Combination High-Dose Cyclophosphamide and Bortezomib Is Safe and Effective for Stem Cell Harvesting in Chemotherapy Refractory Multiple Myeloma.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5459-5459 ◽  
Author(s):  
Miriam Katzman ◽  
Theresa George ◽  
Heather Doell ◽  
Patricia Danyluk ◽  
Sheri Briggs ◽  
...  

Abstract Introduction: High-dose melphalan and autologous stem cell transplantation is the accepted therapy for most patients with multiple myeloma (MM) following steroid-based induction therapy. In a significant proportion of patients, however, the disease is refractory to standard induction. The use of dose-intense combination chemotherapy, such as D-PACE (dexamethasone, doxorubicin, cyclophosphamide, and cisplatin), may affect the ability to harvest an adequate number of hematopoeitic stem cells prior to transplantation. In addition, in those patients not achieving adequate cytoreduction despite combination chemotherapy, there is a theoretical risk of stem cell product contamination by malignant plasma cells. Bortezomib is a therapeutic agent with a novel mechanism of action, which in preliminary studies appears to be synergistic to alkylating agents and does not appear to affect stem cell yield. We piloted the addition of bortezomib to high-dose cyclophosphamide during stem cell harvesting in a series of patients failing to achieve an adequate response to D-PACE salvage. Patients and Methods: Between 2002 and 2006, fifteen MM patients refractory to standard dexamethasone-based induction therapy received ≥ 2 cycles of D-PACE prior to proceeding to autologous stem cell harvest and transplantation. 7/15 patients achieved adequate cytoreduction and proceeded to high-dose cyclophosphamide (3 g/m2) and filgrastim plus ancestim stimulation for stem cell mobilization. However, 8 patients in this cohort did not achieve adequate disease cytoreduction following D-PACE. Therefore, bortezomib was added to the mobilization regimen on days 1, 4, 8, and 11, in addition to high-dose cyclophosphamide given on day 11. Identical growth factor stimulation was provided. Response assessment included days to stem cell harvest, number of CD34 cells harvested, plasma cells in the product, disease response, and hematologic parameters. Results: Pre-treatment toxicities from D-PACE were similar in both groups. The addition of bortezomib to cyclophosphamide during stem cell mobilization did not lead to increased symptomatic toxicity. Grade 3/4 thrombocytopenia occurred in 5/8 patients receiving combination bortezomib/cyclophosphamide. No episodes of significant bleeding, peripheral neuropathy, or skin rash were noted. The average CD34-positive stem cell harvest in both groups was >5.0 × 106/kg. Time to stem cell harvesting was not significantly different between the groups. Flow cytometric examination of the harvested product from the bortezomib/cyclophosphamide group consistently demonstrated <2% cells bearing plasma cell markers. One patient in each group failed to mobilize sufficient stem cells. Bone marrow plasmacyte counts following combination therapy and harvesting decreased in all assessed patients. Time to engraftment was similar in both groups. Post-transplant disease control and survival remains to be assessed, as some patients in the combination group have only recently undergone transplantation. Conclusion: The addition of bortezomib to high-dose cyclophosphamide during stem cell mobilization does not increase toxicity or decrease stem cell harvest yield or quality, and appears to achieve adequate disease reduction in patients otherwise refractory to combination chemotherapy. This may result in improved relapse-free survival in patients with refractory MM.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5831-5831
Author(s):  
Jun Ishiko ◽  
Kazuaki Sato ◽  
Ruri Kato ◽  
Manabu Kawakami ◽  
Masashi Nakagawa ◽  
...  

