Mastermind critically regulates Notch-mediated lymphoid cell fate decisions

Blood ◽  
2004 ◽  
Vol 104 (6) ◽  
pp. 1696-1702 ◽  
Author(s):  
Ivan Maillard ◽  
Andrew P. Weng ◽  
Andrea C. Carpenter ◽  
Carlos G. Rodriguez ◽  
Hong Sai ◽  
...  

Abstract During lymphoid development, Notch1 plays a critical role in the T-cell/B-cell lineage decision, while Notch2 is essential for marginal zone B-cell (MZB) development. Notch pathway activation induces translocation of intracellular Notch (ICN) to the nucleus, where it interacts with the transcription factor CSL (CBF1/RBP-Jk, Suppressor of Hairless, Lag-1). In vitro, ICN binds Mastermind-like proteins, which act as potent Notch coactivators. Three MAML family members (MAML1-3) have been identified in mammals, but their importance in vivo is unknown. To investigate the function of MAMLs in hematopoietic development, we introduced a dominant negative (DN) mutant of MAML1, capable of inhibiting Notch1-4, in murine hematopoietic stem cells. DNMAML1 resulted in early inhibition of T-cell development and the appearance of intrathymic B cells, phenotypes consistent with Notch1 inhibition. The T-cell differentiation block was as profound as that produced by enforced expression of the Notch modulator Deltex1. In DNMAML1-transduced spleen cells, a dramatic decrease in MZB cells was present, consistent with Notch2 inhibition. In contrast, Deltex1 did not decrease MZB cell numbers. These results suggest a critical role for MAMLs during Notch-mediated cell fate decisions in vivo and indicate that DNMAML1, but not Deltex1, can be used to interfere with the function of multiple Notch family members. (Blood. 2004;104:1696-1702)

Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4342-4346 ◽  
Author(s):  
Claudiu V. Cotta ◽  
Zheng Zhang ◽  
Hyung-Gyoon Kim ◽  
Christopher A. Klug

Abstract Progenitor B cells deficient in Pax5 are developmentally multipotent, suggesting that Pax5 is necessary to maintain commitment to the B-cell lineage. Commitment may be mediated, in part, by Pax5 repression of myeloid-specific genes. To determine whether Pax5 expression in multipotential cells is sufficient to restrict development to the B-cell lineage in vivo, we enforced expression of Pax5 in hematopoietic stem cells using a retroviral vector. Peripheral blood analysis of all animals reconstituted with Pax5-expressing cells indicated that more than 90% of Pax5-expressing cells were B220+ mature B cells that were not malignant. Further analysis showed that Pax5 completely blocked T-lineage development in the thymus but did not inhibit myelopoiesis or natural killer (NK) cell development in bone marrow. These results implicate Pax5 as a critical regulator of B- versus T-cell developmental fate and suggest that Pax5 may promote commitment to the B-cell lineage by mechanisms that are independent of myeloid gene repression.


2005 ◽  
Vol 201 (9) ◽  
pp. 1361-1366 ◽  
Author(s):  
Mari H. Dallas ◽  
Barbara Varnum-Finney ◽  
Colleen Delaney ◽  
Keizo Kato ◽  
Irwin D. Bernstein

Notch signaling regulates multiple cell fate decisions by hematopoietic precursors. To address whether different amounts of Notch ligand influence lineage choices, we cultured murine bone marrow lin−Sca-1+c-kit+ cells with increasing densities of immobilized Delta1ext-IgG consisting of the extracellular domain of Delta1 fused to the Fc domain of human IgG1. We found that relatively lower densities of Delta1ext-IgG enhanced the generation of Sca-1+c-kit+ cells, Thy1+CD25+ early T cell precursors, and B220+CD43−/lo cells that, when cocultured with OP9 stroma cells, differentiated into CD19+ early B cell precursors. Higher densities of Delta1ext-IgG also enhanced the generation of Sca-1+c-kit+ precursor cells and promoted the development of Thy1+CD25+ cells, but inhibited the development of B220+CD43−/lo cells. Analyses of further isolated precursor populations suggested that the enhanced generation of T and B cell precursors resulted from the effects on multipotent rather than lymphoid-committed precursors. The results demonstrate the density-dependent effects of Delta1 on fate decisions of hematopoietic precursors at multiple maturational stages and substantiate the previously unrecognized ability of Delta1 to enhance the development of both early B and T precursor cells.


