A Comprehensive Lymphocyte Analysis of Dasatinib Treated Chronic Myelogenous Leukemia Patients Reveals T-Cell Oligoclonality.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1114-1114
Author(s):  
John J. Powers ◽  
Jeffrey S. Painter ◽  
Jason A Dubovsky ◽  
P.K. Epling-Burnette ◽  
Javier Pinilla

Abstract On the forefront of targeted cancer therapy are second generation tyrosine kinase inhibitors (TKIs) which impact the outcome of chronic, accelerated, and blast phase chronic myelogenous leukemia (CML). Among these TKIs dasatinib is particularly effective for the treatment of imatinib-resistant Philadelphia chromosome-positive CML; although this drug has been associated with the generation of pleural effusions, fevers, and colitis in some patients. Recent data links these side effects to oligoclonal expansions of large granular lymphocyte (LGL) immunophenotype. To further characterize these events we conducted a comprehensive immunophenotye, T-cell receptor variable region, KIR, and HLA analysis of seven CML patients receiving dasatinib, two of which developed adverse reactions in association with lymphocytosis. Flow cytometric analysis confirmed these proliferative events and elucidated a previously undescribed CD3-CD8+CD56+ population. In addition, we identified multiple patients with decreased CD4 to CD8 T-cell ratios and a shift in CD4+ and CD8+ lymphocyte populations towards an effector and terminal memory phenotype (CD62L-CD45RA-and CD62L-CD45RA+ respectively). Further analysis of the T-cell receptor beta chain showed that all seven patients had oligoclonal populations of either CD4 or CD8 T-cells significantly greater than that of healthy donors. Most of these findings were independent of the occurrence of adverse reactions. All in all our data implicates dasatinib in generating oligoclonal lymphocyte expansions of various phenotypes in all CML patients. It is still unclear as to the underlying molecular mechanisms inducing these expansions, but further exploration could help to prevent or alleviate these reactions and could conceivably provide new tools for future directed immunotherapy.

2004 ◽  
Vol 40 (18) ◽  
pp. 1295-1305 ◽  
Author(s):  
Matthew E. Call ◽  
Kai W. Wucherpfennig

Blood ◽  
1992 ◽  
Vol 79 (4) ◽  
pp. 1017-1023 ◽  
Author(s):  
D Jonas ◽  
M Lubbert ◽  
ES Kawasaki ◽  
M Henke ◽  
KJ Bross ◽  
...  

The cytogenetic hallmark of chronic myelogenous leukemia (CML) is the Philadelphia chromosome (Ph1), which reflects a chromosomal translocation t(9;22) and a rearrangement of the ABL and bcr genes. This marker is found in all cells arising from the same malignant precursor cell and can be detected in CML cells of the myeloid, monocytic, erythroid, and B-lymphocyte lineage. It is, however, controversial as to whether T lymphocytes of CML patients carry this gene rearrangement. An answer to this question would clarify whether the translocation in CML occurs in a pluripotent hematopoietic stem cell or in a precursor cell already committed to certain lineages, but not the T-cell lineage. To address this question, we established T-cell clones from peripheral venous blood cells of four patients with CML and screened these clones for bcr-abl fusion transcripts by means of polymerase chain reaction and Southern blot analysis. In four T-cell clones of three of these patients, the bcr-abl transcript could be detected. None of 12 T-cell clones of the fourth patient disclosed detectable bcr-abl amplification product. Both CD4+ as well as CD8+ clones displayed fused bcr-abl sequences. These data imply that in CML some but not all T lymphocytes may originate from the Ph1-positive stem cell.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1045-1045
Author(s):  
Denise Wolleschak ◽  
Thomas S. Mack ◽  
Florian Perner ◽  
Tina M Schnoeder ◽  
Marie-Christine Wagner ◽  
...  

