning with Rituximab 375mg/m2 days -8,-1,+6,+15; Cyclophosphamide 60 mg/kg IV day -5; Fludarabine 25 mg/m2 IV days -6 through -2 as immunosupression to permit homeostatic expansion of allogeneic donor NK cells. Peripheral blood cells were obtained by lymphapheresis from unmobilized, HLA-haploidentical donors and selected for “killer immunoglobulin receptor” (KIR) ligand mismatch when available (3 out of 6 patients). Donor peripheral blood cells were enriched for NK cells with the Miltenyi CliniMACS device by depletion of T (CD3+) cells. The donor NK cells were then activated by overnight incubation with IL-2 (1,000 U/mL) and infused at a median nucleated cell dose of 2.27 ±0.4 × 107/kg. Subcutaneous IL-2 10×106 units (qod x 6 doses) was given to facilitate NK cell survival and expansion. All patients were evaluable for toxicity and efficacy. Patients tolerated the NK infusion well with only transient grade 1-2 toxicity and 5 received all 6 scheduled doses of IL-2. IL-2 activated donor NK cell products showed > 55% cytotoxicity against K562 targets. After IL-2 therapy, we observed a median absolute lymphocyte count of 980 ±440/μL. All cells were of recipient origin with no detectable donor NK cells. Importantly, in all patients the median number of host regulatory T cells (T regs phenotype CD4+Foxp3+CD127−) post treatment was significantly increased compared to pre-treatment (day 14 T regs: 134 ±141 cells/μL versus pre-treatment T regs: 24 ±12 cells/μL; P=0.06). To investigate the possibility of NK trafficking to affected lymph nodes, we performed fine needle aspiration of palpable tumor in 1 patient and demonstrated a low level of donor DNA by RFLP testing (2.5% donor chimerism). Simultaneous absence of NK cells in peripheral blood in the same patient suggested NK cell tissue homing to lymphoma-bearing nodes. Three patients achieved a partial remission (PR), one of whom proceeded to non-myeloablative cord blood allograft 2 month after NK cell infusion; two remain in partial remission after 1 and 4 months of follow-up. The trial failed to achieve prospective statistical parameters established to detect circulating NK cell expansion rate and will be modified. Conclusions This “proof of principle” study demonstrated lack of in vivo expansion of haploidentical NK cells in peripheral blood of patients with lymphoma. However, we identified host factors that interfered with NK cell expansion, including T reg proliferation and possibly inadequate immunosupression, and additionally, the finding of donor DNA in sites of tumor suggested donor NK cell localization to extravascular or tumor sites. Novel approaches to adoptive NK cell therapy trials should incorporate strategies to eliminate or prevent T reg expansion using alternate lymphodepleting regimens. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A578-A578
Author(s):  
Andreia Maia ◽  
Joana Lerias ◽  
Markus Maeurer ◽  
Mireia Castillo-Martin

