Notch Signaling Induces Megakaryocytic Cell Fate.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 200-200
Author(s):  
Thomas Mercher ◽  
Melanie Cornejo ◽  
Christopher Sears ◽  
Thomas Kindler ◽  
Sandra Moore ◽  
...  

Abstract The Notch pathway regulates a broad range of biological mechanisms including proliferation, border formation and cell fate decisions. In the hematopoietic system, Notch signaling is generally thought to specify T cell lineage fate at the expense of the B cell whereas its role in the myeloid lineage development is unclear. When using heterotypic co-cultures of murine primary hematopoietic stem cells (HSC: Lin-Sca1+Kit+) with OP9 stromal cells, or OP9 cells expressing the Notch ligand Delta1 (OP9-DL1), we unexpectedly observed the development of large cells with cytoplasmic protrusions reminiscent of proplatelet production by megakaryocytes on OP9-DL1 stroma. These cells stained positive for acetylcholinesterase, specific for megakaryocyte, and displayed large polylobated nuclei. Flow cytometric analysis indicated a 10-fold increase in the number of CD41+ cells in OP9-DL1 co-cultures compared to parental OP9 co-cultures. Expression of a constitutively active intra-cellular Notch (ICN) mutant allowed differentiation of HSC into CD41+ cells in parental OP9 co-cultures without DL1 stimulation, whereas expression of a dominant-negative MAML1 (dnMAML1) mutant abrogated this effect in OP9-DL1 co-cultures. In addition, megakaryocyte differentiation in OP9-DL1 co-cultures was blocked by γ-secretase inhibitors treatment and rescued by ectopic expression of ICN. Global gene expression analysis demonstrated engagement of a megakaryopoietic transcriptional program when HSC were co-cultured with OP9-DL1 vs. OP9 stroma or OP9-DL1 stroma treated with γ-secretase inhibitor. Bone marrow transplantation experiments with ICN, resulted in enhanced megakaryopoiesis in vivo with increased MEP numbers and megakaryocyte colony formation. Furthermore, transplantation of bone marrow cells transduced with dnMAML1 significantly impaired megakaryopoiesis in vivo with a 4- to 7-fold decrease in maturing megakaryocytes. These findings demonstrate a positive regulatory role for Notch signaling in specification of megakaryocyte development, and indicate that Notch plays a complex role in cell fate decisions among myeloid progenitors. They suggest the possibility that inhibition of Notch signaling may have therapeutic potential in malignancies of the megakaryocytic lineage. Furthermore, Notch pathway stimulation could be of value in enhancing megakaryocyte growth in clinical contexts associated with severe thrombocytopenia, such as hematopoietic reconstitution following bone marrow transplantation or chemotherapy.

Blood ◽  
2004 ◽  
Vol 103 (9) ◽  
pp. 3511-3515 ◽  
Author(s):  
Franziska Jundt ◽  
Kristina Schulze Pröbsting ◽  
Ioannis Anagnostopoulos ◽  
Gwendolin Muehlinghaus ◽  
Manik Chatterjee ◽  
...  

Abstract Notch receptors expressed on hematopoietic stem cells interact with their ligands on bone marrow stromal cells and thereby control cell fate decisions and survival. We recently demonstrated that Notch signaling is involved in proliferation and survival of B cell-derived tumor cells of classic Hodgkin disease and described a novel mechanism for the oncogenic capacity of Notch. In this study we investigated whether Notch signaling is involved in the tight interactions between neoplastic plasma cells and their bone marrow microenvironment, which are essential for tumor cell growth in multiple myeloma (MM). Here we demonstrate that Notch receptors and their ligand Jagged1 are highly expressed in cultured and primary MM cells, whereas nonneoplastic counterparts show low to undetectable levels of Notch. Functional data indicate that ligand-induced Notch signaling is a growth factor for MM cells and suggest that these interactions contribute to myelomagenesis in vivo. (Blood. 2004;103:3511-3515)


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1370-1370
Author(s):  
Melanie G Cornejo ◽  
Thomas Mercher ◽  
Joseph D. Growney ◽  
Jonathan Jesneck ◽  
Ivan Maillard ◽  
...  