Abstract Abstract 1045 In patients with FLT3-ITD mutated AML, FLT3-inhibitors have been used successfully as a ‘bridging therapy’ before allogeneic transplantation. Inhibitors of other kinases (such as imatinib for BCR-ABL positive CML) have previously been used successfully after allogeneic transplantation – even before discontinuation of immunosuppressive medication. However, it is known that some BCR-ABL inhibitors such as dasatinib exert strong inhibitory effects on primary T-cells through inhibition of Src-kinases relevant for T-cell receptor signaling. Even imatinib and nilotinib - although not affecting Src kinase activity – showed decreased T-cell activation and reactivity to some extent. Thus, the influence of FLT3-kinase inhibitors on T-cell function may be critical in the context of allogeneic bone marrow transplantation for FLT3-ITD-positive AML. Besides inhibition of FLT3-kinase, midostaurin (PKC412) exerts activity against PDGFR, VEGFR or c-KIT. In contrast, second generation inhibitors such as quizartinib (AC220) act in a far more FLT3-specific manner. Therefore, we aimed to investigate the effects of both clinically relevant FLT3-inhibitors on T-cell receptor signaling in comparison to the well characterized and potent BCR-ABL inhibitor dasatinib. Investigating primary T-cells derived from healthy donors, we applied a dose range of 10–50 nM dasatinib, 5–50nM midostaurin and 10–50 nM quizartinib. These dose ranges have been previously described to be achievable as trough levels during inhibitor therapy in early clinical trials. Upon incubation with dasatinib (10nM and 50nM), we found overall reduction in global tyrosine phosphorylation as detected by Western-blotting using the 4G10 antibody. In contrast, treatment with midostaurin left the activation of T-cell receptor signaling pathways unaffected. Comparable to DMSO control, overall phosphorylation was induced almost immediately after stimulation. Western-blotting of LCK and Plcg1 showed similar time dependent activation compared to total phosphorylation. Likewise, quizartinib did not reduce overall tyrosine phosphorylation level and left activation of downstream kinases (ZAP70, MAPK, LCK, Plcg1) largely unaffected. As activation of primary T-cells is a critical step in immune responses against viral and tumor antigens we aimed to investigate the influence of FLT3-kinase inhibitors quizartinib and midostaurin on activation of CD8+ T-cells. T-cells from healthy donors were stimulated using either PHA 0.5% or CD3/CD28 beads to ensure a more T-cell receptor specific stimulation. Using CD3/CD28 stimulation, CD69 expression was almost abrogated following dasatinib treatment. Applying clinically relevant doses of midostaurin or quizartinib to isolated T-cells did not influence CD69 expression. Expression levels upon PHA or CD3/CD28 stimulation were comparable to DMSO-control - even in the presence of 50nM midostaurin or quizartinib. Proliferation of T-cells upon CD3/CD28 stimulation was impaired by dasatinib treatment, while midostaurin and quizartinib left T-cell proliferation largely unaffected – as determined by CSFE staining. In order to investigate the T cell allo-reactivity, mixed lymphocyte culture was performed, where human pan-T-cells are co-cultured with allogeneic antigen presenting cells. T-cell proliferation – as measured by 3H-thymidine incorporation – was significantly impaired by dasatanib but neither midostaurin nor quizartinib treatment. Investigation of leukemia- and virus-antigen-specific T-cell responses are currently under way to gain deeper insight regarding this clinically relevant scenario. Overall, we found FLT3-kinase inhibitors midostaurin and quizartinib to leave T-cell activation, proliferation and function unaffected in-vitro. This information may be useful for the design of up-coming clinical trials testing the safety and efficacy of FLT3-kinase inhibitors in combination with allogeneic stem-cell transplantation. Disclosures: Lipka: Novartis Inc.: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Heidel:Novartis Inc.: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5508-5508 ◽  
Author(s):  
Gianni Binotto ◽  
Luca Frison ◽  
Elisa Boscaro ◽  
Renato Zambello ◽  
Federica Lessi ◽  
...  