BackgroundAdoptive immunotherapy relies on the use of T-cells to target tumour cells, through Major Histocompatibility Complex (MHC) Class I recognition(1). However, many tumours display alterations in the MHC-I pathway, a well-described immune evasion mechanism(2). Natural Killer (NK) cells recognize transformed cells independently from the presence of MHC-I and may be a reliable therapeutic option for patients with altered tumour MHC-I expression. The source of NK cells may be autologous or allogeneic and NK cells are also clinically relevant recipients of transgenic receptors (TCRs or antibodies) targeting tumour cells. NK cells have been categorized according to their CD56 and CD16 surface expression into different subpopulations: cytotoxic (CD56+CD16+) and regulatory (CD56brightCD16-)(3). Expanding cytotoxic NK cells is challenging, since the frequency of NK cells is low in peripheral blood(4) and there is also – at this point – not an optimal expansion protocol available.The goal of this project is to determine the best cytokine combination that facilitates expansion of cytotoxic NK cells that either target tumor cells directly or serve as recipients for transgenic receptors.MethodsPeripheral Blood Mononuclear Cells (PBMCs) were extracted using Ficoll methodology from blood donors and cultured in T25 flasks with Cell Genix Medium supplemented with 10% human serum and antibiotics. NK cells were expanded supplemented with feeder cells (ratio 1:1) and different cytokine combinations (1000 U/mL of IL-2, 10 U/ml of IL-12, 180 U/mL of IL-15 and/or 1 U/mL of IL-21) during 20 days. The immunophenotype of expanded NK cells was analyzed at days 0, 5, 10, 15 and 20 by flow cytometry. The cytotoxicity of NK cells was measured by a CD107a Assay or by a Total Cytotoxicity and Apoptosis Assay at days 10 and 20. Thirteen different cytokine combinations were tested.Results4/13 cytokine combinations produced a statistically significant increase of the absolute number of NK cells with a higher percentage of cytotoxic NK cells (figure 1). However, induction of cytotoxicity was not associated with a strong NK cell expansion. The regulatory NK cells subset (CD56brightCD16-) showed the highest percentage of CD107a-expressing cells, more than the CD56+CD16+, the most cytotoxic subpopulation of NK cells.Abstract 542 Figure 1Representative percentage of NK cells in total lymphocytes (A), CD56+CD16+ subpopulation in total NK cells (B), and CD56brightCD16- subpopulation amongst total NK cells (C) at different time points (5, 10, 15 and 20 days) expanded from PBMCs* p-value < 0.05ConclusionsThis work shows that we are able to grow and efficiently expand NK cells from PBMCs with different cytokine combinations leading to clinically relevant NK cell numbers as well as cytotoxic functions. This enables to produce NK cell products for therapy and as recipients for transgenic tumor antigen-specific receptors.AcknowledgementsThe authors would like to thank the Champalimaud Foundation Biobank, the Vivarium Facility and the Flow Cytometry Platform of the Champalimaud Centre for the Unknown.Ethics ApprovalThis study was approved by the Champalimaud Foundation Ethics Committee and by the Ethics Research Committee of NOVA Medical School of NOVA University of Lisbon.ConsentWritten informed consent was obtained from the blood donors to use their samples for research purposes.ReferencesRosenberg SA, Restifo NP, Yang JC, Morgan RA, Mark E. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 2008;8(4):299–308.Aptsiauri N, Ruiz-Cabello F, Garrido F. The transition from HLA-I positive to HLA-I negative primary tumors: the road to escape from T-cell responses. Curr Opin Immunol 2018;51:123–32.Di Vito C, Mikulak J, Mavilio D. On the way to become a natural killer cell. Front Immunol. 2019;10(August):1–15.Zotto G Del, Antonini F, Pesce S, Moretta F, Moretta L. Comprehensive phenotyping of human PB NK Cells by Flow Cytometry. 2020;1–9.


Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 156-164
Author(s):  
V Pistoia ◽  
S Zupo ◽  
A Corcione ◽  
S Roncella ◽  
L Matera ◽  
...  

Highly purified natural killer (NK) cell suspensions were tested for their capacity to release colony-stimulating activity (CSA) in vitro. NK cell suspensions comprised primarily CD16+ cells and were devoid of CD3+ T cells, CD15+ monocytes, and of B cells. CSA was detected in the NK cell supernatants and sustained the growth of myeloid colonies from both normal peripheral blood and bone marrow. CSA could be in part inhibited by pretreating NK cell culture supernatants with a specific goat anti-granulocyte-macrophage colony-stimulating factor (GM-CSF) antiserum. The inhibition, however, was never complete, a finding that suggests that additional factors were responsible for CSA. Incubation of NK cells with K562 cells (an NK-sensitive target) or with normal bone marrow cells resulted in the appearance of a strong colony- inhibiting activity (CIA) in the culture supernatants. Such CIA was demonstrable in an experimental system where bone marrow or peripheral blood progenitors were induced to form myeloid colonies in the presence of conditioned medium by CSA-producing giant cell tumor (GCT) cells. Stimulation of NK cells with NK-insensitive targets failed to induce CIA production. Neutralizing antitumor necrosis factor (TNF) monoclonal antibodies (MoAbs) were found capable of inhibiting CIA present in the supernatants of NK cells stimulated with K562 cells. Following treatment with anti-TNF antibodies, CSA was again detectable in the same supernatants. This finding indicates that induction of TNF production did not concomitantly switch off CSA production by NK cells. Pretreatment of NK cells with recombinant interleukin-2 (rIL-2) or gamma interferon (r gamma IFN) did not change the amount of CSA released. However, treatment with rIL-2 caused the appearance of a factor in the NK cell supernatants capable of sustaining the formation of colonies of a larger size.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ryland D. Mortlock ◽  
Chuanfeng Wu ◽  
E. Lake Potter ◽  
Diana M. Abraham ◽  
David S. J. Allan ◽  
...  

