Identification of Pleiotrophin as a Novel Growth Factor for Hematopoietic Stem and Progenitor Cells.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1404-1404
Author(s):  
Heather Himburg ◽  
Garrett Muramoto ◽  
Sarah Meadows ◽  
Alice Salter ◽  
Ningyi Zi ◽  
...  

Abstract Hematopoietic stem and progenitor cells have been demonstrated to reside in association with bone marrow sinusoidal endothelial cells in vivo but the mechanisms through which the BM vascular niche regulates hematopoiesis remains incompletely defined. In an attempt to identify candidate soluble growth factors for hematopoietic stem cells (HSCs) which are produced by endothelial cells (Ecs), we have performed comparative genome-wide expression analysis of a primary human brain-derived Ecs which we have previously demonstrated to support a 10-fold expansion of human SCID-repopulating cells (SRCs) in non-contact cultures. This analysis revealed that pleiotrophin (PTN), a heparin binding growth factor, was 32-fold overexpressed in HUBECs that supported human HSC expansion as compared to non-supportive EC lines. Pleiotrophin has anti-apoptotic, mitogenic and transforming activities, suggesting a role in tumorigenesis. No role for pleiotrophin in hematopoiesis has been described. In order to determine if PTN contributes to the demonstrated HSC-supportive activity of HUBECs, the activity of PTN was blocked by adminstration of a neutralizing anti-PTN mAb to the coculture model. Three doses of PTN neutralizing antibody (5, 25, and 50 ug/ml) were added to non-contact cocultures of HUBECs with human cord blood CD34+CD38-lin- HSCs. The anti-PTN treatment caused a decrease in the numbers of phenotypic HSCs in culture in a dose dependent manner. Relative to control HUBEC cultures, the % and expansion of CD34(+) progenitors decreased signficantly at the two higher doses of anti-PTN (p<0.05, respectively). Additionally, CD34(+)CD38(−) lin(−) progenitors were decreased by 33% at the highest dose of anti-PTN compared to control HUBEC cultures (p<0.05). Transplantation studies of anti-PTN treated versus control HUBEC-cultured progeny into NOD/SCID mice are ongoing to confirm the central role of PTN in the expansion of human HSCs in culture. In a correlative study, the addition of recombinant PTN to cultures of human HSCs with thrombopoietin, SCF and flt-3 ligand was shown to significantly increase CD34+ cell content and CD34+CD38- cell content compared to cytokines alone, again in a dose-dependent manner. Taken together these results suggest that PTN, a growth factor with no previously ascribed hematopoietic activity, is a soluble growth factor for human hematopoietic progenitor cells. Since blockade of PTN activity significantly inhibits the soluble activity of HUBECs to support human HSC proliferation and expansion, PTN is also a candidate growth factor for further study in the context of understanding the function of the BM vascular niche.

2021 ◽  
Vol 8 ◽  
Author(s):  
Ilaria Laurenzana ◽  
Stefania Trino ◽  
Daniela Lamorte ◽  
Angelo De Stradis ◽  
Michele Santodirocco ◽  
...  

Multiple myeloma (MM) is characterized by the abnormal proliferation of clonal plasma cells (PCs) in bone marrow (BM). MM-PCs progressively occupy and likely alter BM niches where reside hematopoietic stem and progenitor cells (HSPCs) whose viability, self-renewal, proliferation, commitment, and differentiation are essential for normal hematopoiesis. Extracellular vesicles (EVs) are particles released by normal and neoplastic cells, such as MM cells. They are important cell-to-cell communicators able to modify the phenotype, genotype, and the fate of the recipient cells. Investigation of mechanisms and mediators underlying HSPC-MM-PC crosstalk is warranted to better understand the MM hematopoietic impairment and for the identification of novel therapeutic strategies against this incurable malignancy. This study is aimed to evaluate whether EVs released by MM-PCs interact with HSPCs, what effects they exert, and the underlying mechanisms involved. Therefore, we investigated the viability, cell cycle, phenotype, clonogenicity, and microRNA profile of HSPCs exposed to MM cell line-released EVs (MM-EVs). Our data showed that: (i) MM cells released a heterogeneous population of EVs; (ii) MM-EVs caused a dose-dependent reduction of HSPCs viability; (iii) MM-EVs caused a redistribution of the HSPC pool characterized by a significant increase in the frequency of stem and early precursors accompanied by a reduction of late precursor cells, such as common myeloid progenitors (CMPs), megakaryocyte erythroid progenitors (MEPs), B and NK progenitors, and a slight increase of granulocyte macrophage progenitors (GMPs); (iv) MM-EVs caused an increase of stem and early precursors in S phase with a decreased number of cells in G0/G1 phase in a dose-dependent manner; (v) MM-EVs reduced the HSPC colony formation; and (vi) MM-EVs caused an increased expression level of C-X-C motif chemokine receptor type 4 (CXCR4) and activation of miRNAs. In conclusion, MM cells through the release of EVs, by acting directly on normal HSPCs, negatively dysregulate normal hematopoiesis, and this could have important therapeutic implications.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Aimin Yang ◽  
Xia Xiao ◽  
Mingfeng Zhao ◽  
Amanda C. LaRue ◽  
Bradley A. Schulte ◽  
...  

