An Intron-Derived Insertion/Truncation Mutation in the BCR-ABL Kinase Domain in Three CML Patients Undergoing Kinase Inhibitor Therapy.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1953-1953
Author(s):  
Jennifer Laudadio ◽  
Michael W.N. Deininger ◽  
Michael J. Mauro ◽  
Brian J. Druker ◽  
Richard D. Press

Abstract Although targeted inhibition of BCR-ABL with imatinib is an effective therapy for patients with chronic myeloid leukemia, a minority acquire mutations in the kinase domain (KD) that cause imatinib resistance. The spectrum of KD mutations thus far discovered, although quite heterogeneous, includes almost exclusively single nucleotide substitutions in key amino acids regulating drug binding or BCR-ABL function. Here, we describe a KD insertion/truncation mutation in 3 CML patients undergoing kinase inhibitor therapy. Two of these patients were being treated with imatinib (for 12 and 17 months), and one with dasatinib (for 13 months after a prior relapse while on imatinib). Suspected drug resistance was assessed by direct DNA sequencing of a BCR-ABL PCR product extending to the end of the kinase domain. Each of these 3 patients had 35 nucleotides from ABL intron 8 inserted at the normal exon 8–9 splice junction, after nucleotide 1423 (amino acid 475) of Genbank cDNA clone NM_005157. In all 3 cases, the mutation was co-expressed with wild type BCR-ABL sequence. The inserted sequence is derived from intron 8, beginning 1151 bp downstream from the normal splice donor site at the end of exon 8. This 35 bp intronic sequence is flanked by excellent consensus splice donor and acceptor sequences, suggesting alternative splicing as the likely mutational mechanism. The insertion creates a premature translational stop codon after 10 intron-encoded amino acids (figure), thus truncating 653 C-terminal amino acids including part of the KD and the entire last exon region - including a proline-rich domain, 3 nuclear localization signals, a DNA-binding domain, an actin-binding domain, and a nuclear export signal. These 3 insertion mutation cases were detected in our diagnostic clinical molecular pathology laboratory after sequencing 174 cases referred to us for suspected kinase inhibitor resistance, 78 of which contained a detectable mutation. The estimated prevalence of the exon 8/9 insertion/truncation mutation is then approximately 1.7% among patients with suspected drug resistance, and this mutation constitutes approximately 3.8% of all mutations. Conclusion: Kinase domain insertions are an alternative (and not entirely uncommon) mutational mechanism in CML patients undergoing kinase inhibitor therapy. The functional significance in terms of kinase activity and drug resistance remains to be addressed. Figure: Amino acid sequence of the C-terminus of the BCR-ABL kinase domain for the wild type and insertion/truncation mutant (with numbering as per GenBank cDNA clone NM_005157). Figure: Amino acid sequence of the C-terminus of the BCR-ABL kinase domain for the wild type and insertion/truncation mutant (with numbering as per GenBank cDNA clone NM_005157).

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4589-4589
Author(s):  
Corynn Kasap ◽  
Christopher Weier ◽  
Neil P. Shah

Abstract The optimal management of patients with chronic myeloid leukemia (CML) is increasingly reliant upon molecular studies. Loss of response to imatinib in CML is most commonly associated with selection for a limited number of BCR-ABL kinase domain mutations that impair the ability of imatinib to effectively bind to BCR-ABL Molecular understanding of imatinib resistance mechanisms has led to the development of effective “second generation” BCR-ABL kinase inhibitors, such as dasatinib and nilotinib, which have clinical activity against most, but not all, drug-resistant mutations. Analysis of the BCR-ABL kinase domain in patients who develop resistance to second-generation inhibitors has implicated further selection of drug-resistant BCR-ABL kinase domain mutants in nearly all cases reported to date. Encouragingly, the number of resistant mutations capable of conferring clinical resistance to the most clinically-advanced second-generation agents, dasatinib (approved by the US FDA and EMEA) and nilotinib (approved in Mexico and Switzerland), appears to be restricted to a relatively small number of amino acid substitutions. As clinical experience with dasatinib and nilotinib grows, an understanding of the relative sensitivities of dasatinib- and nilotinib-resistant BCR-ABL mutants to other kinase inhibitors, both approved and investigational, is critical to optimize clinical outcomes in patients with resistance to dasatinib or nilotinib. At the present time, kinase inhibitor therapy options for patients with resistance to one of these agents include the investigational options bosutinib and MK-0457 (VX-680), as well as dasatinib and nilotinib (for patients not yet exposed to one of these agents) and re-exposure imatinib. It is likely that the success of therapeutic intervention in these cases can be predicted based upon the preclinical sensitivity of the mutation(s) involved with the agent chosen. We have therefore conducted a thorough biochemical and biological cross-analysis of the activities of each of these clinically-useful kinase inhibitors against mutations that confer clinical resistance to dasatinib or nilotinib. These studies provide clinicians with a useful reference for choosing an appropriate kinase inhibitor based upon the identity of the resistant BCR-ABL kinase domain mutation(s) detected at the time of relapse when faced with a patient who has lost response to dasatinib or nilotinib. It is hoped that the application of such “personalized medicine” strategies to the clinical management of CML cases will further improve outcomes in patients treated with kinase inhibitor therapy.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 751-751 ◽  
Author(s):  
Neil P. Shah ◽  
Brian Skaggs ◽  
Susan Branford ◽  
Timothy P. Hughes ◽  
John M. Nicoll ◽  
...  