The in vivo tissue distribution and trafficking patterns of natural killer (NK) cells remain understudied. Animal models can help bridge the gap, and rhesus macaque (RM) primates faithfully recapitulate key elements of human NK cell biology. Here, we profiled the tissue distribution and localization patterns of three NK cell subsets across various RM tissues. We utilized serial intravascular staining (SIVS) to investigate the tissue trafficking kinetics at steady state and during recovery from CD16 depletion. We found that at steady state, CD16+ NK cells were selectively retained in the vasculature while CD56+ NK cells had a shorter residence time in peripheral blood. We also found that different subsets of NK cells had distinct trafficking kinetics to and from the lymph node as well as other lymphoid and non-lymphoid tissues. Lastly, we found that following administration of CD16-depleting antibody, CD16+ NK cells and their putative precursors retained a high proportion of continuously circulating cells, suggesting that regeneration of the CD16 NK compartment may take place in peripheral blood or the perivascular compartments of tissues.


Blood ◽  
1986 ◽  
Vol 67 (4) ◽  
pp. 925-930 ◽  
Author(s):  
LA Fernandez ◽  
B Pope ◽  
C Lee ◽  
E Zayed

Abstract There have been many reports of cases in which chronic increases in the numbers of natural killer (NK) cells have been reported. Whether this is reactive or neoplastic in nature has been debated. We report the first case of an aggressive NK cell leukemia in an adult with establishment of an NK cell line. A 70-year-old man had two spontaneous episodes of jejunal perforation and one month later developed a severe febrile illness with moderate splenomegaly. Hemoglobin was 13.1 g/L, and WBC count was 1.8 X 10(9)/L with 2% large granular lymphocytes (LGLs). Platelet count was 143 X 10(9)/L; prothrombin time (PT) and partial thromboplastin time (PTT) were normal. Bone marrow was infiltrated with 25% to 30% LGLs; serum lysozyme was normal. Serum LDH was initially 1,191 U/L and rose to 6,408 (normal 240 to 525 U/L). Ten days later, the WBC count increased to 99.9 X 10(9)/L with 70% LGL cells; the PT and PTT increased, and the platelet count dropped. No bacterial or viral cause of fever was identified. The cells from peripheral blood were LGLs that stained positively for acid phosphatase. All of the LGLs reacted with a monoclonal antibody reactive with NK cells (LEU-11b). Functionally, the patient's peripheral blood mononuclear cells (PBMs) demonstrated 100 times more lytic activity against K562 tumor cell lines than did normal PBMs. The patient's PBMs were propagated in vitro. The cultured cells showed the morphological, cytochemical, immunological, and functional characteristics of NK cells. In addition, partial trisomy involving chromosome 1 q with duplication in regions of q21 through q31 was observed in all metaphases analyzed. The extra chromosome 1q with duplication in regions q21 through q31 was translocated to the p- terminal of chromosome 5. One percent to 5% of normal PBMs comprise NK cells; in most cases, leukemias arise from normal phenotypic counterparts. This case demonstrated that aggressive NK cell leukemia may occur in adults. In addition, the chromosomal abnormalities suggest that this is not a reactive process but a malignancy.