Abstract The Notch signaling pathway is involved in a broad spectrum of cell fate decisions during development, and in the hematopoietic system, it is known to favor T cell- vs B cell lineage commitment. However, its role in myeloid lineage development is less well understood. We have shown, using heterotypic co-cultures of murine primary hematopoietic stem cells (Lin-Sca-1+ckit+ HSCs) and OP9 stromal cells expressing the Notch ligand Delta1 (OP9-DL1), that Notch signaling derived from cell non-autonomous cues acts as a positive regulator of megakaryocyte fate from LSK cells. Bone marrow transplantation experiments with a constitutively active Notch mutant resulted in enhanced megakaryopoiesis in vivo, with increased MEP numbers and megakaryocyte colony formation. In contrast, expression of dnMAML using a conditional ROSA26 knock-in mouse model significantly impaired megakaryopoiesis in vivo, with a marked decrease in megakaryocyte progenitors. In order to understand the cellular differentiation pathways controlled by Notch, we first examined the ability of various purified progenitor populations to differentiate toward megakaryocytes upon Notch stimulation in vitro. We observed that CMP and MEP, but not GMP, can engage megakaryopoiesis upon Notch stimulation. Our results were consistent with expression analysis of Notch signaling genes in these purified progenitors and were supported by the observation that transgenic Notch reporter mice display higher levels of reporter (i.e. GFP) expression in HSC and MEP, vs. CMP and GMP in vivo. Furthermore, purified progenitors with high GFP expression gave rise to increased numbers of megakarocyte-containing colonies when plated in vitro compared to GFP-negative progenitors. In addition, further purification of the HSC population into long-term (LT), short-term (ST), and lymphoid-primed myeloid progenitors (LMPP) before plating on OP9-DL1 stroma showed that LMPP have a reduced ability to give rise to megakaryocytes compared to the other two populations. These data support the hypothesis that there is an early commitment to erythro/megakaryocytic fate from HSC prior to lymphoid commitment. To gain insight into the molecular mechanism underlying Notch-induced megakaryopoiesis, we performed global gene expression analysis that demonstrated the engagement of a megakaryopoietic transcriptional program when HSC were co-cultured with OP9-DL1 vs. OP9 stroma or OP9-DL1 treated with gamma-secretase inhibitor. Of interest, Runx1 was among the most upregulated genes in HSC co-cultured on OP9-DL1 stroma. To assess whether Notch signaling engages megakaryocytic fate through induction of Runx1, we plated HSC from Runx1 −/− mice on OP9-DL1 stroma. Compared to WT cells, Runx1 −/− HSC had a severely reduced ability to develop into CD41+ cells. In contrast, overexpression of Runx1 in WT HSC was sufficient to induce megakaryocyte fate on OP9 stroma without Notch stimulation. Together, our results indicate that Notch pathway activation induced by stromal cells is an important regulator of cell fate decisions in early progenitors. We show that Notch signaling is upstream of Runx1 during Notch-induced megakaryocyte differentiation and that Runx1 is an essential target of Notch signaling. We believe that these results provide important insight into the pathways controlling megakaryocyte differentiation, and may have important therapeutic potential for megakaryocyte lineage-related disorders.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4161-4161
Author(s):  
Caroline Erter Burns ◽  
Leonard I. Zon

