A Cell-Autonomous Defect of Bone Marrow Hematopoietic Stem/Progenitor Cells and Impaired Stromal Function in FA-a Patients

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1364-1364
Author(s):  
Xiaoling Zhang ◽  
Xun Shang ◽  
Fukun Guo ◽  
Kim Murphy ◽  
Michelle Kirby ◽  
...  

Abstract Fanconi anemia (FA) is a devastating blood disease associated with bone marrow (BM) failure. Currently the effective treatment for FA is BM transplantation. We and others showed that FA murine hematopoietic stem and progenitor cells (HSC/Ps) have defective hematopoietic reconstitution after BM transplantation. In addition, several clinical gene therapy trials in FA patients have failed to show sustained engraftment of FA HSC/Ps complemented with a functional FA gene. The mechanism underlying this engraftment defect remains unknown. To determine whether the poor engraftment of FA HSC/Ps observed in mouse knockout models and clinical gene therapy trials in FA patients results from an intrinsic defect of the FA HSC/Ps or an impaired microenvironment in the FA bone marrow, we have assessed the self-renewal ability of HSC/Ps and hematopoietic supportive capacity of BM stromal cells from FA-A patients. First, we performed quantitative cobblestone area-forming cell (CAFC) assays using MS-5 stromal layer. CAFCs were enumerated at 2 and 5 weeks of cocultures between BM mononuclear cells from a normal donor and three FA-A patients. Early-appearing CAFCs (week 2) represent transient repopulating cells equivalent to progenitor colony-forming units (CFUs), whereas late-appearing CAFCs (week 5) are representative of long-term repopulating stem cells. The frequency of FA-A CAFCs was 15–20 folds decreased compared with that of the normal donor at both week 2 and week 5. Second, we carried out long-term culture-initiating cell (LTC-IC) assays using BM mononuclear cells and BM-derived stromals from normal donors or FA-A patients. Compared to coculture with normal stromal cells, the recovery of colony forming cells (CFCs) that grew on FA-A stromal layer after 5–6 weeks incubation was significantly decreased for either normal or FA-A HSC/Ps (41.4% ± 3.1 CFC in normal HSC/Ps - normal stroma compared to 14.3% ± 1.6 CFC in normal HSC/Ps – FA-A stroma and 2.4 ± 0.6 CFC in FA-A HSC/Ps- FA-A stroma). Finally, we conducted CFC and cell-cell adhesion assays using BM-derived stromal cells from normal donors and FA-A patients. We observed that FA-A BM stroma failed to support HSC/P cells from either normal donors or FA-A patients. Specifically, severe adhesion defect was found in adhesion of normal and FA-A HSC/Ps with FA-A stromal layer (5.5% ± 0.6 CFC adhesion in normal HSC/Ps - normal stroma compared to 2.4% ± 0.5 CFC adhesion in normal HSC/Ps – FA-A stroma and 1.0 ± 0.7 CFC adhesion in FA-A HSC/Ps- FA-A stroma). These results suggest that both a cell-autonomous defect of FA HSC/Ps and an impaired FA BM microenvironment may contribute to the abnormal hematopoiesis in FA.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2208-2208
Author(s):  
Pamela S Becker ◽  
Jennifer Adair ◽  
Grace Choi ◽  
Anne Lee ◽  
Ann Woolfrey ◽  
...  