Abstract Introduction: Given the critical role of BCR–ABL kinase activity in chronic myeloid leukemia (CML), tyrosine kinase inhibitors (TKIs) are currently considered the cornerstone of CML treatment. Previous studies have suggested that TKIs may influence anti-tumor immunity through off-target modulation of different immune effectors. Natural killer (NK) cells, as well as T cells in the context of adaptive immunity, are a key component of the innate immune system, providing first-line defense against virally infected cells and tumors. The activity of NK cells is modulated by a finely-tuned balance between signals received from inhibitory and activating cell surface receptors. Aims: We sought to evaluate the impact of first and second generation TKIs on modulating different NK cell receptors patterns; secondly we studied the effect of a TKIs driven NK subpopulations selection on treatment response. Finally, we analyzed the T cells Vβ-TCR repertoire to identify any restrictions. Materials and Methods: Peripheral blood samples from 25, 9 and 8 chronic phase CML patients treated with imatinib frontline, nilotinib and dasatinib as first or second line therapy, respectively, were collected. Patients characteristics are described below (see table 1). After separation of mononuclear cells (PBMC), the expression of several NK cell receptors (Killer Immunoglobulin-like Receptors, KIR: p70, p140, p58/p50; Killer Lectin-like Receptors, KLR: CD94, NKG2A, NKG2C/A, NKG2D; Natural Cytotoxicity Receptors, NCR: NKp30, NKp44, NKp46, NKp80; Co-receptors: 2B4; LIR1/ILT2, GPR56) and Vβ TCR-repertoire were analized by flow cytometry analysis. Treatment response was assessed with standardized real quantitative polymerase chain reaction and cytogenetics according to ELN recommendations. Results: The leukocyte count was not statistically different between groups (WBC = 5.5 x 109 / L vs. 6.8 x 109 / L vs. 5.6 x 109 / L, p = 0.09, respectively); also lymphocytes, considered either in percentage or absolute number, were comparable (32% vs 26% vs 35%, p = 0.08), as well as the percentage and absolute number of NK cells (20%; 0.37 x 109 / L vs. 15%; 0.26 x 109 / L vs. 24%; 0.54 x 109 / L (p = 0.17, p = 0.10).The analysis of NK receptors expression showed that patients treated with Imatinib exhibited a preferential selection of NK cells subpopulations harboring activating receptors (NKp30, NKp46, NKp80 and NKG2D), while in Dasatinib treated patients an increased expression of KIR (KIR2DL1) receptors was observed (figure 1). Interestingly, these effects were documented also in the absence of lymphocytosis. 44.4% (4 of 9 patients) of patients treated with nilotinib showed preferential expression of Vβ chains, compared with 87.5% of patients treated with dasatinib; no TCR-repertoire restriction was documented in the sole TKI primary resistant patient. 8 out of 17 patients showed a preferential expression of more than oneVβ chain (figure 2). No specific NK receptors profiles were found to be associated with different degrees of treatment response. Conclusions: These preliminary data suggest the existence of a different NKRs and T cell receptor repertoire modulation, mediated by Tyrosine-Kinase Inhibitors. Since no significant correlation between response and specific NK receptor profiles has been demonstrated, TKIs immunomodulatory effect seems secondary compared to direct inhibition of BCR-ABL kinase. However, it's conceivable that NK and T cells subpopulations selection, induced by TKIs, may become relevant in the immunological control of leukemic disease at the time of drug discontinuation. These observations are currently being investigated on a larger series of patients. Figure 1 NK cell receptors differentially expressed between imatinib, nilotinib and dasatinib treated patients. Figure 1. NK cell receptors differentially expressed between imatinib, nilotinib and dasatinib treated patients. Figure 2 Figure 2. Figure 3 T cell receptor repertoire in nilotinib (A) and dasatinib (B) treated CML patients Figure 3. T cell receptor repertoire in nilotinib (A) and dasatinib (B) treated CML patients Disclosures No relevant conflicts of interest to declare.


1993 ◽  
Vol 178 (5) ◽  
pp. 1807-1811 ◽  
Author(s):  
W R Heath ◽  
J F Miller

CD8+ T cells taken directly from mice expressing a Kb-specific T cell receptor (TCR) transgene expressed the transgenic TCR in a bimodal profile as detected by flow cytometric analysis using a clonotype-specific monoclonal antibody. Those cells expressing the lower density of the transgenic TCR expressed the transgenic beta chain and two different alpha chains on their surface. One alpha chain was the product of the alpha transgene, whereas the other was derived by endogenous rearrangement. This report provides the first demonstration that T cells isolated directly from mice may express two different TCR clonotypes on their surface. The potential consequences of this finding for studies using TCR transgenic mice and for the induction of autoimmunity are discussed.


Blood ◽  
2006 ◽  
Vol 109 (2) ◽  
pp. 497-499 ◽  
Author(s):  
Alfonso Quintas-Cardama ◽  
Hagop Kantarjian ◽  
Dan Jones ◽  
Claude Nicaise ◽  
Susan O'Brien ◽  
...  

Abstract Developing strategies to counteract imatinib resistance constitutes a challenge in chronic myelogenous leukemia (CML). Therapy with the tyrosine kinase inhibitors nilotinib (AMN107) and dasatinib (BMS-354825) has produced high rates of hematologic and cytogenetic response. Src kinase activation has been linked to Bcr-Abl–mediated leukemogenesis and CML progression. In addition to binding Abl kinase with less stringent conformational requirements than imatinib, dasatinib is a potent Src kinase inhibitor. In the current study, we report on 23 patients with CML (19 of them in accelerated or blastic phases) treated with dasatinib after treatment failure with both imatinib and nilotinib. More than half (13; 57%) of 23 patients responded to dasatinib: 10 (43%) had a complete hematologic response (CHR), including 7 (30%) who had a cytogenetic response (2 complete, 4 partial, and 1 minor). These results suggest that dasatinib may be active in some patients after failure with both imatinib and nilotinib.


mBio ◽  
2015 ◽  
Vol 6 (5) ◽  
Author(s):  
Andrea Imle ◽  
Libin Abraham ◽  
Nikolaos Tsopoulidis ◽  
Bernard Hoflack ◽  
Kalle Saksela ◽  
...  