Abstract Vertebrate hematopoiesis can be divided into two embryonic phases: a short primitive wave predominantly generating erythrocytes and a definitive (fetal/adult) wave producing long-term hematopoietic stem cells (HSCs). The definitive wave occurs in the embryonic aorta-gonad-mesonephros (AGM) region through the asymmetric induction of HSCs from the ventral, but not dorsal, aortic endothelial wall. Since Notch signaling is critical for orchestrating a variety of developmental cell fate choices from invertebrates to humans and has been implicated in affecting the differentiation of some hematopoietic lineages, we analyzed whether the Notch pathway regulates definitive HSC induction in vivo. The zebrafish mutant mindbomb harbors a mutation in an essential E3 ligase that ubiquitylates Delta, which in turn allows the Notch intercellular domain to be released and activate downstream target gene transcription. Thus, in the absence of Mindbomb function Notch signaling does not occur. We found that although mindbomb mutants show normal primitive hematopoiesis, definitive c-myb and runx1 HSC expression is lacking. Since embryos injected with synthetic morpholinos designed to inhibit proper splicing of runx1 RNA ( runx morphants) show the same hematopoietic phenotype as mindbomb mutants, we next addressed the epistatic relationship between notch and runx1 using classic gain-of-function and loss-of-function analyses. In runx1 morphants expression of a notch receptor, notch3, and a delta ligand, deltaC, in the developing dorsal aorta was normal. Moreover, injection of runx1 RNA rescued HSCs in the AGM of mindbomb mutants. Together, these results suggest that Runx1 functions downstream of Notch in promoting HSC fate. We next analyzed whether a constitutively activated form of Notch (NICD) is sufficient for HSC specification in the AGM using an inducible binary transgenic system. Zebrafish carrying the heat-shock promoter driving the activator gal4 were mated to animals carrying 6 gal4 -responsive tandem upstream activating sequences (UAS) driving NICD. At the 10 somite-stage the embryos were heat-shocked at 37°C for 1 hour to activate NICD throughout the double transgenic animals. Surprisingly, expression of both HSC markers, c-myb and runx1, were expanded from their normal restricted domain in the ventral endothelium to the entire circumference of the dorsal aorta. Most interestingly, the presence of ectopic c-myb and runx1 transcripts were observed in the developing post-cardinal vein, a vessel that normally does not produce HSCs. These data imply that activation of the Notch pathway generates increased numbers of HSCs in vivo. When runx1 RNA is injected into wild-type embryos a similar expansion of c-myb transcripts is seen throughout the entire dorsal aorta and post-cardinal vein, further indicating that Runx1 functions downstream of Notch in HSC induction. In summary, discovery of the molecular programs essential and sufficient for fetal/adult hematopoietic ontogeny will lead to a further understanding of the physiologic and pathologic processes regulating stem cell homeostasis and translate into more effective therapies for blood disorders.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3588-3588
Author(s):  
Sahar Da'as ◽  
Lauren C. Klein ◽  
Adolfo A. Ferrando ◽  
Jason N. Berman

Abstract Abstract 3588 Poster Board III-525 The molecular pathways regulating mast cell (MC) development in vertebrates remain to be elucidated. The Notch signaling pathway is highly conserved in all metazoans and has been implicated in regulating hematopoietic stem cell induction and lineage cell fate decisions. Notch receptors and their ligands are expressed in a number of hematopoietic cells, including MCs. We were the first to identify zebrafish MC equivalents (Dobson et al., Blood 2008) and examine vertebrate MC transcriptional regulation in vivo. These studies demonstrated the significance of carboxypeptidase A 5 (cpa5) as a zebrafish MC-specific marker. Co-localization studies reveal zebrafish notch3 (a homologue of human NOTCH3) is expressed in a proportion of cpa5 positive cells in 7 day old embryos. Moreover, the zebrafish Notch signaling mutant, mind bomb, displays profound loss of cpa-5 expression, as do wild type zebrafish embryos treated with Compound E (Cpd E), a gamma-secretase inhibitor that blocks Notch signaling. We previously identified pu.1 and gata2 as essential transcription factors for early MC development. Interestingly, we observed a dose-dependent response, with reduced cpa5 and gata2 but preserved pu.1 expression at 50 μM Cpd E, compared with profound decreased expression of all these factors, as well as gata1 and mpo at 75 μM Cpd E. These data suggest a particular role for Notch signaling in regulating MC development, as well as a potentially broader role in regulating the myeloid and erythroid lineages. These studies are currently being validated through reciprocal experiments overexpressing notch mRNA in wild type embryos and rescue experiments overexpressing the notch intracellular domain and the above-mentioned transcription factors in Notch deficient embryos (mind bomb and Cpd E treated). We have also developed a transgenic zebrafish line expressing the human c-KIT D816V mutation found in systemic mastocytosis, which exhibits increased mast cells at the expense of erythroid cells, features in keeping with the human condition. These transgenic fish provide an opportunity to examine if Notch pathway inhibition alone, or in combination with other therapies, such as those targeting the c-KIT kinase, have a therapeutic impact in this condition. Parallel approaches in a human mastocytosis cell line are also being undertaken. These studies promise key insight into the role of Notch signaling in MC development and the opportunity to use the zebrafish as an in vivo model for identifying novel therapeutic strategies in MC diseases. Disclosures: Ferrando: Merck, Pfizer: Research Funding.