Abstract Of late years, newly developed agents, such as bortezomib, lenalidomide, thalidomide, are widely used for treatment against multiple myeloma. After induction therapy, candidates for autologous stem cell transplantation are supposed to be followed by stem cell harvesting. There are several reports showing lenalidomide has a negative impact on stem cell mobilization. This opinion tends to let us refrain from using lenalidomide on the myeloma patients who are eligible for transplantation, even lenalidomide is expected promising. We experienced a series of three clinical cases presenting that stem cells were poorly mobilized with cyclophosphamide (CY) plus G-CSF after lenalidomide treatment, but sequential stem cell mobilization was incredibly improved with high-dose cytarabine plus G-CSF. One additional case who was treated with lenalidomide also presented successful stem cell mobilization with high-dose cytarabine plus G-CSF. Here we show all four cases in detail. Case 1: 66 years old male, symptomatic myeloma after smoldering period. After three course of bortezomib induction, the response was insufficient. Sequentially he was treated with lenalidomide (25mg/day, every day for three weeks with one week rest period) and dexamethasone (Dex) (40mg/day, weekly) for two courses, and finally achieved Partial response (PR). First peripheral blood stem cell harvesting was attempted with high-dose CY (2.0 g/m2, day1-2) + lenograstim (5mg/kg daily, on days 7 until leukapheresis), but mobilization was unsuccessful so harvesting was not performed. For subsequent mobilization, high-dose cytarabine was administered at a dose of 2.0 g/m2 twice daily (day1-2) + lenograstim. Second mobilization was markedly improved, and finally 33.0 x 106/kg CD34+ cells were obtained. Case 2: 63 years old male, symptomatic myeloma, IgG type. This patient was treated with bortezomib, CY and Dex but resulted in disease progression. As an alternative therapy, lenalidomide (10mg/day, daily for three weeks with one week rest) and Dex (40mg, weekly) were used for three cycles. The dose of lenalidomide was reduced due to renal dysfunction. PR was obtained, then first harvesting was attempted with high-dose CY + lenograstim, as case 1, and 0.088 x 106/kg of CD34+ cells were collected, which was not sufficient for transplantation. Second mobilization was performed with high-dose cytarabine as case 1, and consequently we could obtain 60.1 x 106/kg of CD34+ cells; the yield was dramatically improved. Case 3: 41 years old female, symptomatic myeloma after one year course of smoldering myeloma. As an induction therapy, bortezomib, CY and Dex were selected, but finally she could not achieved PR after three cycles. We gave up bortezomib-based induction, and then lenalidomide (15-25 mg on day1-21 with 1 week rest) and Dex (40 mg, weekly) were administrated for five courses, followed by PR. As previous two cases, the first peripheral stem cell collection was initiated with high-dose CY + lenograstim, and it was not sufficient (0.059 x 106/kg of CD34+ cells). And the second mobilization with high-dose cytarabine with lenograstim recovered the yield of stem cell up to 6.90 x 106/kg. Case 4: 63 years old male, symptomatic myeloma. He was treated with bortezomib, Dex with/without CY, but this regimen was not very effectual, and CY caused elevation of aminotransferase (CTCAE grade 3). Then lenalidomide (10-15 mg on day 1-21) and Dex (40 mg, weekly) were administrated for four courses, and the patient achieved PR. Due to the adverse effect of liver dysfunction, we could not use high-dose CY for mobilization. For this case, high-dose cytarabine was selected for first mobilization, and it was very successful, 50.2 x 106/kg of CD34+ cells were harvested. The yields of PBSC from all four cases are summarized on Table 1. These four cases suggest mobilization with high-dose cytarabine could be an alternative option for poor mobilizer of myeloma patient treated with lenalidomide-based induction. This fact may enable us to choose lenalidomide, not only bortezomib, for induction even for transplant-eligible cases. Figure 1 Figure 1. Disclosures Ishiko: Celgene: Honoraria.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2953-2953 ◽  
Author(s):  
Jessica L. Stern ◽  
Brian Di Carlo ◽  
Michael W. Schuster ◽  
Tsiporah B. Shore ◽  
John G. Harpel ◽  
...  