Abstract A critical question in the targeted therapy era relates to whether treatment outcomes will be optimized by sequential or combinatorial use of targeted agents. Selection for CML cells with BCR-ABL kinase domain mutations is the main mechanism responsible for loss of response to imatinib. Dasatinib is an ABL tyrosine kinase inhibitor that has activity against nearly all imatinib-resistant mutations and is approved for the treatment of imatinib-resistant and -intolerant BCR-ABL-associated leukemias. Acquired clinical resistance to sequential use of dasatinib following imatinib failure has been observed. We analyzed the BCR-ABL kinase domain at the time of relapse in 15 patients who lost an initial response to dasatinib, and found evolution of a total of three new mutations at the time of relapse in all cases. The highly resistant BCR-ABL/T315I mutation was detected in 11 cases. The four remaining cases were associated with the evolution of novel mutations (V299L, 3 cases; T315A, 1 case). V299L was also detected in a fourth case that had also evolved T315I. These three dasatinib-resistant mutations were part of a small number of amino acid substitutions previously isolated in a preclinical mutagenesis screen for dasatinib resistance-conferring BCR-ABL mutations. While the T315I mutation is highly resistant to imatinib, V299L and T315A retain sensitivity to imatinib in vitro and have not been previously described in imatinib-resistant cases, raising the potential utility of imatinib rechallenge in select dasaitinib-resistant cases. A significant finding of our studies is the evolution of five unique “compound” mutations (i.e. greater than one mutation on a DNA strand) in the BCR-ABL kinase domain of patients treated sequentially with imatinib and dasatinib. It is noteworthy that although the imatinib-sensitive V299L and T315A mutations evolved in five cases, they were detected in the context of a pre-existing imatinib-resistant mutation in three of these cases, and these cases are therefore unlikely to respond to rechallenge with IM. The T315A mutation was detected in the context of 2 pre-existing IM-resistant mutations (M244V/L364I). Interestingly, in bone marrow transformation assays, the clinically-identified dasatinib-resistant M244V/L364I/T315A mutation was more potently oncogenic than non-mutated BCR-ABL, in contrast to the baseline imatinib resistant M244V/L364I, which like T315A in isolation, was less potent than native BCR-ABL Our studies of CML cases resistant to sequential kinase inhibitor therapy reinforce BCR-ABL kinase domain mutation as the predominant mechanism of resistance to kinase inhibitor therapy, and provide evidence that compound mutations acquired as a result of sequential therapy can not only limit further therapeutic options, but also create more biologically aggressive isoforms of BCR-ABL. Together, these findings provide a strong rationale for early treatment of CML with combinations of kinase inhibitors that have the capacity to collectively prevent selection of resistant kinase domain mutations.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1938-1938 ◽  
Author(s):  
Alfonso Quintás-Cardama ◽  
Don L. Gibbons ◽  
Hagop Kantarjian ◽  
Moshe Talpaz ◽  
Nick Donato ◽  
...  