Abstract For decades, it has remained challenging to achieve long-term engraftment and correction of blood counts using gene-modified hematopoietic stem cells for Fanconi anemia. Toward this goal, our group conducted preclinical studies using a safety modified lentiviral vector encoding full-length cDNA for FANCA in normal and affected patient hematopoietic progenitor cells, and in a mutant mouse model that supported the IND for a gene therapy clinical trial for Fanconi anemia, complementation group A (NCT01331018). These studies led us to incorporate methods such as addition of N-acetylcysteine and hypoxic incubation during transduction. Because of the low stem cell numbers of Fanconi patients and initial difficulty with using plerixafor off-label for mobilization, we began our study with bone marrow as the source of stem cells. Due to concerns regarding secondary cancers, no conditioning was administered prior to infusion of gene-modified cells. The US Food and Drug Administration approved adult patients initially, but later permitted pediatric patient enrollment with a minimum age of 4 years. The primary objective of our phase I trial was safety. Secondary objectives included in vitro correction of mitomycin C (MMC) sensitivity, procurement of sufficient cell numbers, and ultimately, long-term correction of blood counts in recipients. Eligibility included absolute neutrophil count ≥0.5, hemoglobin ≥8, platelet count ≥20,000, lack of matched family donor, adequate organ function, and not meeting criteria for diagnosis of MDS. Our three enrolled patients were ages 22, 10, and 5 years. All demonstrated defects in the FANCA gene, with two patients sequenced and one patient diagnosed by complementation. Due to in-process learning and the later addition of plerixafor mobilization to the protocol, three different laboratory procedures were used to prepare the gene-modified product for each patient. Cell products were CD34+ selected bone marrow, bone marrow mononuclear cells depleted of red cells by hetastarch, and G-CSF and plerixafor mobilized cells depleted of red blood cells and cells bearing lineage markers, respectively. Transduction efficiencies were 17.7, 42.7 and 26.3% of colony forming cells (CFC) in 0 nM MMC, and 80, 100, and 100% of CFC in 10 nM MMC. Growth of hematopoietic colonies in MMC indicated functional correction of the FANCA defect. The 1st patient received 6.1×10e4, the 2nd 2.9×10e5, and the 3rd 4.3×10e6 CD34+ cells/kg. Serious adverse events included cytopenias in all patients, and hospital admission for fever due to viral upper respiratory infection in one patient. The patients remain alive at 46, 38, and 12 months after receipt of gene-modified cells. Due to worsening cytopenias, the third patient underwent hematopoietic cell transplant from an unrelated donor 10 months after infusion of gene-modified cells. To date, he has done well with transplant, and no indication that prior gene therapy impacted the outcome. The blood counts for the first 2 patients who have not undergone allogeneic transplant remain stable at 1,111 and 1,077 days post infusion compared to the first blood counts when they arrived at our center. For the 1st patient, vector was detectable in white blood cells (WBC) up to 21 days, in the 2nd up to 582 days, and the 3rd up to 81 days post infusion. Thus, in these patients, despite dramatic improvement in cell dose during the study, there was lack of persistence in detection of gene-modified WBCs beyond 1.5 years. A number of factors may have contributed, including lack of conditioning, in vitro cell manipulation including cytokine exposure, inability to transduce primitive hematopoietic stem cells, and paucity of long-term repopulating cells at the ages of the patients, suggesting earlier collection may be beneficial. This study is now closed to enrollment. Valuable information gained as a result of this study will contribute to future clinical gene therapy trials. Current work focuses on how to evaluate stem cell fitness prior to attempting gene therapy, minimizing manipulation required for gene correction and/or in vivo genetic correction and non-chemotherapy-based conditioning to facilitate engraftment. We would like to personally thank each patient and their families for participating in this study, as we could not have learned these lessons without their support. Disclosures Becker: GlycoMimetics: Research Funding; Abbvie: Research Funding; Amgen: Research Funding; BMS: Research Funding; CVS Caremark: Consultancy; Trovagene: Research Funding; Rocket Pharmaceuticals: Research Funding; Novartis: Research Funding; Pfizer: Consultancy; JW Pharmaceuticals: Research Funding. Adair:Miltenyi Biotec: Honoraria; RX Partners: Honoraria; Rocket Pharmaceuticals: Patents & Royalties: PCT/US2017/037967 and PCT/US2018/029983. Kiem:Rocket Pharmaceuticals: Consultancy; Homology Medicine: Consultancy; Magenta: Consultancy.


2017 ◽  
Vol 214 (7) ◽  
pp. 2005-2021 ◽  
Author(s):  
Adam J. Mead ◽  
Wen Hao Neo ◽  
Nikolaos Barkas ◽  
Sahoko Matsuoka ◽  
Alice Giustacchini ◽  
...  