Abnormal activation of the mammalian target of rapamycin (mTOR) signaling pathway has been observed in a variety of human cancers. Therefore, targeting of the mTOR pathway is an attractive strategy for cancer treatment and several mTOR inhibitors, including AZD8055 (AZD), a novel dual mTORC1/2 inhibitor, are currently in clinical trials. Although bone marrow (BM) suppression is one of the primary side effects of anticancer drugs, it is not known if pharmacological inhibition of dual mTORC1/2 affects BM hematopoietic stem and progenitor cells (HSPCs) function and plasticity. Here we report that dual inhibition of mTORC1/2 by AZD or its analogue (KU-63794) depletes mouse BM Lin−Sca-1+c-Kit+cells in cultures via the induction of apoptotic cell death. Subsequent colony-forming unit (CFU) assays revealed that inhibition of mTORC1/2 suppresses the clonogenic function of hematopoietic progenitor cells (HPCs) in a dose-dependent manner. Surprisingly, we found that dual inhibition of mTORC1/2 markedly inhibits the growth of day-14 cobblestone area-forming cells (CAFCs) but enhances the generation of day-35 CAFCs. Given the fact that day-14 and day-35 CAFCs are functional surrogates of HPCs and hematopoietic stem cells (HSCs), respectively, these results suggest that dual inhibition of mTORC1/2 may have distinct effects on HPCs versus HSCs.


2016 ◽  
Vol 6 (3) ◽  
pp. 864-876 ◽  
Author(s):  
Jennifer L. Gori ◽  
Jason M. Butler ◽  
Balvir Kunar ◽  
Michael G. Poulos ◽  
Michael Ginsberg ◽  
...  

mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Cristina Bono ◽  
Alba Martínez ◽  
Javier Megías ◽  
Daniel Gozalbo ◽  
Alberto Yáñez ◽  
...  

ABSTRACT Toll-like receptor (TLR) agonists drive hematopoietic stem and progenitor cells (HSPCs) to differentiate along the myeloid lineage. In this study, we used an HSPC transplantation model to investigate the possible direct interaction of β-glucan and its receptor (dectin-1) on HSPCs in vivo. Purified HSPCs from bone marrow of B6Ly5.1 mice (CD45.1 alloantigen) were transplanted into dectin-1−/− mice (CD45.2 alloantigen), which were then injected with β-glucan (depleted zymosan). As recipient mouse cells do not recognize the dectin-1 agonist injected, interference by soluble mediators secreted by recipient cells is negligible. Transplanted HSPCs differentiated into macrophages in response to depleted zymosan in the spleens and bone marrow of recipient mice. Functionally, macrophages derived from HSPCs exposed to depleted zymosan in vivo produced higher levels of inflammatory cytokines (tumor necrosis factor alpha [TNF-α] and interleukin 6 [IL-6]). These results demonstrate that trained immune responses, already described for monocytes and macrophages, also take place in HSPCs. Using a similar in vivo model of HSPC transplantation, we demonstrated that inactivated yeasts of Candida albicans induce differentiation of HSPCs through a dectin-1- and MyD88-dependent pathway. Soluble factors produced following exposure of HSPCs to dectin-1 agonists acted in a paracrine manner to induce myeloid differentiation and to influence the function of macrophages derived from dectin-1-unresponsive or β-glucan-unexposed HSPCs. Finally, we demonstrated that an in vitro transient exposure of HSPCs to live C. albicans cells, prior to differentiation, is sufficient to induce a trained phenotype of the macrophages they produce in a dectin-1- and Toll-like receptor 2 (TLR2)-dependent manner. IMPORTANCE Invasive candidiasis is an increasingly frequent cause of serious and often fatal infections. Understanding host defense is essential to design novel therapeutic strategies to boost immune protection against Candida albicans. In this article, we delve into two new concepts that have arisen over the last years: (i) the delivery of myelopoiesis-inducing signals by microbial components directly sensed by hematopoietic stem and progenitor cells (HSPCs) and (ii) the concept of “trained innate immunity” that may also apply to HSPCs. We demonstrate that dectin-1 ligation in vivo activates HSPCs and induces their differentiation to trained macrophages by a cell-autonomous indirect mechanism. This points to new mechanisms by which pathogen detection by HSPCs may modulate hematopoiesis in real time to generate myeloid cells better prepared to deal with the infection. Manipulation of this process may help to boost the innate immune response during candidiasis.