2019 ◽  
Vol 5 (10) ◽  
pp. FSO425
Author(s):  
Ricardo García-Muñoz ◽  
María-Josefa Nájera ◽  
Jesús Feliu ◽  
Judith Antón-Remírez ◽  
Enrique Ramalle-Gómara ◽  
...  

Aim: To analyze the effects of subcutaneous or intravenous rituximab + lymphokine-activated killer cells, obinutuzumab or ibrutinib on natural killer (NK) cell levels in chronic lymphocytic leukemia and follicular lymphoma patients. Patients & methods: The distribution of peripheral blood NK cells of 31 patients was analyzed by flow cytometry. Results: We detected a decrease of NK cells in peripheral blood below normal range after obinutuzumab treatment. During maintenance treatment with subcutaneous rituximab, an NK cell reduction was less pronounced than after intravenous rituximab treatment, despite lymphokine-activated killer cell infusions. Conclusion: After one dose of obinutuzumab, each NK cell in peripheral blood destroys 25 leukemic cells.


Blood ◽  
2006 ◽  
Vol 107 (3) ◽  
pp. 1184-1191 ◽  
Author(s):  
Nobuyoshi Hanaoka ◽  
Tatsuya Kawaguchi ◽  
Kentaro Horikawa ◽  
Shoichi Nagakura ◽  
Hiroaki Mitsuya ◽  
...  

AbstractThe mechanism by which paroxysmal nocturnal hemoglobinuria (PNH) clones expand is unknown. PNH clones harbor PIGA mutations and do not synthesize glycosylphosphatidylinositol (GPI), resulting in deficiency of GPI-linked membrane proteins. GPI-deficient blood cells often expand in patients with aplastic anemia who sustain immune-mediated marrow injury putatively induced by cytotoxic cells, hence suggesting that the injury allows PNH clones to expand selectively. We previously reported that leukemic K562 cells preferentially survived natural killer (NK) cell-mediated cytotoxicity in vitro when they acquired PIGA mutations. We herein show that the survival is ascribable to the deficiency of stress-inducible GPI-linked membrane proteins ULBP1 and ULBP2, which activate NK and T cells. The ULBPs were detected on GPI-expressing but not on GPI-deficient K562 cells. In the presence of antibodies to either the ULBPs or their receptor NKG2D on NK cells, GPI-expressing cells were as less NK sensitive as GPI-deficient cells. NK cells therefore spared ULBP-deficient cells in vitro. The ULBPs were identified only on GPI-expressing blood cells of a proportion of patients with PNH but none of healthy individuals. Granulocytes of the patients partly underwent killing by autologous cytotoxic cells, implying ULBP-associated blood cell injury. In this setting, the lack of ULBPs may allow immunoselection of PNH clones.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1348-1348
Author(s):  
Brian Becknell ◽  
Rossana Trotta ◽  
Jianhua Yu ◽  
Wei Ding ◽  
Hsiaoyin C. Mao ◽  
...  

Abstract Molecular characterization of human natural killer (NK) cells will require targeted gene delivery to inhibit and activate specific signaling pathways, yet to our knowledge, an effective means to deliver such products for long-term gene expression without disrupting normal cellular processes has not been described. In this study we have developed a retroviral strategy to effectively express gene products in the NK cell, whereby its effector functions of cytotoxicity and cytokine production remain intact. Using an EBV/retroviral hybrid vector PINCO, we demonstrate infection of human peripheral blood NK cells with simultaneous expression of a marker for infection - the enhanced green fluorescent protein (EGFP) - along with various genes of interest. This technique results in successful infection of the CD56dim NK population that predominates among human peripheral blood NK and is the effector of antibody-dependent cellular cytotoxicity (ADCC) and natural killing. In addition, we demonstrate infection of the CD56bright NK subset as well as the NK-92 and NK-L cell lines. Finally, we modify PINCO to express a cytoplasmically truncated murine CD8 molecule in place of GFP. The resulting vector enables us to transduce NK cells with multiple genes of interest simultaneously and provides an alternative purification method to FACS by using magnetic beads. In summary, we have devised an efficient and highly reproducible methodology for the targeted delivery of gene products to human NK cells that should now provide opportunities to dissect the molecular processes critical to normal NK cell physiology and to genetically manipulate NK cell populations prior to their administration in cancer therapy.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4034-4034
Author(s):  
David A. Knorr ◽  
Zhenya Ni ◽  
Allison Bock ◽  
Vijay G. Ramakrishnan ◽  
Shaji Kumar ◽  
...  