Although previous studies suggested that the expression of FMS-like tyrosine kinase 3 (Flt3) initiates downstream of mouse hematopoietic stem cells (HSCs), FLT3 internal tandem duplications (FLT3 ITDs) have recently been suggested to intrinsically suppress HSCs. Herein, single-cell interrogation found Flt3 mRNA expression to be absent in the large majority of phenotypic HSCs, with a strong negative correlation between Flt3 and HSC-associated gene expression. Flt3-ITD knock-in mice showed reduced numbers of phenotypic HSCs, with an even more severe loss of long-term repopulating HSCs, likely reflecting the presence of non-HSCs within the phenotypic HSC compartment. Competitive transplantation experiments established that Flt3-ITD compromises HSCs through an extrinsically mediated mechanism of disrupting HSC-supporting bone marrow stromal cells, with reduced numbers of endothelial and mesenchymal stromal cells showing increased inflammation-associated gene expression. Tumor necrosis factor (TNF), a cell-extrinsic potent negative regulator of HSCs, was overexpressed in bone marrow niche cells from FLT3-ITD mice, and anti-TNF treatment partially rescued the HSC phenotype. These findings, which establish that Flt3-ITD–driven myeloproliferation results in cell-extrinsic suppression of the normal HSC reservoir, are of relevance for several aspects of acute myeloid leukemia biology.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Natalia Izotova ◽  
Christine Rivat ◽  
Cristina Baricordi ◽  
Elena Blanco ◽  
Danilo Pellin ◽  
...  

AbstractOur mathematical model of integration site data in clinical gene therapy supported the existence of long-term lymphoid progenitors capable of surviving independently from hematopoietic stem cells. To date, no experimental setting has been available to validate this prediction. We here report evidence of a population of lymphoid progenitors capable of independently maintaining T and NK cell production for 15 years in humans. The gene therapy patients of this study lack vector-positive myeloid/B cells indicating absence of engineered stem cells but retain gene marking in both T and NK. Decades after treatment, we can still detect and analyse transduced naïve T cells whose production is likely maintained by a population of long-term lymphoid progenitors. By tracking insertional clonal markers overtime, we suggest that these progenitors can support both T and NK cell production. Identification of these long-term lymphoid progenitors could be utilised for the development of next generation gene- and cancer-immunotherapies.


Blood ◽  
1985 ◽  
Vol 66 (6) ◽  
pp. 1460-1462 ◽  
Author(s):  
ME Pietrzyk ◽  
GV Priestley ◽  
NS Wolf

It was found in a long-term bromodeoxyuridine (BrdU) infusion study that two or more different subpopulations of bone marrow stem cells exist in mice. One of these subpopulations appears to be noncycling and forms approximately 10% of eight-day CFU-S. Another one, a subpopulation of slowly cycling bone marrow cells, is represented as 14- day CFU-S. The 14-day CFU-S have a regular increment in the percentage of the subpopulation entering the cycle over time, with a cell generation half-time of 21 days. The cycling status in these experiments was ascertained by in vivo continuous long-term BrdU infusion. An improved method is presented for long-term BrdU infusion with UV killing of cycled cells.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5014-5014
Author(s):  
Irina N. Shipounova ◽  
Nataliya A. Petinati ◽  
Nina J. Drize ◽  
Aminat A. Magomedova ◽  
Ekaterina A. Fastova ◽  
...  

