Synergistic Induction of Apoptosis by Simultaneous Disruption of the Bcl-2 and mTOR/Akt Pathways in Acute Myeloid Leukemia.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1588-1588
Author(s):  
Zhihong Zeng ◽  
Ismael Samudio ◽  
Michael Andreeff ◽  
Marina Konopleva

Abstract Activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway provides survival signals for leukemic cells and blockade of this pathway may facilitate cell death. Akt/mTOR activation is a frequent event in AML that translates into significantly shorter survival of AML patients (S.M. Kornblau, ASH 2007). Bcl-2 family proteins are key regulators of apoptosis that are known to promote tumorigenesis and chemoresistance. We have recently reported that ABT-737, a small molecule BH3 mimetic, effectively kills AML progenitor cells via the disruption of Bcl-2:Bax, but its activity is largely diminished in cells overexpressing Mcl-1 (M. Konopleva, Cancer Cell 2006). We have now investigated anti-leukemia efficacy of concomitant blockade of mTOR/Akt, known to regulate Mcl-1 levels, and of Bcl-2 signaling. Combined use of rapamycin derivative temsirolimus and ABT-737 induced striking apoptotic responses in AML cell lines OCI-AML3 and MOLM13 leukemic cells. Mechanistically, temsirolimus downregulated expression of the anti-apoptotic protein Mcl-1 and induced expression levels of the proapoptotic BH3-only protein Noxa which specifically neutralizes Mcl-1. These effects were seen upon prolonged temsirolimus treatment that inhibited mTORC2 complex (Zeng, Blood 2007) and downregulated Akt phosphorylation. In primary AML samples co-cultured with bone marrow-derived stromal cells, ABT-737 at 25nM induced apoptotic cell death in CD34+ AML progenitor cells from 13 of the 16 samples tested. Temsirolimus/ABT-737 combination markedly enhanced apoptosis induction in 8/9 primary samples that were sensitive to temsirolimus alone (specific apoptosis, temsirolimus 15±5%; ABT-737, 28±5.9%; temsirolimus+ABT, 45±5.9%, p<0.001) and in 3/7 samples resistant to temsirolimus (p=0.7). Further, combined blockade of mTOR/AKT and Bcl-2 pathway effectively induced apoptosis in 3 AML samples resistant to ABT-737 alone. Taken together, these results indicate that temsirolimus can directly alter the Bcl-2 apoptotic rheostat via induction of Noxa and decreased Mcl-1 expression sensitizing leukemia cells to apoptosis induced by BH3 mimetics. The combined use of agents interfering with AKT/mTOR and Bcl-2 pathways may be a highly effective anti-leukemia strategy that induces apoptosis in AML progenitor cells in the context of bone marrow microenvironment.

Blood ◽  
2012 ◽  
Vol 120 (13) ◽  
pp. 2679-2689 ◽  
Author(s):  
Zhihong Zeng ◽  
Yue Xi Shi ◽  
Twee Tsao ◽  
YiHua Qiu ◽  
Steven M. Kornblau ◽  
...  

Abstract The interactions between the bone marrow (BM) microenvironment and acute myeloid leukemia (AML) is known to promote survival of AML cells. In this study, we used reverse phase-protein array (RPPA) technology to measure changes in multiple proteins induced by stroma in leukemic cells. We then investigated the potential of an mTOR kinase inhibitor, PP242, to disrupt leukemia/stroma interactions, and examined the effects of PP242 in vivo using a mouse model. Using RPPA, we confirmed that multiple survival signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), were up-regulated in primary AML cells cocultured with stroma. PP242 effectively induced apoptosis in primary samples cultured with or without stroma. Mechanistically, PP242 attenuated the activities of mTORC1 and mTORC2, sequentially inhibited phosphorylated AKT, S6K, and 4EBP1, and concurrently suppressed chemokine receptor CXCR4 expression in primary leukemic cells and in stromal cells cultured alone or cocultured with leukemic cells. In the in vivo leukemia mouse model, PP242 inhibited mTOR signaling in leukemic cells and demonstrated a greater antileukemia effect than rapamycin. Our findings indicate that disrupting mTOR/AKT signaling with a selective mTOR kinase inhibitor can effectively target leukemic cells within the BM microenvironment.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2405-2405
Author(s):  
Wei Shi ◽  
Therese Vu ◽  
Glen Boyle ◽  
Fares Al-Ejeh ◽  
Tej Pandita ◽  
...  