Abstract Abstract 4034 Natural Killer (NK) cells are lymphocytes of the innate immune system with anti-viral and anti-cancer activity. Over the past decade, they have gained interest as a promising cellular source for use in adoptive immunotherapy for the treatment of cancer. Most notably, NK cells play an important role in the graft-vs-tumor effect seen in allogeneic hematopoietic stem cell transplantation (allo-HSCT), and a better understanding of NK cell biology has translated into improved transplant outcomes in acute myelogenous leukemia (AML). Small studies have demonstrated a role for NK cell activity in multiple myeloma (MM) patients receiving allo-HSCT. Investigators have also utilized haplo-identical killer immunoglobulin-like receptor (KIR) mismatched NK cells for adoptive immunotherapy in patients with multiple myeloma (MM). Our group has focused on the development of NK cells from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) as a novel starting source of lymphocytes for immunotherapy. We have previously demonstrated potent anti-tumor activity of hESC-derived NK cells in vitro and in vivo against a variety of different targets. We have also shown that iPSC-derived NK cells from a variety of different somatic cell starting sources posses potent anti-tumor and anti-viral activity. Here, we demonstrate hESC- and iPSC-derived NK cell development in a completely defined, feeder-free system that is amenable to clinical scale-up. These cultures contain a pure population of mature NK cells devoid of any T or B cell contamination, which are common adverse bystanders of cellular products isolated and enriched from peripheral blood. Our cultures are homogenous for their expression of CD56 and express high levels of effector molecules known to be important in anti-MM activity, including KIR, CD16, NKG2D, NKp46, NKp44, FasL and TRAIL. We have now tested the activity of hESC- and iPSC-derived NK cells against MM tumor cells in order to provide a universal source of lymphocytes for adoptive immunotherapy in patients with treatment refractory disease. We find that similar to peripheral blood NK cells (PB-NK), hESC- and iPSC-derived NK cells are cytotoxic against 3 distinct MM cell lines in a standard chromium release cytotoxicity assay. Specifically, activated PB-NK cells killed 48.5% of targets at 10 to 1 effector to target ratios, whereas hESC (46.3%) and iPSC (42.4%) derived NK cells also demonstrated significant anti-MM activity. Also, hESC- and iPSC-derived NK cells secrete cytokines (IFNγ and TNFα) and degranulate as demonstrated by CD107a surface expression in response to MM target cell stimulation. When tested against freshly isolated samples from MM patients, hESC- and IPSC-derived NK cells respond at a similar level as activated PB-NK cells, the current source of NK cells used in adoptive immunotherapy trials. These MM targets (both cell lines and primary tumor cells) are known to express defined ligands (MICA/B, DR4/5, ULBP-1, BAT3) for receptors expressed on NK cells as well as a number of undefined ligands for natural cytotoxicity receptors (NCRs) and KIR. As these receptor-ligand interactions drive the anti-MM activity of NK cells, we are currently evaluating expression of each of these molecules on the surface of both the effector and target cell populations. Not only do hESC- and iPSC-derived NK cells provide a unique, homogenous cell population to study these interactions, they also provide a genetically tractable source of lymphocytes for improvement of the graft-vs-myeloma effect and could be tailored on a patient specific basis using banks of hESC-or iPSC-derived NK cells with defined KIR genotypes for use as allogeneic or autologous effector cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5480-5480
Author(s):  
Isabel Gonzalez-Gascon y Marin ◽  
Ana María Pérez-Corral ◽  
Jorge Gayoso ◽  
Javier Anguita ◽  
Ana Carolina Franco ◽  
...  