Introduction. Stromal microenvironment of the bone marrow (BM) is essential for normal hematopoiesis; the very same cells are involved in the interaction with the leukemic stem cells. The aim of the study was to reveal the alterations in stromal microenvironment of patients in debut and after the therapy using multipotent mesenchymal stromal cells (MSC) as a model. Methods. MSC of patients with acute myeloid leukemia (AML, N=32), acute lymphoblastic leukemia (ALL, N=20), chronic myeloid leukemia (CML, N=19), and diffuse large B-cell lymphoma without BM involvement (DLBCL, N=17) were isolated by standard method from the patients' BM. Each BM sample was acquired during diagnostic aspiration after the informed signed consent was obtained from the patient. Groups of BM donors comparable by age and gender were used as controls for each nosology. Gene expression was analyzed with real-time RT-PCR. The significance of differences was evaluated with Mann-Whitney U-test. Results. The results of gene expression analysis are summarized in Table. The expression of genes regulating hematopoietic stem and precursor cells (JAG1, LIF, IL6) was significantly upregulated in MSC of the patients in debut, except for DLBCL. The latter was characterized with upregulation of osteogenic marker gene SPP1 and downregulation of FGFR1 gene. The upregulation of the expression of genes regulating proliferation of stromal cells (PDGFRA, FGFR1) and adipogenic marker gene (PPARG) was common for AML and CML. Both acute leukemias were characterized by the upregulation of genes associated with inflammation and regulation of hematopoietic precursors (CSF1, IL1B, IL1BR1) and by the downregulation of chondrogenic differentiation marker gene (SOX9). CML and DLBCL demonstrated the upregulation of FGFR2. BM of the DLBCL patients did not contain any malignant cells; nevertheless, stromal precursors from the BM were significantly affected. This indicates the distant effects of DLBCL malignant cells on the patients' BM. Myeloid malignancies seem to affect MSC more profoundly then lymphoid ones. Effect of leukemic cells on stromal microenvironment in case of myeloid leukemia was more pronounced. The treatment significantly affected gene expression in MSC of patients. In all studied nosologies the IL6 gene expression was upregulated, which may reflect the inflammation processes ongoing in the organism. The expression of LIF was upregulated and ICAM1, downregulated in MSCs of AML, ALL, and CML patients. In the MSC of patients with AML, who had received the highest doses of cytostatic drugs to achieve remission, a significant decrease in the expression of most studied genes was found. In patients with ALL with long-term continuing treatment in combination with lower doses of drugs, IL1B expression was increased, while the decrease in expression was detected for a number of genes regulating hematopoietic stem cells (SDF1, TGFB1), differentiation and proliferation (SOX9, FGFR1, FGFR2). Treatment of CML patients is based on tyrosine kinase inhibitors in doses designed for long-term use, and is less damaging for MSC. The upregulation of TGFB1, SOX9, PDGFRA genes and downregulation of IL1B gene was revealed. MCS of DLBCL patients, unlike the other samples, were analyzed after the end of treatment. Nevertheless, significant upregulation of IL8 and FGFR2 genes was found. Thus, both the malignant cells and chemotherapy affect stromal precursor cells. The changes are not transient; they are preserved for a few months at least. MSCs comprise only a minor subpopulation in the BM in vivo. When expanded in vitro, they demonstrate significant changes between groups of patients and healthy donors. Conclusions. Leukemia cells adapt the stromal microenvironment. With different leukemia, the same changes are observed in the expression of genes in MSC. MSC of patients with acute forms have a lot of changes which coincide among these two diseases. MSC of AML patients are most affected both in debut and after the therapy. Treatment depends on the nosology and in varying degrees changes the MSC. This work was supported by the Russian Foundation for Basic Research, project no. 17-00-00170. Disclosures Chelysheva: Novartis: Consultancy, Honoraria; Fusion Pharma: Consultancy. Shukhov:Novartis: Consultancy; Pfizer: Consultancy. Turkina:Bristol Myers Squibb: Consultancy; Novartis: Consultancy, Speakers Bureau; Pfizer: Consultancy; Novartis: Consultancy, Speakers Bureau; fusion pharma: Consultancy.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1206-1206
Author(s):  
Joshua N. Borgerding ◽  
Priya Gopalan ◽  
Matthew Christopher ◽  
Daniel C. Link ◽  
Laura G. Schuettpelz