Blood ◽  
2004 ◽  
Vol 104 (8) ◽  
pp. 2315-2322 ◽  
Author(s):  
Suzanne M. Vercauteren ◽  
Heather J. Sutherland

Abstract Notch transmembrane receptors are known to play a critical role in cell-fate decisions, with Notch1 shown to enhance self-renewal of hematopoietic stem cells and cause T-cell leukemia. Four Notch receptors exist, and the extent of redundancy and overlap in their function is unknown. Notch4 is structurally distinct from Notch1 through Notch3 and has not been extensively studied in hematopoiesis. By polymerase chain reaction (PCR) we find Notch4 transcript expression in human marrow cells and in both CD34+ and CD34– populations. When constitutively active Notch1 or Notch4 was overexpressed in normal human marrow or cord cells, we found reduced colony-forming and short-term proliferative ability while the primitive progenitor content of myeloid long-term cultures was significantly increased. Notch4–intracellular domain (Notch4-IC)–transduced cord cells transplanted into β2-microglobulin–/– nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice resulted in significantly higher levels of engraftment of both green fluorescent protein–positive (GFP+) and GFP– populations as compared with controls. GFP+ cells in bone marrow and spleen of animals that had received transplants gave rise to an immature CD4+CD8+ T-cell population, whereas B-cell development was blocked. These results indicate that activation of Notch4 results in enhanced stem cell activity, reduced differentiation, and altered lymphoid development, suggesting it may influence both stem cells and the fate of the common lymphoid progenitor.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 200-200
Author(s):  
Thomas Mercher ◽  
Melanie Cornejo ◽  
Christopher Sears ◽  
Thomas Kindler ◽  
Sandra Moore ◽  
...  

Abstract The Notch pathway regulates a broad range of biological mechanisms including proliferation, border formation and cell fate decisions. In the hematopoietic system, Notch signaling is generally thought to specify T cell lineage fate at the expense of the B cell whereas its role in the myeloid lineage development is unclear. When using heterotypic co-cultures of murine primary hematopoietic stem cells (HSC: Lin-Sca1+Kit+) with OP9 stromal cells, or OP9 cells expressing the Notch ligand Delta1 (OP9-DL1), we unexpectedly observed the development of large cells with cytoplasmic protrusions reminiscent of proplatelet production by megakaryocytes on OP9-DL1 stroma. These cells stained positive for acetylcholinesterase, specific for megakaryocyte, and displayed large polylobated nuclei. Flow cytometric analysis indicated a 10-fold increase in the number of CD41+ cells in OP9-DL1 co-cultures compared to parental OP9 co-cultures. Expression of a constitutively active intra-cellular Notch (ICN) mutant allowed differentiation of HSC into CD41+ cells in parental OP9 co-cultures without DL1 stimulation, whereas expression of a dominant-negative MAML1 (dnMAML1) mutant abrogated this effect in OP9-DL1 co-cultures. In addition, megakaryocyte differentiation in OP9-DL1 co-cultures was blocked by γ-secretase inhibitors treatment and rescued by ectopic expression of ICN. Global gene expression analysis demonstrated engagement of a megakaryopoietic transcriptional program when HSC were co-cultured with OP9-DL1 vs. OP9 stroma or OP9-DL1 stroma treated with γ-secretase inhibitor. Bone marrow transplantation experiments with ICN, resulted in enhanced megakaryopoiesis in vivo with increased MEP numbers and megakaryocyte colony formation. Furthermore, transplantation of bone marrow cells transduced with dnMAML1 significantly impaired megakaryopoiesis in vivo with a 4- to 7-fold decrease in maturing megakaryocytes. These findings demonstrate a positive regulatory role for Notch signaling in specification of megakaryocyte development, and indicate that Notch plays a complex role in cell fate decisions among myeloid progenitors. They suggest the possibility that inhibition of Notch signaling may have therapeutic potential in malignancies of the megakaryocytic lineage. Furthermore, Notch pathway stimulation could be of value in enhancing megakaryocyte growth in clinical contexts associated with severe thrombocytopenia, such as hematopoietic reconstitution following bone marrow transplantation or chemotherapy.