Blood ◽  
1994 ◽  
Vol 84 (4) ◽  
pp. 1333-1341 ◽  
Author(s):  
P Tiberghien ◽  
CW Reynolds ◽  
J Keller ◽  
S Spence ◽  
M Deschaseaux ◽  
...  

Abstract Allogeneic bone marrow transplantation (BMT) is associated with a severe complication--graft-versus-host disease (GVHD). Although effectively preventing GVHD, ex vivo T-lymphocyte marrow depletion unfortunately increases graft rejection and reduces the graft-versus- leukemia (GVL) effect. The ex vivo transfer of the herpes simplex thymidine kinase (HS-tk) suicide gene into T cells before their infusion with hematopoietic stem cells could allow for selective in vivo depletion of these T cells with ganciclovir (GCV) if subsequent GVHD was to occur. Thus, one could preserve the beneficial effects of the T cells on engraftment and tumor control in patients not experiencing severe GVHD. To obtain T cells specifically depleted by GCV, we transduced primary T cells with a retroviral vector containing the HS-tk and neomycin resistance (NeoR) genes. Gene transfer was performed by coculturing PHA +/- CD3- or alloantigen-stimulated purified T cells on an irradiated retroviral vector producer cell line or by incubating the T cells in supernatant from the producer. Subsequent culture in G418 for 1 week allowed for the selection of transduced cells. GCV treatment of interleukin-2-responding transduced and selected cells resulted in greater than 80% growth inhibition, whereas GCV treatment of control cells had no effect. Similarly, the allogeneic reactivity of HS-tk-transduced cells was specifically inhibited by GCV. Combining transduced and nontransduced T cells did not show a bystander effect, thus implying that all of the cells inhibited by GCV were indeed transduced. Lastly, studies involving the transduction of the HUT-78 (T-lymphoma) cell line suggest that stable expression of HS-tk can be maintained over 3 months in vitro in the absence of G418. In summary, we have established the feasibility of generating HS-tk-transduced T cells for subsequent in vivo transfer with hematopoietic stem cells and, if GVHD occurs, specific in vivo GCV- induced T-cell depletion in allogeneic BMT recipients.


Blood ◽  
2004 ◽  
Vol 104 (6) ◽  
pp. 1696-1702 ◽  
Author(s):  
Ivan Maillard ◽  
Andrew P. Weng ◽  
Andrea C. Carpenter ◽  
Carlos G. Rodriguez ◽  
Hong Sai ◽  
...  

Abstract During lymphoid development, Notch1 plays a critical role in the T-cell/B-cell lineage decision, while Notch2 is essential for marginal zone B-cell (MZB) development. Notch pathway activation induces translocation of intracellular Notch (ICN) to the nucleus, where it interacts with the transcription factor CSL (CBF1/RBP-Jk, Suppressor of Hairless, Lag-1). In vitro, ICN binds Mastermind-like proteins, which act as potent Notch coactivators. Three MAML family members (MAML1-3) have been identified in mammals, but their importance in vivo is unknown. To investigate the function of MAMLs in hematopoietic development, we introduced a dominant negative (DN) mutant of MAML1, capable of inhibiting Notch1-4, in murine hematopoietic stem cells. DNMAML1 resulted in early inhibition of T-cell development and the appearance of intrathymic B cells, phenotypes consistent with Notch1 inhibition. The T-cell differentiation block was as profound as that produced by enforced expression of the Notch modulator Deltex1. In DNMAML1-transduced spleen cells, a dramatic decrease in MZB cells was present, consistent with Notch2 inhibition. In contrast, Deltex1 did not decrease MZB cell numbers. These results suggest a critical role for MAMLs during Notch-mediated cell fate decisions in vivo and indicate that DNMAML1, but not Deltex1, can be used to interfere with the function of multiple Notch family members. (Blood. 2004;104:1696-1702)


Blood ◽  
1994 ◽  
Vol 84 (4) ◽  
pp. 1333-1341 ◽  
Author(s):  
P Tiberghien ◽  
CW Reynolds ◽  
J Keller ◽  
S Spence ◽  
M Deschaseaux ◽  
...  