Abstract Single-stranded DNA binding (SSB) proteins are essential for a variety of DNA metabolic processes and the maintenance of genomic stability. SSB1 and its homolog SSB2, share greater sequence and domain homology to the archaeal and bacterial SSBs than eukaryotic RPA. They form complexes with two other proteins, C9Orf80 and INTS3, and play roles in mediating transcription and DNA repair. SSB1 (also known as OBFC2B or NABP2) is recurrently mutated in various cancers, however the precise function in normal development is incompletely understood. We have previously shown that Ssb1 is required for skeletogenesis, telomeric homeostasis and genomic stability in vivo while Ssb2 knockout mice are viable and grow normally without any detectable phenotype. Interestingly, we observed pronounced upregulation of Ssb2 in response to Ssb1 deletion and modest up-regulation of Ssb1 in response to Ssb2 deletion, suggesting that Ssb1 and Ssb2 may have some overlapping functions. To investigate the specific roles of both Ssb1 and Ssb2 in adult tissue homeostasis, we generated conditional double-knockout (DKO) mouse models of both genes. DKO in adult mice was achieved by using a tamoxifen-inducible Cre (Ssb1fl/fl Ssb2fl/fl R26-CreERT2), in which Ssb1 and Ssb2 are conditionally deleted by the administration of tamoxifen. Induced DKO mice become moribund within seven days featured with pancytopenia and dramatic loss of hematopoietic stem and progenitor cells (HSPCs), suggesting that Ssb1 and Ssb2 are required for the maintenance of haematopoietic stem and progenitors cells (HSPCs). DKO bone marrow was markedly hypocellular with reduction in all lineages of haematopoietic development. Functionally, HSPCs in DKO mice show decreased quiescence at the early stage followed by decreased proliferation and increased cell loss due to apoptotic cell death at the later stage, suggesting the imbalanced bone marrow homeostasis upon DKO may eventually result in exhaustion of the stem cell pool in DKO mice. Furthermore, bona fide HSPC intrinsic functional deficiency caused by DKO was confirmed by competitive bone marrow transplant, where DKO bone marrows showed abolished differentiation capacity and failed to repopulate the bone marrows of recipient mice after induction of DKO in the established engraftments from the Ssb1fl/fl Ssb2fl/fl R26-CreERT2 donors. Gene expression of DKO HSPCs demonstrated an exacerbated p53/p21 DNA damage response and pronounced interferon response. Validating these findings, stabilization of p53 and increased apoptotic cell death were observed in DKO bone marrows and HSPCs and induction of cell cycle and expression of interferon target genes was confirmed by QPCR. DKO HSPCs have increased expression of IFN induced surface markers such as Sca1. The IFN response was intrinsic to HSPCs. Mechanistically, DKO HSPCs manifest a profile of stalled replication forks on DNA combing analysis, unrepaired double strand breaks (increased gammaH2Ax foci and alkaline comet tail moment) and telomeric loss resulting in widespread chromosomal instability. DKO HSPC showed aberrant cytoplasmic accumulation of single stranded DNAs, with R-loop formation (DNA:RNA hybrid), driving this genetic instability and cell-intrinsic interferon response. Altogether, these data provide strong evidence that Ssb1 and Ssb2 have essential functions in regulating haematopoiesis through repairing replication associated DNA damage as well as resolution of R-loop generated during transcription, to maintain genomic stability during normal HSPC homeostasis. Disclosures No relevant conflicts of interest to declare.


Endocrinology ◽  
2001 ◽  
Vol 142 (1) ◽  
pp. 205-212 ◽  
Author(s):  
AnneMarie Gagnon ◽  
Patti Dods ◽  
Nicolas Roustan-Delatour ◽  
Ching-Shih Chen ◽  
Alexander Sorisky

Abstract Adipocyte number, a determinant of adipose tissue mass, reflects the balance between the rates of proliferation/differentiation vs. apoptosis of preadipocytes. The percentage of 3T3-L1 preadipocytes undergoing cell death following serum deprivation was reduced by 10 nm insulin-like growth factor (IGF)-1 (from 50.0 ± 0.7% for control starved cells to 27.5 ± 3.1%). TUNEL staining confirmed the apoptotic nature of the cell death. The protective effect of IGF-1 was blocked by phosphoinositide 3-kinase (PI3K) inhibitors, wortmannin, and LY294002, but was unaffected by rapamycin, PD98059, or SB203580, which inhibit mammalian target of rapamycin (mTOR), ERK kinase (MEK1), and p38 MAPK respectively. Exogenous PI(3,4,5)P3 (10 μm), the principal product of IGF-1-stimulated PI3K in 3T3-L1 preadipocytes, had a modest survival effect on its own, reducing cell death from 47.9± 3.4% to 35.6 ± 3.5%. When added to the combination of IGF-1 and LY294002, PI(3,4,5)P3 reversed most of the inhibitory effect of LY294002 on IGF-1-dependent cell survival, protein kinase B/Akt phosphorylation, and caspase-3 activity. Taken together, these results implicate PI(3,4,5)P3 as a necessary signal for the anti-apoptotic action of IGF-1 on 3T3-L1 preadipocytes.