2016 ◽  
Vol 214 (1) ◽  
pp. 197-208 ◽  
Author(s):  
Bharat Vaidyanathan ◽  
Ashutosh Chaudhry ◽  
William T. Yewdell ◽  
Davide Angeletti ◽  
Wei-Feng Yen ◽  
...  

Generation of cellular heterogeneity is an essential feature of the adaptive immune system. This is best exemplified during humoral immune response when an expanding B cell clone assumes multiple cell fates, including class-switched B cells, antibody-secreting plasma cells, and memory B cells. Although each cell type is essential for immunity, their generation must be exquisitely controlled because a class-switched B cell cannot revert back to the parent isotype, and a terminally differentiated plasma cell cannot contribute to the memory pool. In this study, we show that an environmental sensor, the aryl hydrocarbon receptor (AhR) is highly induced upon B cell activation and serves a critical role in regulating activation-induced cell fate outcomes. We find that AhR negatively regulates class-switch recombination ex vivo by altering activation-induced cytidine deaminase expression. We further demonstrate that AhR suppresses class switching in vivo after influenza virus infection and immunization with model antigens. In addition, by regulating Blimp-1 expression via Bach2, AhR represses differentiation of B cells into plasmablasts ex vivo and antibody-secreting plasma cells in vivo. These experiments suggest that AhR serves as a molecular rheostat in B cells to brake the effector response, possibly to facilitate optimal recall responses. Thus, AhR might represent a novel molecular target for manipulation of B cell responses during vaccination.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1961-1961
Author(s):  
Nagisa Sakurai ◽  
Manami Maeda ◽  
Sung-UK Lee ◽  
Toshiki Saito ◽  
Shigeru Chiba ◽  
...  