Abstract Standard stem cell mobilization regimens for multiple myeloma patients include G-CSF alone or in combination with high dose cyclophosphamide. Given the known in vitro and in vivo synergy between alkylating agents and proteosome inhibitors, we sought to optimize the potential for concurrent cytoreduction by adding bortezomib to the mobilization regimen. Five evaluable patients, whose prior therapy consisted of six cycles of a 21-day treatment with bortezomib/dexamethasone +/− pegylated liposomal doxorubicin, were mobilized. They received IV push bortezomib at 1.3 mg/m2 on days 1, 4, 8, and 11 in combination with high-dose cyclophosphamide at 3mg/m2 and MESNA on day 8. G-CSF was given for 10 consecutive days starting on day 9. One patient began this regimen in nCR, two were in PR, and two were in CR by urine and serum immunofixation and bone marrow evaluation. Stem cells were easily harvested from each of the five patients. The number of CD34+ cells collected far exceeded the amount normally mobilized with cyclophosphamide and/or G-CSF alone, with four out of 5 patients collected in a single day. The two patients who began the mobilization cycle in PR continued to respond positively. Their protein levels dropped an additional 8.9 and 14.6 percent respectively during the last cycle. The patient who began mobilization in nCR achieved a CR by the end of treatment. Some expected toxicities associated with high dose cyclophosphamide and G-CSF occurred. All patients experienced grade 3 and 4 cytopenias, however, they recovered and were able to continue on to transplant. Serious adverse events of grade 3 chest pain (non-cardiac), grade 4 pneumonia, and grade 4 febrile neutropenia also occurred. Bortezomib in addition to high dose cyclophosphamide followed by G-CSF is a novel, well-tolerated and efficacious combination for stem cell mobilization in patients with multiple myeloma. This regimen not only yields a high number of stem cells within a short collection time, but may further cytoreduce disease as well. Stem Cell Collection Patients Days Required for Collection CD34+ Stem Cells (million/kg) 1 1 21.2 2 1 47.4 3 1 22 4 1 17.9 5 4 40.6


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5823-5823
Author(s):  
Ahmad Antar ◽  
Zaher Otrock ◽  
Mohamed Kharfan-Dabaja ◽  
Hussein Abou Ghaddara ◽  
Nabila Kreidieh ◽  
...  

Abstract Introduction: The optimal stem cell mobilization regimen for patients with multiple myeloma (MM) remains undefined. Most transplant centers use either a chemo-mobilization strategy using cyclophosphamide (CY) and granulocyte-colony stimulating factor (G-CSF) or a steady state strategy using G-CSF alone or with plerixafor in case of mobilization failure. However, very few studies compared efficacy, toxicity and cost-effectiveness of stem cell mobilization with cyclophosphamide (CY) and G-CSF versus G-CSF with preemptive plerixafor. In this study, we retrospectively compared our single center experience at the American University of Beirut in 89 MM patients using fractionated high-dose CY and G-CSF as our past preferred chemo-mobilization strategy in MM patients with our new mobilization strategy using G-CSF plus preemptive plerixafor. The change in practice was implemented when plerixafor became available, in order to avoid CY associated toxicity. Patients and methods: Patients in the CY group (n=62) (Table 1) received either fractionated high-dose CY (n=56) (5g/m2 divided in 5 doses of 1g/m2 every 3 hours) or CY at 50mg/kg/day for 2 doses (n=6). G-CSF was started on day +6 of chemotherapy at a fixed dose of 300 µg subcutaneously every 12 hours. All patients in the plerixafor group (n=27) (Table 1) received G-CSF at a fixed dose of 300 µg subcutaneously every 12 hours daily for 4 days. On day 5, if peripheral blood CD34+ was ≥ 20/µl, apheresis was started immediately. Plerixafor (240 µg/kg) was given 7-11 hours before the first apheresis if CD34+ cell count on peripheral blood on day 5 was <20/µl and before the second apheresis if CD34+ cells on the first collect were <3х106/kg. The median number of prior therapies was 1 (range: 1-3) in both groups. Results: Compared with plerixafor, CY use was associated with higher median peak peripheral blood CD34+ counts (35 vs 111 cells/µl, P= 0.000003), and total CD34+ cell yield (7.5 х 106 vs 15.9 х 106 cells/kg, P= 0.003). All patients in both groups collected ≥4x106 CD34+ cells/Kg. Moreover, 60 (96.7%) and 46 (74.2%) patients in the CY group vs 24 (88.8%) and 6 (22%) patients in the plerixafor group collected >6х106 and >10x106 CD34+ cells/kg, respectively (P=0.16; P<0.00001). Only 4 (6.4%) patients required two apheresis sessions in the CY group compared to 11 (40%) in the plerixafor group (P=0.0001). Conversely, CY use was associated with higher frequency of febrile neutropenia (60% vs 0%; P<0.00001), blood transfusions (27% vs 0%; P<0.00001), platelets transfusion (25% vs 0%; P<0.00001) and hospitalizations (64% vs 0%; P<0.00001). No one required intensive level of care and all recovered. Autografting was successfully performed in all patients using high-dose melphalan with a median time from mobilization to the first transplant of 31 days (range: 16-156) in the CY group compared to 13 days (range: 8-40) in the plerixafor group (P=0.027); and median infused CD34+ cells were 7х106/kg (range: 3.1-15.3) versus 5.27 (2.6-7.45), respectively (P=0.002). The average total cost of mobilization using the adjusted costs based on National Social Security Fund (NSSF) prices in Lebanon in the plerixafor group was slightly higher compared with the CY group ($7964 vs $7536; P=0.16). Conclusions: Our data indicate robust stem cell mobilization in MM patients with either fractionated high-dose CY and G-CSF or G-CSF alone with preemptive plerixafor. The chemo-mobilization approach was associated with two-fold stem cell yield, slightly lower cost (including cost of hospitalization) but significantly increased toxicity. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 541-541
Author(s):  
Geoffrey L. Uy ◽  
Nicholas M. Fisher ◽  
Steven M. Devine ◽  
Hanna J. Khoury ◽  
Douglas R. Adkins ◽  
...  