ABSTRACTHuman immunodeficiency virus type 1 (HIV-1) Nef enhances virus replication and contributes to immune evasionin vivo, but the underlying molecular mechanisms remain incompletely defined. Nef interferes with host cell actin dynamics to restrict T lymphocyte responses to chemokine stimulation and T cell receptor engagement. This relies on the assembly of a labile multiprotein complex including the host kinase PAK2 that Nef usurps to phosphorylate and inactivate the actin-severing factor cofilin. Components of the exocyst complex (EXOC), an octameric protein complex involved in vesicular transport and actin remodeling, were recently reported to interact with Nef via the same molecular surface that mediates PAK2 association. Exploring the functional relevance of EXOC in Nef-PAK2 complex assembly/function, we found Nef-EXOC interactions to be specifically mediated by the PAK2 interface of Nef, to occur in infected human T lymphocytes, and to be conserved among lentiviral Nef proteins. In turn, EXOC was dispensable for direct downstream effector functions of Nef-associated PAK2. Surprisingly, PAK2 was essential for Nef-EXOC association, which required a functional Rac1/Cdc42 binding site but not the catalytic activity of PAK2. EXOC was dispensable for Nef functions in vesicular transport but critical for inhibition of actin remodeling and proximal signaling upon T cell receptor engagement. Thus, Nef exploits PAK2 in a stepwise mechanism in which its kinase activity cooperates with an adaptor function for EXOC to inhibit host cell actin dynamics.IMPORTANCEHuman immunodeficiency virus type 1 (HIV-1) Nef contributes to AIDS pathogenesis, but the underlying molecular mechanisms remain incompletely understood. An important aspect of Nef function is to facilitate virus replication by disrupting T lymphocyte actin dynamics in response to stimulation via its association with the host cell kinase PAK2. We report here that the molecular surface of Nef for PAK2 association also mediates interaction of Nef with EXOC and establish that PAK2 provides an essential adaptor function for the subsequent formation of Nef-EXOC complexes. PAK2 and EXOC specifically cooperate in the inhibition of actin dynamics and proximal signaling induced by T cell receptor engagement by Nef. These results establish EXOC as a functionally relevant Nef interaction partner, emphasize the suitability of the PAK2 interaction surface for future therapeutic interference with Nef function, and show that such strategies need to target activity-independent PAK2 functions.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1173-1173
Author(s):  
Quan Le ◽  
J. Joseph Melenhorst ◽  
Bipin N. Savani ◽  
Brenna Hill ◽  
Sarfraz Memon ◽  
...  

Abstract After allogeneic stem cell transplantation (SCT), there is a prolonged immune deficiency and delayed T cell reconstitutions results in significant morbidity and mortality. However limited data are available on immune reconstitution in patients surviving beyond a decade following SCT. Four hundred sixty two patients with hematological malignancies received SCT from an HLA identical sibling in our institute between 1993–2004. Of these, 110 patients 3 or more years post-transplantation, prospectively enrolled in a long-term evaluation protocol. Twenty one of these survived more than 10 years post SCT (median follow-up 11.8 y range 10–14.75y). Diagnoses included chronic myelogenous leukemia (17), acute myelogenous leukemia and myelodysplastic syndrome (3), and multiple myeloma (1). We studied T cell reconstitution in these patients and compared it to samples from their stem cell donors cryopreserved at time of transplant. There was no difference of age at SCT in patients (median age 35.5, range 13–56y) and in the donors (median age 34, range 14–58y). All patients received cyclophosphamide and 13.6 Gy total body irradiation. Patients received T cell depleted bone marrow (n=15) or peripheral blood SCT (n=6) with cyclosporine GVHD prophylaxis and delayed add-back of donor lymphocytes 30–90 days post transplant. Six (29%) developed acute GVHD (grade II–IV) and 18 (86%) chronic GVHD (13 limited, 5 extensive). Six (29%) patients received immunosuppressive therapy (IST) for cGVHD beyond 3 years from SCT but all were off immunosuppressive treatment at the time of study. In the 21 patients there were no significant difference in the absolute lymphocyte, neutrophil or monocyte count, compared with the donor pre-transplant absolute counts of circulating NK and T cell subsets, and B cells were measured using multicolor flow cytometric analysis in 9 patient-donor pairs. Patients had fewer naïve CD4 (p = 0.049) and naïve CD8 (p = 0.004) T cells, fewer CD4 central memory T cells (p = 0.03), fewer CD56 [int] CD16-NKG2A+2D+ NK cells (p = 0.02); and more effector CD8+ T cells (p = 0.04) in patients compared to their donors. ALC and FoxP3+ regulatory T cells were not significantly different between the patients and their donors. The T cell receptor excision circles (TRECs) and T cell receptor repertoire analyses to evaluate thymic function and T cell regeneration is ongoing. In conclusion, patients surviving 10 or more years after allogeneic SCT still show a deficit in the naïve and central memory post-thymic compartment. However these abnormalities appear to be compatible with good health. Figure Figure


Sign in / Sign up

Export Citation Format

Share Document