Abstract ABL kinase domain (AKD) mutations are the main mechanism of resistance in patients (pts) with CML who fail tyrosine kinase inhibitors (TKIs) therapy, being found in 20%–40% of cases by direct sequencing (DS). Therefore, many pts fail TKI therapy for unknown reasons. We evaluated the development of AKD mutations among 61 CML pts after imatinib-intolerance (n=10) or -resistance (n=51) enrolled in a phase I study of dasatinib by DS of nested PCR-amplified BCR-ABL1 products as well as by DNA expansion of specific clones (DESC) followed by DNA sequencing of at least 10 clones. Prior to imatinib (400 mg daily in 47, 600 in 13, and 800 in 1), 54 pts were in chronic (CP), 2 in accelerated (AP), and 5 in blastic (BP) phase. At the end of imatinib therapy, 26 pts were in CP, 14 in AP, and 21 in BP. AKD mutations (in ≥1 out of 10 sequenced clones) were detected in 58/61 (95%) pts by DESC (4 pts with wild type [WT] BCR-ABL1) but only in 23/55 (42%) by DS. Overall, 118 AKD mutations at 112 amino acid positions were detected by DESC, of which 77 had never been previously reported. Mutations conferring resistance to >1μM imatinib (M244V, G250E, Q252H, Y253H, E255K/V, F359V, H396R, and T315I) were detected in 20 (34%) pts by DESC, but only in 5 (8%) by DS. Combinations of mutations within the same clone (polymutants) were detected in 33/58 (57%) pts by DESC, with clones expressing 2 (n=41), 3 (n=11), 4 (n=1), or even 5 (n=2) distinct mutations. By contrast, only 1 pt was found to carry 2 different mutations (M244V and M351T) by DS. Dasatinib was subsequently given to 56/61 (92%) pts (53 evaluable for response) for a median of 17 months (range, 1 to 48). DESC available in 15 pts during dasatinib therapy revealed 16 additional mutations (15 amino acid positions), including 5 previously not reported (all in polymutants). Dasatinib-resistant mutations (L248V/R, Q252H, E255K, V299L, T315I/A, and F317L/C/I/S/V) were detected in 7/15 (47%) cases (2 with T315I) by DESC but only in 2/15 (13%) by DS. Of these 15 pts, only 3 (1 CP, 1 AP, and 1 BP) are alive. The proportion of clones harboring WT BCR-ABL1 prior to and during dasatinib therapy decreased significantly (p=0.003), particularly in pts harboring highly dasatinib-resistant mutants. Notably, pts without cytogenetic (CG) response on dasatinib had a lower proportion of WT clones compared with those who achieved at least a partial cytogenetic response (p=0.02). AFTER IMATINIB ON DASATINIB Evaluable Patients No. Clones No. WT Clones (%) Evaluable Patients No. Clones No. WT Clones (%) DASATINIB RESPONSE 53 598 268 (48) 15 130 26 (20) No CG Response 25 242 128 (49) 7 58 5 (9) CG Response Minor 10 79 33 (42) 4 35 9 (26) Partial 6 57 35 (61) 2 18 8 (44) Complete 12 123 46 (37) 2 19 4 (21) In summary, DESC greatly increases the sensitivity of detection of AKD mutants compared to DS and reveals heightened BCR-ABL1 genetic instability among pts failing TKIs, which could explain TKI resistance in pts not carrying resistant mutations by DS. This might be mediated by generation of resistant polymutant clones that perpetuate a “mutator phenotype” leading to WT BCR-ABL1 exhaustion.


1987 ◽  
Vol 7 (1) ◽  
pp. 294-304 ◽  
Author(s):  
D Pilgrim ◽  
E T Young

Alcohol dehydrogenase isoenzyme III (ADH III) in Saccharomyces cerevisiae, the product of the ADH3 gene, is located in the mitochondrial matrix. The ADH III protein was synthesized as a larger precursor in vitro when the gene was transcribed with the SP6 promoter and translated with a reticulocyte lysate. A precursor of the same size was detected when radioactively pulse-labeled proteins were immunoprecipitated with anti-ADH antibody. This precursor was rapidly processed to the mature form in vivo with a half-time of less than 3 min. The processing was blocked if the mitochondria were uncoupled with carbonyl cyanide m-chlorophenylhydrazone. Mutant enzymes in which only the amino-terminal 14 or 16 amino acids of the presequence were retained were correctly targeted and imported into the matrix. A mutant enzyme that was missing the amino-terminal 17 amino acids of the presequence produced an active enzyme, but the majority of the enzyme activity remained in the cytoplasmic compartment on cellular fractionation. Random amino acid changes were produced in the wild-type presequence by bisulfite mutagenesis of the ADH3 gene. The resulting ADH III protein was targeted to the mitochondria and imported into the matrix in all of the mutants tested, as judged by enzyme activity. Mutants containing amino acid changes in the carboxyl-proximal half of the ADH3 presequence were imported and processed to the mature form at a slower rate than the wild type, as judged by pulse-chase studies in vivo. The unprocessed precursor appeared to be unstable in vivo. It was concluded that only a small portion of the presequence contains the necessary information for correct targeting and import. Furthermore, the information for correct proteolytic processing of the presequence appears to be distinct from the targeting information and may involve secondary structure information in the presequence.