Science ◽  
2020 ◽  
Vol 370 (6521) ◽  
pp. 1186-1191
Author(s):  
Dionna M. Kasper ◽  
Jared Hintzen ◽  
Yinyu Wu ◽  
Joey J. Ghersi ◽  
Hanna K. Mandl ◽  
...  

Definitive hematopoietic stem and progenitor cells (HSPCs) arise from the transdifferentiation of hemogenic endothelial cells (hemECs). The mechanisms of this endothelial-to-hematopoietic transition (EHT) are poorly understood. We show that microRNA-223 (miR-223)–mediated regulation of N-glycan biosynthesis in endothelial cells (ECs) regulates EHT. miR-223 is enriched in hemECs and in oligopotent nascent HSPCs. miR-223 restricts the EHT of lymphoid-myeloid lineages by suppressing the mannosyltransferase alg2 and sialyltransferase st3gal2, two enzymes involved in protein N-glycosylation. ECs that lack miR-223 showed a decrease of high mannose versus sialylated sugars on N-glycoproteins such as the metalloprotease Adam10. EC-specific expression of an N-glycan Adam10 mutant or of the N-glycoenzymes phenocopied miR-223 mutant defects. Thus, the N-glycome is an intrinsic regulator of EHT, serving as a key determinant of the hematopoietic fate.


PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0119086 ◽  
Author(s):  
Lucia E. Duinhouwer ◽  
Nesrin Tüysüz ◽  
Elwin W. J. C. Rombouts ◽  
Mariette N. D. ter Borg ◽  
Enrico Mastrobattista ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2409-2409
Author(s):  
Yiwen Song ◽  
Sonja Vermeren ◽  
Wei Tong