Development ◽  
2000 ◽  
Vol 127 (12) ◽  
pp. 2593-2606 ◽  
Author(s):  
M. Handler ◽  
X. Yang ◽  
J. Shen

Mutations in Presenilin-1 (PS1) are a major cause of familial Alzheimer's disease. Our previous studies showed that PS1 is required for murine neural development. Here we report that lack of PS1 leads to premature differentiation of neural progenitor cells, indicating a role for PS1 in a cell fate decision between postmitotic neurons and neural progenitor cells. Neural proliferation and apoptotic cell death during neurogenesis are unaltered in PS1(−/−) mice, suggesting that the reduction in the neural progenitor cells observed in the PS1(−/−) brain is due to premature differentiation of progenitor cells, rather than to increased apoptotic cell death or decreased cell proliferation. In addition, the premature neuronal differentiation in the PS1(−/−) brain is associated with aberrant neuronal migration and disorganization of the laminar architecture of the developing cerebral hemisphere. In the ventricular zone of PS1(−/−) mice, expression of the Notch1 downstream effector gene Hes5 is reduced and expression of the Notch1 ligand Dll1 is elevated, whereas expression of Notch1 is unchanged. The level of Dll1 transcripts is also increased in the presomitic mesoderm of PS1(−/−) embryos, while the level of Notch1 transcripts is unchanged, in contrast to a previous report (Wong et al., 1997, Nature 387, 288–292). These results provide direct evidence that PS1 controls neuronal differentiation in association with the downregulation of Notch signalling during neurogenesis.


2004 ◽  
Vol 32 (03) ◽  
pp. 377-387 ◽  
Author(s):  
Hyung-Jin Kim ◽  
Seon Il Jang ◽  
Young-Jun Kim ◽  
Hyun-Ock Pae ◽  
Hae-Young Won ◽  
...  

We studied the effect of 4-acetyl-12,13-epoxyl-9-trichothecene-3,15-diol (AETD) isolated from Isaria japonica, one of the most popular Chinese fungal medicines, on the induction of apoptosis in rat bladder carcinoma NBT-II cells. AETD was cytotoxic to NBT-II cells, and this cytotoxic effect appears to be attributed to its induction of apoptotic cell death, as AETD induced nuclear morphological changes and internucleosomal DNA fragmentation, and increased the proportion of hypodiploid cells and activity of caspase-3. AETD treatment also decreased the expression of the anti-apoptotic protein Bcl-2 and increased the expression of the pro-apoptotic protein Bax. These results provide important information in understanding the mechanism(s) of AETD-induced apoptosis.


Acta Naturae ◽  
2012 ◽  
Vol 4 (3) ◽  
pp. 88-94 ◽  
Author(s):  
M. A. Savitskaya ◽  
M. S. Vildanova ◽  
O. P. Kisurina-Evgenieva ◽  
E. A. Smirnova ◽  
G. E. Onischenko

Vitamin E derivatives are known to act as agents exhibiting cytotoxity against tumor cells. The effect of vitamin E succinate on human epidermoid carcinoma cell line A431 was investigated in this study using live imaging, immunocytochemistry, and transmission electron microscopy. -Tocopheryl succinate-induced apoptotic cell death in A431 cells was shown to be both dose- and time-dependent. The hyperproduction of reactive oxygen species, changes in size, shape and ultrastructural characteristics of mitochondria followed by the release of cytochrome c from mitochondria to cytosol were observed. These results suggest that -tocopheryl succinate induces apoptosis that occurs via the mitochondrial pathway. Mitochondria are shown to be crucial targets in -tocopheryl succinate-induced caspase-dependent cell death in human carcinoma A431 cells.


Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 207 ◽  
Author(s):  
Yi-Yue Wang ◽  
Jun Hyeok Kwak ◽  
Kyung-Tae Lee ◽  
Tsegaye Deyou ◽  
Young Pyo Jang ◽  
...  

The seeds of Millettia ferruginea are used in fishing, pesticides, and folk medicine in Ethiopia. Here, the anti-cancer effects of isoflavones isolated from M. ferruginea were evaluated in human ovarian cancer cells. We found that isoflavone ferrugone and 6,7-dimethoxy-3’,4’-methylenedioxy-8-(3,3-dimethylallyl)isoflavone (DMI) had potent cytotoxic effects on human ovarian cancer cell A2780 and SKOV3. Ferrugone and DMI treatment increased the sub-G1 cell population in a dose-dependent manner in A2780 cells. The cytotoxic activity of ferrugone and DMI was associated with the induction of apoptosis, as shown by an increase in annexin V-positive cells. Z-VAD-fmk, a broad-spectrum caspase inhibitor, and z-DEVD-fmk, a caspase-3 inhibitor, significantly reversed both the ferrugone and DMI-induced apoptosis, suggesting that cell death stimulated by the isoflavones is mediated by caspase-3-dependent apoptosis. Additionally, ferrugone-induced apoptosis was found to be caspase-8-dependent, while DMI-induced apoptosis was caspase-9-dependent. Notably, DMI, but not ferrugone, increased the intracellular levels of reactive oxygen species (ROS), and antioxidant N-acetyl-L-cysteine (NAC) attenuated the pro-apoptotic activity of DMI. These data suggest that DMI induced apoptotic cell death through the intrinsic pathway via ROS production, while ferrugone stimulated the extrinsic pathway in human ovarian cancer cells.


Sign in / Sign up

Export Citation Format

Share Document