Abstract Abstract 1206 There is accumulating evidence that systemic signals, such as inflammatory cytokines, can affect hematopoietic stem cell (HSC) function. Granulocyte colony stimulating factor (G-CSF), the principal cytokine regulating granulopoiesis, is often induced in response to infection or inflammation. Additionally, G-CSF is the most commonly used agent for HSC mobilization prior to stem cell transplantation. Recently there has been a renewed interest in the use of “G-CSF primed bone marrow” for stem cell transplantation, so understanding the affect of G-CSF on bone marrow HSCs is clinically relevant. Because the G-CSF receptor is expressed on HSCs, and G-CSF creates biologically relevant modifications to the bone marrow microenvironment, we hypothesized that increased signaling through G-CSF may alter the repopulating and/or self-renewal properties of HSCs. Due to G-CSF's role as an HSC mobilizing agent, we predicted that the number of HSCs in the bone marrow would be reduced after 7 days of G-CSF treatment. Surprisingly, we observe that stem cell numbers markedly increase, regardless of which HSC-enriched population is analyzed. C-kit+lineage−sca+CD34− (KLS-34−), KLS CD41lowCD150+CD48− (KLS-SLAM), and KLS-SLAM CD34− increase by 6.97±2.25 fold, 1.79±0.29 fold, and 2.08±0.39 fold, respectively. To assess HSC repopulating activity, we conducted competitive bone marrow transplants. Donor mice were treated with or without G-CSF for 7 days, and bone marrow was transplanted in a 1:1 ratio with marrow from untreated competitors into lethally irradiated congenic recipients. Compared to untreated HSCs, we found that G-CSF treated cells have significantly impaired long-term repopulating and self-renewal activity in transplanted mice. In fact, on a per cell basis, the long-term repopulating activity of KLS-CD34− cells from G-CSF treated mice was reduced approximately 13 fold. The loss of repopulating activity per HSC was confirmed by transplanting purified HSCs. Homing experiments indicate that this loss of function is not caused by an inability to home from the peripheral blood to the bone marrow niche. As HSC quiescence has been positively associated with repopulating activity, we analyzed the cell cycle status over time of KLS-SLAM cells treated with G-CSF. This analysis revealed that after a brief period of enhanced cycling (69.8±5.0% G0 at baseline; down to 55.9±4.1% G0after 24 hours of G-CSF), treated cells become more quiescent (86.8±2.8% G0) than untreated HSCs. A similar increase in HSC quiescence was seen in KLS-34− cells. Thus our data show that G-CSF treatment is associated with HSC cycling alterations and function impairment. Because G-CSF is associated with modifications to the bone marrow microenvironment, and the microenvironment is known to regulate HSCs at steady state, we asked whether the G-CSF induced repopulating defect was due to a cell intrinsic or extrinsic (secondary to alterations in the microenvironment) mechanism. To do this, we repeated the competitive transplantation experiments using chimeric mice with a mixture of wild-type and G-CSF receptor knockout (Csf3r−/−) bone marrow cells. We find that only the repopulating activity of HSCs expressing the G-CSF receptor is affected by G-CSF, suggesting a cell-intrinsic mechanism. To identify targets of G-CSF signaling that may mediate loss of stem cell function, we performed RNA expression profiling of sorted KSL-SLAM cells from mice treated for 36 hours or seven days with or without G-CSF. The profiling data show that G-CSF treatment is associated with activation of inflammatory signaling in HSCs. Studies are in progress to test the hypothesis that activation of specific inflammatory signaling pathways mediates the inhibitory effect of G-CSF on HSC function. In summary, G-CSF signaling in HSCs, although associated with increased HSC quiescence, leads to a marked loss of long-term repopulating activity. These data suggest that long-term engraftment after transplantation of G-CSF-primed bone marrow may be reduced and requires careful follow-up. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4715-4715
Author(s):  
Mengqun Tan ◽  
Zhenqing Liu ◽  
Juan Zhang ◽  
Zhiyan Li ◽  
Liujiang Song ◽  
...  