Abstract Background The main functions of Natural Killer (NK) cells are early protection against viruses or tumour cells and production of cytokines that regulate immune functions. NK cells are the first lymphoid cells to repopulate the marrow after Stem Cell Transplantation (SCT) and reach normal levels within 1 month after transplant. Acquisition of both, inhibiting and activating receptors on developing NK cells is an important step in their functional maturation. Previous studies showed the beneficial effect of NK alloreactivity in prevention of relapse, especially in the setting of haploidentical SCT. The aim of this study is to compare the reconstitution of the NK cell compartment during the first 3 months after unmanipulated haploidentical peripheral blood SCT (Haplo) and HLA-identical sibling peripheral blood SCT (HLA-id). Patients and Methods 11 adult patients received SCT (7 Haplo and 4 HLA-id) at Gregorio Marañón Hospital (Madrid-Spain) from November 2012 to April 2013. Conditioning regimen comprised fludarabine, cyclophosphamide and busulfan for Haplo SCT and fludarabine and busulfan or fludaribine and melphalan for HLA-id SCT. Prophylaxis for acute graft-versus-host disease consisted of high dose cyclophosphamide on days +3 and +4, cyclosporine A and mycophenolate mofetil for Haplo and Cyclosporine A and methotrexate for HLA-id. Patient´s characteristics and transplant outcomes are shown in table 1. We analysed reconstitution patterns and phenotype of NK at day +15, +30, +60, and +90 after transplantation by multi-color flow cytometry on FC500 Beckman Coulter® cytometer using the following anti-human monoclonal antibodies: CD3 FITC, CD56 ECD, CD45 PC7, NKG2A PC7, NKp30 PC5, NKp44 PE, Nkp46 PC5, and NKG2D PE (Beckman Coulter®). For comparison between the two groups Mann–Whitney U-test was used. Results 2/7 patients who received Haplo SCT died early in the post-transplantation period (day +50 and +66), and were excluded of the analysis because NK cells were not recovered by those days. NK cells reached normal levels by day +30: median 71 cells/µl (21-1089)) after Haplo; median 213.5 cells/µl (113-499) after HLA-id, and remained at high levels through follow up, with no significant differences between the two groups. Similarly to previous studies, a large percentage of NKbright cells was observed at day +30 after Haplo (median 89% of NK cells (55-97%)), a percentage that tended to decrease at day +60 (30% (7-38%)) and +90 (35% (10-45%)). Interestingly the percentage of NKbright cells after HLA-id SCT at day +30 (median 14.5% of NK cells (6-30%)) compared with Haplo, was significantly lower (p=0.016). This was accompanied by a significantly lower expression of inhibitory receptor NKG2A after HLA-id SCT than after Haplo: 59.5% (50-62%) versus 92.5% (50-62%) at day +30; 54% (38-61%) versus 86% (70-88%) versus at day +60 (p=0.016). Activating receptors NKp44 and NKp30 showed a low expression after both types of SCT throughout the first 3 months after transplantation. By contrast, activating receptor NKp46 levels were significantly higher at day +30 after Haplo than after HLA-id SCT (93% (87-98%) versus 50% (37-51%)) (p=0.016). Finally, high and similar proportions of activating receptor NKG2D were observed in both types of SCT. Figure 1 illustrates the recovery of the NK cell receptor phenotype for each type of SCT. Conclusions Our data showed an early and fast recovery of NK cells after Haplo and HLA-id SCT. However, phenotypic maturation of NK cells appears to be different for each type of transplant. NK cells generated after Haplo exhibit a more immature phenotype, characterized by a higher proportion of NKbright cells, and a higher expression of NKG2A at day +30. Interestingly expression of NKp46 was significantly higher after Haplo than after HLA-id SCT. Other authors have reported cytotoxic activity of these NK cells with high expression of NKp46, suggesting that cytotoxicity may be preserved in these immature NK cells. NKp30, NKG2D and NKp44 expression is less affected by the type of SCT. Acknowledgments This work has been partially supported by Project “Evaluación de la reconstitución inmune después del trasplante haploidéntico de progenitores hemopoyéticos sin depleción T” from Fundación Mutua Madrileña. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document