Abstract Abstract 1961 Poster Board I-984 LRF (Leukemia/Lymphoma Related Factor) is a transcriptional repressor originally identified as an interaction partner of the oncoprotein BCL6 (B cell Lymphoma 6). We previously found that LRF acts as a proto-oncogene by repressing tumor suppressor ARF (Alternative Reading Frame, also known as p19 in mice and p14 in humans) and is highly expressed in 60-80% of human Non-Hodgkin Lymphoma (NHL) cases (Maeda et al., Nature 2005). LRF was also found to be indispensable for hematopoietic stem cells (HSCs) to commit to the B cell lineage by opposing Notch function (Maeda et al., Science 2007). Considering that: 1) LRF is normally expressed in Germinal Center B cells (GCB) and overexpressed in NHL tissues and 2) LRF opposes Notch function to maintain normal B cell fate at HSC/progenitor levels, we explored the role of LRF in B cell development and its functional interaction with the Notch pathway in vivo. Upon T cell dependent (TD) immunization, GC formation was severely impaired in secondary lymphoid organs of B cell specific LRF conditional knockout mice (LRFflox/flox mb1-Cre+). While a GC reaction was robustly induced in control mice upon immunization, only few GCB cells were noted in secondary lymphoid organs of LRFflox/flox mb1-Cre+ mice. To assess functional significance of LRF loss in antigen response in vivo, titers of class-switched immunoglobulin (Ig) were measured in the serum; baseline serum titers of IgG1, IgG2b and IgG3 were perturbed, and the primary and secondary antibody response against the TD antigen was impaired in LRFflox/flox mb1-Cre+ mice. Absolute numbers of memory B cells and long-lived BM plasma cells were reduced in LRFflox/flox mb1-Cre+ mice 20 wk after immunization. To determine the cause of defective GC formation, apoptosis and proliferation of GCB cells were examined by FACS. While proportions of apoptotic (AnnexinV positive) GCB cells were similar, regardless of genotypes, LRF deficient GCB cells failed to proliferate upon antigen stimuli. Short-term kinetic analysis demonstrated 5-ethynyl-2'-deoxyuridine (EdU) incorporation was markedly decreased in LRF deficient GCB cells and that the proportion of GCB cells in S phase was reduced in LRFflox/flox mb1-Cre+ mice. In agreement with these findings, quantitative RT-PCR analysis in FACS-sorted GCB cells demonstrated up-regulation of p19Arf and p21, but not p53, mRNA levels in LRF deficient GCB cells. Up-regulation of p19Arf protein levels was also observed in Western Blots. Furthermore, microarray analysis and subsequent Gene Set Enrichment Analysis in FACS-sorted GCB cells showed signatures of defective proliferation, further implicating a critical role for LRF in GCB cell proliferation. Signals mediated by Notch2 are necessary for transitional B cells to commit to the marginal zone B cells (MZB). Inactivation of a component of the Notch pathway in mice resulted in no MZB development and increased follicular B cells (FOB). On the contrary, deletion of the MINT/SHARP gene, a suppressor of Notch signaling, lead to increase of MZB cells and concomitant reduction of FOB cells, indicating that Notch induces MZB cell fate at the transitional B cell stage. While B cell development in the BM was grossly normal, a reduction of FOB cells and a concomitant increase of MZB cells were observed in LRFflox/flox mb1-Cre+ mice. Since the phenotype was reminiscent of that seen in MINT/SHARP knockout mice and opposite to that observed in Notch2 knockout mice, we hypothesized that LRF antagonizes Notch2 mediated signal during the FOB vs. MZB fate determination process. To test this, LRF/Notch2 double knockout mice (LRFflox/flox Notch2flox/flox mb1-Cre+) were established and their mature B cell compartments analyzed. As expected, loss of the Notch2 gene led to an increase of FOB cells and decrease of MZB in LRFflox/flox mb1-Cre+ mice, suggesting that LRF regulates FOB vs. MZB fate in a Notch2 dependent manner. However, Notch2 deficiency did not restore GC formation in LRFflox/flox mb1-Cre+ mice. In summary, our genetic studies strongly indicate that the proto-oncogene LRF is required for normal mature B cell development and function via distinct mechanisms. We propose that LRF is necessary for mature B cell fate by blocking Notch2-mediated signals and plays a critical role in GCB cell proliferation via suppressing p19Arf mediated cell cycle arrests. Our findings provide a further rational for targeting LRF for the treatment of B cell malignancies as well as autoimmune diseases. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (4) ◽  
pp. 1189-1197 ◽  
Author(s):  
Hua Tang ◽  
Zhenhong Guo ◽  
Minghui Zhang ◽  
Jianli Wang ◽  
Guoyou Chen ◽  
...  