Abstract Abstract 4715 β -Thalassemia is one of the most common worldwide monogenic human diseases,caused by molecular defects in the human β -globin gene cluster leading to decrease or absence of β-globin. Loss of β -globin chains causes ineffective production of oxygen-carrying hemoglobin and therefore results in severe anemia. The treatment for β -Thalassemia major usually includes lifelong blood transfusions but chronic blood transfusion often causes iron overload, and accumulated iron produces tissue damage in multiple organs, so that iron chelating treatment is also needed. Bone marrow transplantation is another effective therapy, which can eliminate a patient's dependence on blood transfusions, however, it is difficult to find a matching donor for most patients; therefore it is only available for a minority of patients. Gene therapy is one potential novel therapy for treatment of inherited monogenic disorders. The long–term therapeutic strategy for this disease is to replace the defective β-globin gene via introduction of a functional gene into hematopoietic stem cells (HSCs). Adeno-associated virus type 2 (AAV), a nonpathogenic human parvovirus, has gained attention as a potentially useful vector for human gene therapy. AAV can infect both dividing and non-dividing cells and wild AAV integrates preferentially at a specific site on human chromosome 19. In the absence of helper virus, recombinant AAV will stably integrate into the host cell genome, mediating long-term and stable expression of the transgene. In this study, we used a hybrid rAAV6/2 vector carrying the human β-globin gene to transduce HSCs from a β -Thalassemia patient, followed by transplantation into irradiated BALB/c nude mice. One month post-transplantation, Hb was prepared from peripheral blood and analyzed by Western Blot and HPLC respectively. RNA and DNA were isolated from bone marrow cells (BMCs) from recipient mice transplanted with mock-infected or hybrid rAAV–globin-infected cells and analyzed by RT-PCR and PCR respectively. The results showed: 1. Human β-actin and β-globin transcripts were detected by RT-PCR in BMCs from all recipient mice, indicating that human HSCs were successfully transplanted in these mice and that the human β-globin gene was transcriptionally active in the donor cells. 2. The level of human hemoglobin expressed in peripheral red blood cells of recipient mice as measured by HPLC (ratio of β/α) was increased to 0.3 from 0.05 of pre-transplantation levels. Expression of human β-globin was also confirmed in recipient mice by Western Blot; a 2–3-fold increase compared with that of controls. Our results indicate that human HSCs from a β-Thalassemia patient can be efficiently transduced by a hybrid rAAV6/2-β-globin vector followed by expression of normal human β-globin protein. This study provides a proof-of-concept that rAAV6/2-mediated gene transfer into human HSCs might be a potential approach for gene therapy of β-Thalassemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 95 (11) ◽  
pp. 3620-3627 ◽  
Author(s):  
Graça Almeida-Porada ◽  
Christopher D. Porada ◽  
Nam Tran ◽  
Esmail D. Zanjani

Both in utero and postnatal hematopoietic stem cell (HSC) transplantation would benefit from the development of approaches that produce increased levels of engraftment or a reduction in the period of time required for reconstitution. We used the in utero model of human–sheep HSC transplantation to investigate ways of improving engraftment and differentiation of donor cells after transplantation. We hypothesized that providing a more suitable microenvironment in the form of human stromal cell progenitors simultaneously with the transplanted human HSC would result in higher rates of engraftment or differentiation of the human cells in this xenogeneic model. The results presented here demonstrate that the cotransplantation of both autologous and allogeneic human bone marrow-derived stromal cell progenitors resulted in an enhancement of long-term engraftment of human cells in the bone marrow of the chimeric animals and in earlier and higher levels of donor cells in circulation both during gestation and after birth. By using marked stromal cells, we have also demonstrated that injected stromal cells alone engraft and remain functional within the sheep hematopoietic microenvironment. Application of this method to clinical HSC transplantation could potentially lead to increased levels of long-term engraftment, a reduction in the time for hematopoietic reconstitution, and a means of delivery of foreign genes to the hematopoietic system.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 200-200
Author(s):  
Alessandro Aiuti ◽  
Ulrike Benninghoff ◽  
Barbara Cassani ◽  
Federica Cattaneo ◽  
Luciano Callegaro ◽  
...  

Abstract Severe combined immunodeficiency (SCID) due to adenosine deaminase (ADA) deficiency is a fatal congenital disorder of the immune system associated with systemic toxicity due to accumulation of purine metabolites. We previously showed that retroviral-mediated ADA gene transfer into autologous hematopoietic stem/progenitor cells (HSC) allowed restoration of immune and metabolic functions. We have now enrolled eight ADA-SCID children (age: 7–67 months) in our phase I/II gene therapy trial in which HSC are combined with low intensity conditioning with busulfan (total dose 4 mg/Kg i.v.). Previous treatment included haploidentical bone marrow transplant (n=3) or long-term (>1 year) enzyme replacement therapy (PEG-ADA) (n=4) associated with insufficient immune reconstitution or severe autoimmunity. In the latter case, PEG-ADA was discontinued to favour the growth advantage for gene corrected cells. The patients received a median dose of 8.8x106/Kg bone marrow CD34+ cells (range 0.9–10.8), containing on average 26.2±9.6% transduced CFU-C. Five patients experienced ANC <0.5x109/L, which was extended beyond day +30 in two patients. With a median follow up of 3.1 years (range 0.4–5.9), no adverse events related to gene transfer have been observed. Long-term engraftment of transduced HSC was demonstrated by stable multilineage marking, persisting more than 5 years from gene therapy. The average proportion of transduced cells in the peripheral blood at one year post-gene therapy (n=6) was 5% for granulocytes, 95% for T cells, 56% for B cells and 62% for NK cells. Comparison of the insertion sites retrieved ex vivo from patients with those identified in pre-transplant transduced CD34+ cells showed no skewing in the profile of genome distributions or in the gene families hit by the vector, and no clonal expansion. In the six children with a follow-up >1 year after gene therapy, we observed a progressive increase in lymphocyte counts which was sustained over time (median at 1.5 years 1.6x109/L), polyclonal thymopoiesis and normalization of T-cell functions in vitro. Serum Ig levels improved and evidence of antigen-specific antibodies was obtained, leading to IVIG discontinuation in five patients. All the children are currently healthy and thriving, and none of them showed severe infections. Sustained ADA activity in lymphocytes and RBC resulted in a dramatic reduction of RBC purine toxic metabolites (dAXP<30 nmoles/ml in 5 patients) and amelioration of children’s growth and development. In summary, these data confirm that gene therapy is safe and efficacious in correcting both the immune and metabolic defect in ADA-SCID, with proven clinical benefit.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3271-3271
Author(s):  
Claudia R. Ball ◽  
Manfred Schmidt ◽  
Ingo H. Pilz ◽  
Fessler Sylvia ◽  
David A. Williams ◽  
...  