Abstract Bortezomib (VELCADE®) is a selective inhibitor of the 26S proteasome proven to be safe and effective in the treatment of relapsed or refractory multiple myeloma (MM). While high-dose chemotherapy with autologous hematopoietic stem cell transplant (AHSCT) remains the standard of care, there is considerable interest in incorporating bortezomib into the initial treatment of MM. However, the role of bortezomib in frontline therapy for MM will depend in part on its effects on subsequent stem cell mobilization and engraftment. We conducted a pilot study of bortezomib administered pretransplant followed by high-dose melphalan with AHSCT. Two cycles of bortezomib 1.3 mg/m2 were administered on days 1, 4, 8, and 11 of a 21-day treatment cycle. One week after the last dose of bortezomib, stem cell mobilization was initiated by administering filgrastim 10 mcg/kg/day subcutaneously on consecutive days until stem cell harvest was completed. Stem cell collection began on day 5 of filgrastim via large volume apheresis (20 L/day) performed daily until a minimum of 2.5 x 106 CD34+ cells/kg were collected. Patients were subsequently admitted to the hospital for high-dose melphalan 100 mg/m2/day x 2 days followed by reinfusion of peripheral blood stem cells 48 hours later. Sargramostim 250 mcg/m2/day subcutaneously was administered starting day +1 post-transplant and continued until the absolute neutrophil count (ANC) ≥ 1,500/mm3 for 2 consecutive days. To date, 23 of a planned 40 patients have been enrolled in this study with 19 patients having completed their initial therapy with bortezomib followed by AHSCT. Patient population consists of 16 male and 7 female patients with the median age at diagnosis of 58 years (range 38–68). Myeloma characteristics at diagnosis were as follows (number of patients): IgG (16), IgA (7) with stage II (9) or stage III (14) disease. Prior to receiving bortezomib, 11 patients were treated with VAD (vincristine, Adriamycin and dexamethasone) or DVd (Doxil, vincristine and dexamethasone), 5 patients with thalidomide and 5 patients with both. Two patients did not receive any prior chemotherapy. All patients successfully achieved the target of 2.5 x 106 CD34+ cells/kg in either one (15/19 patients) or two (4/19 patients) collections with the first apheresis product containing a mean of 5.79 x 106 CD34+ cells/kg. Analysis of peripheral blood by flow cytometry demonstrated no significant differences in lymphocyte subsets before and after treatment with bortezomib. Following AHSCT, all patients successfully engrafted with a median time to neutrophil engraftment (ANC ≥ 500/mm3) of 11 days (range 9–14 days). Platelet engraftment (time to platelet count ≥ 20,000/mm3 sustained for 7 days without transfusion) occurred at a median of 12 days (range 9–30 days). Eleven patients were evaluable for response at 100 days post-transplant. Compared to pre-bortezomib paraprotein levels, 3 patients achieved a CR or near CR, 7 maintained a PR while 1 patient developed PD. We conclude that pretransplant treatment with 2 cycles of bortezomib does not adversely affect stem cell yield or time to engraftment in patients with MM undergoing AHSCT. Updated results and detailed analysis will be available at the time of presentation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3321-3321
Author(s):  
Olga Pokrovskaya ◽  
Larisa Mendeleeva ◽  
Irina Kaplanskaya ◽  
Elena Parovichnikova ◽  
Sergei Kulikov ◽  
...  