Abstract Regulatory dendritic cells (DCs) have been reported recently, but their origin is poorly understood. Our previous study demonstrated that splenic stroma can drive mature DCs to proliferate and differentiate into regulatory DCs, and their natural counterpart with similar regulatory function in normal spleens has been identified. Considering that the spleen microenvironment supports hematopoiesis and that hematopoietic stem cells (HSCs) are found in spleens of adult mice, we wondered whether splenic microenvironment could differentiate HSCs into regulatory DCs. In this report, we demonstrate that endothelial splenic stroma induce HSCs to differentiate into a distinct regulatory DC subset with high expression of CD11b but low expression of Ia. CD11bhiIalo DCs secreting high levels of TGF-β, IL-10, and NO can suppress T-cell proliferation both in vitro and in vivo. Furthermore, CD11bhiIalo DCs have the ability to potently suppress allo-DTH in vivo, indicating their preventive or therapeutic perspectives for some immunologic disorders. The inhibitory function of CD11bhiIalo DCs is mediated through NO but not through induction of regulatory T (Treg) cells or T-cell anergy. IL-10, which is secreted by endothelial splenic stroma, plays a critical role in the differentiation of the regulatory CD11bhiIalo DCs from HSCs. These results suggest that splenic microenvironment may physiologically induce regulatory DC differentiation in situ.


Author(s):  
Anoeska Agatha Alida van de Moosdijk ◽  
Yorick Bernardus Cornelis van de Grift ◽  
Saskia Madelon Ada de Man ◽  
Amber Lisanne Zeeman ◽  
Renée van Amerongen

AbstractWnt signal transduction controls tissue morphogenesis, maintenance and regeneration in all multicellular animals. In mammals, the WNT/CTNNB1 (Wnt/β-catenin) pathway controls cell proliferation and cell fate decisions before and after birth. It plays a critical role at multiple stages of embryonic development, but also governs stem cell maintenance and homeostasis in adult tissues. However, it remains challenging to monitor endogenous WNT/CTNNB1 signaling dynamics in vivo. Here we report the generation and characterization of a new knock-in mouse strain that doubles as a fluorescent reporter and lineage tracing driver for WNT/CTNNB1 responsive cells. We introduced a multi-cistronic targeting cassette at the 3’ end of the universal WNT/CTNNB1 target gene Axin2. The resulting knock-in allele expresses a bright fluorescent reporter (3xNLS-SGFP2) and a doxycycline-inducible driver for lineage tracing (rtTA3). We show that the Axin2P2A-rtTA3-T2A-3xNLS-SGFP2 strain labels WNT/CTNNB1 cells at multiple anatomical sites during different stages of embryonic and postnatal development. It faithfully reports the subtle and dynamic changes in physiological WNT/CTNNB1 signaling activity that occur in vivo. We expect this mouse strain to be a useful resource for biologists who want to track and trace the location and developmental fate of WNT/CTNNB1 responsive stem cells in different contexts.Abstract Figure


Development ◽  
2000 ◽  
Vol 127 (17) ◽  
pp. 3865-3876
Author(s):  
M.S. Rones ◽  
K.A. McLaughlin ◽  
M. Raffin ◽  
M. Mercola

Notch signaling mediates numerous developmental cell fate decisions in organisms ranging from flies to humans, resulting in the generation of multiple cell types from equipotential precursors. In this paper, we present evidence that activation of Notch by its ligand Serrate apportions myogenic and non-myogenic cell fates within the early Xenopus heart field. The crescent-shaped field of heart mesoderm is specified initially as cardiomyogenic. While the ventral region of the field forms the myocardial tube, the dorsolateral portions lose myogenic potency and form the dorsal mesocardium and pericardial roof (Raffin, M., Leong, L. M., Rones, M. S., Sparrow, D., Mohun, T. and Mercola, M. (2000) Dev. Biol., 218, 326–340). The local interactions that establish or maintain the distinct myocardial and non-myocardial domains have never been described. Here we show that Xenopus Notch1 (Xotch) and Serrate1 are expressed in overlapping patterns in the early heart field. Conditional activation or inhibition of the Notch pathway with inducible dominant negative or active forms of the RBP-J/Suppressor of Hairless [Su(H)] transcription factor indicated that activation of Notch feeds back on Serrate1 gene expression to localize transcripts more dorsolaterally than those of Notch1, with overlap in the region of the developing mesocardium. Moreover, Notch pathway activation decreased myocardial gene expression and increased expression of a marker of the mesocardium and pericardial roof, whereas inhibition of Notch signaling had the opposite effect. Activation or inhibition of Notch also regulated contribution of individual cells to the myocardium. Importantly, expression of Nkx2. 5 and Gata4 remained largely unaffected, indicating that Notch signaling functions downstream of heart field specification. We conclude that Notch signaling through Su(H) suppresses cardiomyogenesis and that this activity is essential for the correct specification of myocardial and non-myocardial cell fates.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1370-1370
Author(s):  
Melanie G Cornejo ◽  
Thomas Mercher ◽  
Joseph D. Growney ◽  
Jonathan Jesneck ◽  
Ivan Maillard ◽  
...  