Abstract Gene therapy is a promising approach for the therapy of hereditary diseases, but after the occurrence of adverse side effects in a SCID-X1 gene therapy trial increased biological safety has become a major goal of gene therapy. A reduction of the number of transplanted cells could help achieve this goal by reducing the statistical likelihood of insertional mutagenesis simply by simply reducing the number of transplanted cells carrying potentially untoward insertion sites. As we have previously shown, incorporation of the selectable marker gene MGMT P140K into a retroviral vector allows a reduced intensity and toxicity in vivo selection of low numbers of genetically modified hematopoietic cells by chemotherapy with O6-benzylguanine (O6BG) and nitrosourea drugs such as 1,3-bis-2 chloroethyl-1-nitrosourea (BCNU). However, it is still not known whether extended selection over longer periods of time influences the long-term proliferation and differentiation capacity of murine haematopoietic stem cells. To address this question, serial transplantations of murine MGMT-P140K-expressing hematopoiesis combined with repeated administrations of O6-BG and BCNU were performed. After ex vivo gene transfer of a MGMT/IRES/eGFP-encoding retroviral vector, bone marrow cells were transplanted into syngeneic C57 BL/6J mice and serially transplanted. First, 2nd and 3rd generation recipient mice were subsequently treated every four weeks in order to amplify treatment effects on the long-term clonal behaviour of modified hematopoietic stem cells. Lineage contribution of transduced hematopoiesis was monitored by FACS over a total of 17 rounds of selection and clonality was monitored by LAM-PCR over a total of 16 rounds of selection. In primary mice, the percentage of transduced blood cells increased from 4.7 ± 0.8 % to 36.4 ± 9.8 % (n=12) and in secondary mice from 29.9 ± 7.2 % to 65.1 ± 8.7 % (n=18) after selection without inducing persistent peripheral blood cytopenia. Lineage analysis showed an unchanged multilineage differentiation potential in the transduced compared to control cells in 1st and 2nd generation animals. LAM PCR analysis of peripheral blood revealed stable oligo- to polyclonal hematopoiesis in 1st, 2nd and 3rd generation mice. Evidence of predominant clones or clonal exhaustion was not observed despite of up to 16 rounds of BCNU/O6-BG treatment. Interestingly, pairs of secondary transplanted mice which had received bone marrow cells from identical donors showed very similar clonal composition, engraftment kinetics under selection and lineage contribution of the transduced hematopoiesis. This is molecular proof that extensive self-renewal of transplantable stem cells had occurred in the primary mice resulting in a net symmetric refilling of the stem cell compartment. In summary, we demonstrate that even extended selection of MGMT-P140K-expressing hematopoietic stem cells by repetitive chemotherapy does not affect differentiation or proliferation potential and does not result in clonal exhaustion. Our results have important implications for the clinical use of MGMT selection strategies intending to employ amplification of a limited number of genetically modified clones in clinical gene therapy.


Sign in / Sign up

Export Citation Format

Share Document