Abstract BACKGROUND. Angiogenesis is a constant hallmark of multiple myeloma (MM) progression. It has also been reported that bone marrow angiogenesis is a predictive factor of poor survival in newly diagnosed myeloma. The aim of the current study was to investigate the dynamics of bone marrow (BM) microvessel density (MVD) in patients undergoing high-dose therapy (HDT) and autologous stem cell transplantation (ASCT). PATIENTS AND METHODS. 36 patients with newly diagnosed MM (22 in stage II and 14 in stage III according to Salmon and Durie) were included in the study – 21 male and 15 female, median age – 51 ys (range 31–67). All patients underwent HDT that included 3–4 cycles of induction therapy (VAD), stem cell mobilization with cyclophosphamide 6 g/m2 and G-CSF 5 mcg/kg, EDAP and single or tandem ASCT with melphalan 200 mg/ m2. The BM biopsies for histological and immunohistochemical analysis were performed at the time of diagnosis, after induction, after stem cell mobilization before the 1st ASCT and after the end of therapy (5 times during the treatment). The Control group consisted of normal BM donors (7 male and 3 female, median age 29, (17–59)) who underwent BM biopsy during BM harvesting for alloBMT. Blood vessels were highlighted by immunostaining of endothelial cells with a monoclonal antibody to CD34 (Novocastra Lab Ltd). The MVD was calculated in 10 fields using an 40x objective and 16x ocular lens. RESULTS. At diagnosis in all MM pts, MVD was extremely high compared to normal donors (152±8 vs 74±4). A significant decrease of BM MVD was observed after each phase of therapy: after the induction therapy the MVD was 124±6; before the 1st ASCT – 109±5 and at the end of treatment – 97±3. There was a statistically significant increase of MVD after stem cell mobilization due to G-CSF (143±4). Although there was a marked decrease of BM MVD in MM pts with CR or VGPR, it nevertheless stayed significantly higher compared with control group (p<0,001). The analysis of probability of CR or VGPR duration after ASCT according to MVD at different phases of therapy showed that MVD at diagnosis and before the 1-st ASCT are important prognostic factors. Probability of duration of CR or VGPR was 63% in group with low MVD before the 1st ASCT compared with 15% in group with high MVD (p<0,02). MVD was revealed to be more powerful prognostic factor for progression free survival (PFS) then CR or VGPR achievement. CONCLUSION. BM angiogenesis is increased in patients with MM. BM MVD is decreased during and after treatment however even after the completion of HDT and ASCT, the MVD is higher then in the normal control group. There is a statistically significant increase of MVD after stem cell mobilization with cyclophosphamide and G-CSF. MVD at the time of diagnosis and before the 1-st ASCT are important prognostic factors for overall-survival and PFS after ASCT. MVD before the 1-st ASCT appears to be a more powerful prognostic factor for PFS then remission rate.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2990-2990
Author(s):  
Esa Jantunen ◽  
Ville Varmavuo ◽  
Piia Valonen ◽  
Taru Kuittinen ◽  
Tapio Nousiainen ◽  
...  