2001 ◽  
Vol 281 (4) ◽  
pp. G1034-G1043 ◽  
Author(s):  
Kousei Ito ◽  
Hiroshi Suzuki ◽  
Yuichi Sugiyama

Multidrug resistance-associated protein 3 (MRP3), unlike other MRPs, transports taurocholate (TC). The difference in TC transport activity between rat MRP2 and MRP3 was studied, focusing on the cationic amino acids in the transmembrane domains. For analysis, transport into membrane vesicles from Sf9 cells expressing wild-type and mutated MRP2 was examined. Substitution of Arg at position 586 with Leu and Ile and substitution of Arg at position 1096 with Lys, Leu, and Met resulted in the acquisition of TC transport activity, while retaining transport activity for glutathione and glucuronide conjugates. Substitution of Leu at position 1084 of rat MRP3 (which corresponds to Arg-1096 in rat MRP2) with Lys, but not with Val or Met, resulted in the loss of transport activity for TC and glucuronide conjugates. These results suggest that the presence of the cationic charge at Arg-586 and Arg-1096 in rat MRP2 prevents the transport of TC, whereas the presence of neutral amino acids at the corresponding position of rat MRP3 is required for the transport of substrates.


2020 ◽  
Author(s):  
Charalampos Rallis ◽  
Michael Mülleder ◽  
Graeme Smith ◽  
Yan Zi Au ◽  
Markus Ralser ◽  
...  

AbstractAmino acid deprivation or supplementation can affect cellular and organismal lifespan, but we know little about the role of concentration changes in free, intracellular amino acids during aging. Here, we determine free amino-acid levels during chronological aging of non-dividing fission yeast cells. We compare wild-type with long-lived mutant cells that lack the Pka1 protein of the protein kinase A signalling pathway. In wild-type cells, total amino-acid levels decrease during aging, but much less so in pka1 mutants. Two amino acids strongly change as a function of age: glutamine decreases, especially in wild-type cells, while aspartate increases, especially in pka1 mutants. Supplementation of glutamine is sufficient to extend the chronological lifespan of wild-type but not of pka1Δ cells. Supplementation of aspartate, on the other hand, shortens the lifespan of pka1Δ but not of wild-type cells. Our results raise the possibility that certain amino acids are biomarkers of aging, and their concentrations during aging can promote or limit cellular lifespan.


1999 ◽  
Vol 73 (1) ◽  
pp. 19-28 ◽  
Author(s):  
David E. Ott ◽  
Elena N. Chertova ◽  
Laura K. Busch ◽  
Lori V. Coren ◽  
Tracy D. Gagliardi ◽  
...  

ABSTRACT The p6Gag protein of human immunodeficiency virus type 1 (HIV-1) is produced as the carboxyl-terminal sequence within the Gag polyprotein. The amino acid composition of this protein is high in hydrophilic and polar residues except for a patch of relatively hydrophobic amino acids found in the carboxyl-terminal 16 amino acids. Internal cleavage of p6Gag between Y36 and P37, apparently by the HIV-1 protease, removes this hydrophobic tail region from approximately 30% of the mature p6Gag proteins in HIV-1MN. To investigate the importance of this cleavage and the hydrophobic nature of this portion of p6Gag, site-directed mutations were made at the minor protease cleavage site and within the hydrophobic tail. The results showed that all of the single-amino-acid-replacement mutants exhibited either reduced or undetectable cleavage at the site yet almost all were nearly as infectious as wild-type virus, demonstrating that processing at this site is not important for viral replication. However, one exception, Y36F, was 300-fold as infectious the wild type. In contrast to the single-substitution mutants, a virus with two substitutions in this region of p6Gag, Y36S-L41P, could not infect susceptible cells. Protein analysis showed that while the processing of the Gag precursor was normal, the double mutant did not incorporate Env into virus particles. This mutant could be complemented with surface glycoproteins from vesicular stomatitis virus and murine leukemia virus, showing that the inability to incorporate Env was the lethal defect for the Y36S-L41P virus. However, this mutant was not rescued by an HIV-1 Env with a truncated gp41TM cytoplasmic domain, showing that it is phenotypically different from the previously described MA mutants that do not incorporate their full-length Env proteins. Cotransfection experiments with Y36S-L41P and wild-type proviral DNAs revealed that the mutant Gag dominantly blocked the incorporation of Env by wild-type Gag. These results show that the Y36S-L41P p6Gag mutation dramatically blocks the incorporation of HIV-1 Env, presumably acting late in assembly and early during budding.


Sign in / Sign up

Export Citation Format

Share Document