Abstract ARAP3 is a member of the dual Arf-and-Rho GTPase-activating proteins (GAP) family, functioning specifically to inactivate its substrates Arf6 and RhoA GTPases. ARAP3 is translocated to the plasma membrane after PIP3 binding to the first two of its five PH domains, facilitating its GAP activity in a PI3K-mediated manner. Rho family GTPases are found to play critical roles in many aspects of hematopoietic stem and progenitor cells (HSPCs), such as engraftment and migration, while a role for Arf family GTPases in hematopoiesis is less defined. Previous studies found that either exogenous ARAP3 expression in epithelial cells or RNAi-mediated ARAP3 depletion in endothelial cells disrupts F-actin or lamellipodia formation, respectively, resulting in a cell rounding phenotype and failure to spread. This implies that ARAP3 control of Arf6 and RhoA is tightly regulated, and maintaining precise regulation of ARAP3 levels is crucial to actin organization in the cell. Although ARAP3 was first identified in porcine leukocytes, its function in the hematopoietic system is incompletely understood. Germline deletion of Arap3 results in embryonic lethality due to angiogenic defects. Since endothelial cells are important for the emergence of HSCs during embryonic development, early lethality precludes further studying the role of ARAP3 in definitive hematopoiesis. Therefore, we generated several transgenic mouse models to manipulate ARAP3 in the hematopoietic compartment: (1) Arap3fl/fl;Vav-Cretg conditional knockout mice (CKO) deletes ARAP3 specifically in hematopoietic cells, (2) Arap3fl/fl;VE-Cadherin -Cretg CKO mice selectively deletes ARAP3 in embryonic endothelial cells and thereby hematopoietic cells, and (3) Arap3R302,3A/R302,3A germline knock-in mice (KI/KI) mutates the first PH domain to ablate PI3K-mediated ARAP3 activity in all tissues. We found an almost 100% and 90% excision efficiency in the Vav-Cretg- and VEC-Cretg- mediated deletion of ARAP3 in the bone marrow (BM), respectively. However, the CKO mice appear normal in steady-state hematopoiesis, showing normal peripheral blood (PB) counts and normal distributions of all lineages in the BM. Interestingly, we observed an expansion of the Lin-Scal+cKit+ (LSK) stem and progenitor compartment in the CKO mice. This is due to an increase in the multi-potent progenitor (MPP) fraction, but not the long-term or short-term HSC (LT- or ST-HSC) fractions. Although loss of ARAP3 does not alter the frequency of phenotypically-characterized HSCs, we performed competitive BM transplantation (BMT) studies to investigate the functional impact of ARAP3 deficiency. 500 LSK cells from Arap3 CKO (Arap3fl/fl;Vav-Cretg and Arap3fl/fl;VEC-Cretg) or Arap3fl/fl control littermate donors were transplanted with competitor BM cells into irradiated recipients. We observed similar donor-derived reconstitution and lineage repopulation in the mice transplanted with Arap3fl/fl and Arap3 CKO HSCs. Moreover, Arap3 CKO HSCs show normal reconstitution in secondary transplants. Arap3 KI/KI mice are also grossly normal and exhibit an expanded MPP compartment. Importantly, Arap3KI/KI LSKs show impaired reconstitution compared to controls in the competitive BMT assays. Upon secondary and tertiary transplantation, reconstitution in both PB and BM diminished in the Arap3KI/KI groups, in contrast to sustained reconstitution in the control group. Additionally, we observed a marked skewing towards the myeloid lineage in Arap3KI/KI transplanted secondary and tertiary recipients. These data suggest a defect in HSC function in Arap3KI/KI mice. Myeloid-skewed reconstitution also points to the possibility of selection for “myeloid-primed” HSCs and against “balanced” HSCs, as HSCs exhaust during aging or upon serial transplantation. Taken together, our data suggest that ARAP3 plays a non-cell-autonomous role in HSCs by regulating HSC niche cells. Alternatively, the ARAP3 PH domain mutant that is incapable of locating to the plasma membrane in response to PI3K may exert a novel dominant negative function in HSCs. We are investigating mechanistically how ARAP3 controls HSC engraftment and self-renewal to elucidate the potential cell-autonomous and non-cell-autonomous roles of ARAP3 in HSCs. In summary, our studies identify a previously unappreciated role of ARAP3 as a regulator of hematopoiesis and hematopoietic stem and progenitor cell function. Disclosures: No relevant conflicts of interest to declare.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2149
Author(s):  
Zhi Feng ◽  
Chenyu Lin ◽  
Limei Tu ◽  
Ming Su ◽  
Chunyu Song ◽  
...  

Hematopoietic stem cells (HSCs) are a specialized subset of cells with self-renewal and multilineage differentiation potency, which are essential for their function in bone marrow or umbilical cord blood transplantation to treat blood disorders. Expanding the hematopoietic stem and progenitor cells (HSPCs) ex vivo is essential to understand the HSPCs-based therapies potency. Here, we established a screening system in zebrafish by adopting an FDA-approved drug library to identify candidates that could facilitate HSPC expansion. To date, we have screened 171 drugs of 7 categories, including antibacterial, antineoplastic, glucocorticoid, NSAIDS, vitamins, antidepressant, and antipsychotic drugs. We found 21 drugs that contributed to HSPCs expansion, 32 drugs’ administration caused HSPCs diminishment and 118 drugs’ treatment elicited no effect on HSPCs amplification. Among these drugs, we further investigated the vitamin drugs ergocalciferol and panthenol, taking advantage of their acceptability, limited side-effects, and easy delivery. These two drugs, in particular, efficiently expanded the HSPCs pool in a dose-dependent manner. Their application even mitigated the compromised hematopoiesis in an ikzf1−/− mutant. Taken together, our study implied that the larval zebrafish is a suitable model for drug repurposing of effective molecules (especially those already approved for clinical use) that can facilitate HSPCs expansion.


Sign in / Sign up

Export Citation Format

Share Document