Abstract Abstract 2990 Background: Mobilization of blood stem cells is difficult in a subgroup of patients with standard methods. Plerixafor, a CXCR4 antagonist, has been used for stem cell mobilization in combination with G-CSF for some years. Mobilization method used may affect not only efficacy of stem cell mobilization and collection but also graft content which on the other hand may have effect on post-transplant outcomes. No data is available on CD34+ subclasses in grafts collected after plerixafor administration in patients who mobilize poorly with chemotherapy plus G-CSF. Patients and Methods: Altogether blood stem cell grafts collected from 26 NHL patients were studies. Thirteen patients (8 M, 5 F, median age 51 yrs) were mobilized with a combination of chemotherapy and G-CSF ad received plerixafor due to poor mobilization followed by stem cell apheressis. Thirteen patients (10 M, 3 F, median age 56 yrs) were mobilized with chemotherapy plus G-CSF without plerixafor and served as controls. Samples from the first collection after plerixafor and from the first apheresis of control patients were studied by flow cytometry using the following antibodies: CD34, CD38, CD 117, CD133, CD19 and CD45. Viability of CD34+ cells after freezing was assessed with 7-aminoactinomycin D staining. Also in vitro growth of granulocyte/macrophage progenitors (GM-CFU) were assessed from all grafts. Patients were followed after high-dose chemotherapy in regard to hematopoietic reconstitution. Results: The number of viable cells in the grafts was comparable between the plerixafor and the control groups (Table 1). The number of the most primitive stem cells (CD34+CD38−CD133+) was higher in plerixafor mobilized grafts (Table 1). Most of the CD34+ cells were myeloid progenitors, as defined by their CD117 antigen co-expression. No differences in GM-CFU were observed between the groups. All except one patient had received high-dose therapy. The median number of CD34+ cells collected from the patients was comparable (3.1 vs. 3.3 × 106/kg). The median time to reach neutrophils > 10 × 109/L was 10 days from the stem cell infusion in both groups and time to unsupported platelets was also comparable (16 d vs. 13 d). Platelet counts at 1 month, 3 months and 6 months were comparable between the groups. Absolute lymphocyte counts were higher in plerixafor group but the differences were not statistically significant. One early toxic death occurred in the plerixafor mobilized group and one death due to disease recurrence in both groups with a median follow-up of 301 and 348 days from stem cell infusion in prelixafor and control groups, respectively. Conclusions: Plerixafor added to chemomobilization in NHL patients resulted in higher number of the most primitive CD34+ cells in the graft with comparable in vitro growth and engraftment potential after BEAM chemotherapy when compared to patients mobilized without plerixafor. Longer follow-up of higher patient numbers are needed to evaluate whether differences in graft content have an effect on patient outcomes. Disclosures: Jantunen: Genzyme: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5433-5433
Author(s):  
Jakub Radocha ◽  
Vladimir Maisnar ◽  
Miriam Lanska ◽  
Jiri Hanousek ◽  
Katerina Machalkova ◽  
...  

Abstract Stem cell mobilization after various induction regimens in patients with multiple myeloma Introduction: Rapid development of novel therapies for multiple myeloma has led to a significant improvement in response to the treatment. Stem cell mobilization before autologous stem cell transplantation is a source of considerable costs of transplant procedure. Whether modern induction regimens affect outcome of stem cell mobilization has not been extensively studied. Aim: The goal of this study was to compare efficacy of stem cell mobilization after different induction regimens in patients with multiple myeloma. The primary goal was to compare CTD (cyclophosphamide, thalidomide, dexamethasone), CVD (cyclophosphamide, bortezomib, dexamethasone) and VTD (bortezomib, thalidomide, dexamethasone) and regimens in terms of succesful stem cell collection. Methods: All patients with multiple myeloma who have been planned for stem cell collection and were treated with one of the above mentioned regimens were included in this retrospective analysis. The demographic data, amount of stem cells collected, number of days needed to reach the target collection were recorded. All patients received high dose cyclophosphamide 2,5 g/m2 prior to stem cell collection and were primed with G-CSF twice daily from day 5. The collection was started at day 10. Collection goal was 8x106/kg CD34+ cells. Results: 15 patients received CTD, 25 patients CVD and 16 patients VTD regimen before stem cell collection. Groups were comparable according to age, gender and myeloma stages. Mean collected cells at the end of collection were 9.2 (SD 2.8) for CTD, 12.3 (SD 5.6) for CVD and 10.1 (SD 2.1) for VTD (p=0.066). Mean daily harvest was 3.4, 8.0 and 7.6 x106/kg respectively (p=0.01). Mean days needed to reach desired harvest were 3, 2.25 and 1.6 days (p=0.001). No collection failure was observed. Conclusion: The best collection results were seen in patients after induction with CVD or VTD regimen. VTD regimen also required the least days for collection and seems to be most beneficial for cost of collection. CTD regimen shows the least efficacy in stem cell collection before autologous transplantation. All patients managed to harvest for at least one stem cell transplant. Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document