Allogeneic bone marrow transplantation (BMT) is associated with a severe complication--graft-versus-host disease (GVHD). Although effectively preventing GVHD, ex vivo T-lymphocyte marrow depletion unfortunately increases graft rejection and reduces the graft-versus- leukemia (GVL) effect. The ex vivo transfer of the herpes simplex thymidine kinase (HS-tk) suicide gene into T cells before their infusion with hematopoietic stem cells could allow for selective in vivo depletion of these T cells with ganciclovir (GCV) if subsequent GVHD was to occur. Thus, one could preserve the beneficial effects of the T cells on engraftment and tumor control in patients not experiencing severe GVHD. To obtain T cells specifically depleted by GCV, we transduced primary T cells with a retroviral vector containing the HS-tk and neomycin resistance (NeoR) genes. Gene transfer was performed by coculturing PHA +/- CD3- or alloantigen-stimulated purified T cells on an irradiated retroviral vector producer cell line or by incubating the T cells in supernatant from the producer. Subsequent culture in G418 for 1 week allowed for the selection of transduced cells. GCV treatment of interleukin-2-responding transduced and selected cells resulted in greater than 80% growth inhibition, whereas GCV treatment of control cells had no effect. Similarly, the allogeneic reactivity of HS-tk-transduced cells was specifically inhibited by GCV. Combining transduced and nontransduced T cells did not show a bystander effect, thus implying that all of the cells inhibited by GCV were indeed transduced. Lastly, studies involving the transduction of the HUT-78 (T-lymphoma) cell line suggest that stable expression of HS-tk can be maintained over 3 months in vitro in the absence of G418. In summary, we have established the feasibility of generating HS-tk-transduced T cells for subsequent in vivo transfer with hematopoietic stem cells and, if GVHD occurs, specific in vivo GCV- induced T-cell depletion in allogeneic BMT recipients.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Virginia Guarani ◽  
Franck Dequiedt ◽  
Andreas M Zeiher ◽  
Stefanie Dimmeler ◽  
Michael Potente

The Notch signaling pathway is a versatile regulator of cell fate decisions and plays an essential role for embryonic and postnatal vascular development. As only modest differences in Notch pathway activity suffice to determine dramatic differences in blood vessel development, this pathway is tightly regulated by a variety of molecular mechanisms. Reversible acetylation has emerged as an important post-translational modification of several non-histone proteins, which are targeted by histone deacetylases (HDACs). Here, we report that specifically the Notch1 intracellular domain (NICD) is itself an acetylated protein and that its acetylation level is tightly regulated by the SIRT1 deacetylase, which we have previously identified as a key regulator of endothelial angiogenic functions during vascular growth. Coexpression of NICD with histone acetyltransferases such as p300 or PCAF induced a dose- and time-dependent acetylation of NICD. Blocking HDAC activity using the class III HDAC inhibitor nicotinamid (NAM), but not the class I/II HDAC inhibior trichostatin A, resulted in a significant increase of NICD acetylation suggesting that NICD is targetd by class III HDACs for deacetylation. Among the class III HDACs with deacetylase activity (SIRT1, 2, 3, 5), knock down of specifically SIRT1 resulted in enhanced acetylation of NICD. Moreover, wild type SIRT1, but not a catalytically inactive mutant catalyzed the deacetylation of NICD in a nicotinamid-dependent manner. SIRT1, but SIRT2, SIRT3 or SIRT5, associated with NICD through its catalytic domain demonstrating that SIRT1 is a direct NICD deacetylase. Enhancing NICD acetylation by either overexpression of p300 or inhibition of SIRT1 activity using NAM or RNAi-mediated knock down resulted in enhanced NICD protein stability by blocking its ubiquitin-mediated degradation. Consistent with these results, loss of SIRT1 amplified Notch target gene expression in endothelial cells in response to NICD overexpression or treatment with the Notch ligand Dll4. In summary, our results identify reversible acetylation of NICD as a novel molecular mechanism to control Notch signaling and suggest that deacetylation of NICD by SIRT1 plays a key role in the dynamic regulation of Notch signaling in endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document