Abstract The Notch signaling pathway is involved in a broad spectrum of cell fate decisions during development, and in the hematopoietic system, it is known to favor T cell- vs B cell lineage commitment. However, its role in myeloid lineage development is less well understood. We have shown, using heterotypic co-cultures of murine primary hematopoietic stem cells (Lin-Sca-1+ckit+ HSCs) and OP9 stromal cells expressing the Notch ligand Delta1 (OP9-DL1), that Notch signaling derived from cell non-autonomous cues acts as a positive regulator of megakaryocyte fate from LSK cells. Bone marrow transplantation experiments with a constitutively active Notch mutant resulted in enhanced megakaryopoiesis in vivo, with increased MEP numbers and megakaryocyte colony formation. In contrast, expression of dnMAML using a conditional ROSA26 knock-in mouse model significantly impaired megakaryopoiesis in vivo, with a marked decrease in megakaryocyte progenitors. In order to understand the cellular differentiation pathways controlled by Notch, we first examined the ability of various purified progenitor populations to differentiate toward megakaryocytes upon Notch stimulation in vitro. We observed that CMP and MEP, but not GMP, can engage megakaryopoiesis upon Notch stimulation. Our results were consistent with expression analysis of Notch signaling genes in these purified progenitors and were supported by the observation that transgenic Notch reporter mice display higher levels of reporter (i.e. GFP) expression in HSC and MEP, vs. CMP and GMP in vivo. Furthermore, purified progenitors with high GFP expression gave rise to increased numbers of megakarocyte-containing colonies when plated in vitro compared to GFP-negative progenitors. In addition, further purification of the HSC population into long-term (LT), short-term (ST), and lymphoid-primed myeloid progenitors (LMPP) before plating on OP9-DL1 stroma showed that LMPP have a reduced ability to give rise to megakaryocytes compared to the other two populations. These data support the hypothesis that there is an early commitment to erythro/megakaryocytic fate from HSC prior to lymphoid commitment. To gain insight into the molecular mechanism underlying Notch-induced megakaryopoiesis, we performed global gene expression analysis that demonstrated the engagement of a megakaryopoietic transcriptional program when HSC were co-cultured with OP9-DL1 vs. OP9 stroma or OP9-DL1 treated with gamma-secretase inhibitor. Of interest, Runx1 was among the most upregulated genes in HSC co-cultured on OP9-DL1 stroma. To assess whether Notch signaling engages megakaryocytic fate through induction of Runx1, we plated HSC from Runx1 −/− mice on OP9-DL1 stroma. Compared to WT cells, Runx1 −/− HSC had a severely reduced ability to develop into CD41+ cells. In contrast, overexpression of Runx1 in WT HSC was sufficient to induce megakaryocyte fate on OP9 stroma without Notch stimulation. Together, our results indicate that Notch pathway activation induced by stromal cells is an important regulator of cell fate decisions in early progenitors. We show that Notch signaling is upstream of Runx1 during Notch-induced megakaryocyte differentiation and that Runx1 is an essential target of Notch signaling. We believe that these results provide important insight into the pathways controlling megakaryocyte differentiation, and may have important therapeutic potential for megakaryocyte lineage-related disorders.


Sign in / Sign up

Export Citation Format

Share Document