BCX-4208 (RO5092888), a Purine Nucleoside Phosphorylase (PNP) Inhibitor, Is a Novel, Potent Orally Active Anti-T-Cell and B-Cell Agent.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1547-1547
Author(s):  
Shanta Bantia ◽  
Cynthia Parker ◽  
Ramanda Upshaw ◽  
John Michael Kilpatrick ◽  
Amanda Cunningham ◽  
...  

Abstract The profound suppression of T-cell immunity seen in patients with an inherited PNP deficiency supports the potential application of inhibitors of this purine salvage enzyme in the therapy of T-cell malignancies and T-cell mediated autoimmune diseases. About thirty percent of PNP deficient patients also show evidence of B-cell dysfunction. BCX-4208 is a novel potent transition state analog inhibitor of PNP (IC50 ~ 0.0005 μM) and in the presence of 10 μM deoxyguanosine (dGuo), inhibits human lymphocyte proliferation induced by MLR, IL-2 or Con-A with IC50s of 0.159, 0.26 and 0.73 μM, respectively. The IC50 for dGuo in the same assays in the presence of 1 μM BCX-4208 ranges from 1–3 μM. Neither BCX-4208 alone nor dGuo alone inhibits proliferation of lymphocytes. In the presence of PNP inhibitor, dGuo is converted to dGMP and then to dGTP. Accumulation of dGTP results in the alteration of deoxynucleotide (dNTP) pools, causing death of cells via a mechanism characteristic of apoptosis. In vitro data demonstrates that following exposure to BCX-4208 and dGuo, dGTP in human lymphocytes is elevated and a 5–8 fold increase in dGTP results in 50% inhibition of lymphocyte proliferation. Flow cytometric analyses of human lymphocytes using annexin-V staining reveal that BCX-4208 in the presence of dGuo induces cellular apoptosis not only in T cells (CD3+), but also in B cells (CD20+; CD19+) (Table 1). BCX-4208 is orally bioavailable in mice, can achieve maximal inhibition of PNP, and elevates plasma dGuo levels to 3–5 μM (predose levels < 0.004 μM), which is similar to levels seen in PNP deficient patients and to levels needed to cause apoptosis in T and B-cells. These data support the evaluation of BCX-4208 in the treatment of not only T-cell mediated diseases but also B-cell mediated diseases. BCX- 4208 is currently undergoing early clinical investigation in patients with psoriasis. Table 1. Cell subsets % Apoptotic cells mean ± SEM (n = 4–7) Vehicle Treatment group *p ≤ 0.01 compared to vehicle CD3+ 7.2 ± 0.9 18.3 ± 3.7* CD20+ 24.0 ± 3.6 41.8 ± 6.2* CD19+ 25.0 ± 3.1 51.6 ± 7.4*

Author(s):  
Casper Marsman ◽  
Dorit Verhoeven

Background/methods: For mechanistic studies, in vitro human B cell differentiation and generation of plasma cells are invaluable techniques. However, the heterogeneity of both T cell-dependent (TD) and T cell-independent (TI) stimuli and the disparity of culture conditions used in existing protocols makes interpretation of results challenging. The aim of the present study was to achieve the most optimal B cell differentiation conditions using isolated CD19+ B cells and PBMC cultures. We addressed multiple seeding densities, different durations of culturing and various combinations of TD stimuli and TI stimuli including B cell receptor (BCR) triggering. B cell expansion, proliferation and differentiation was analyzed after 6 and 9 days by measuring B cell proliferation and expansion, plasmablast and plasma cell formation and immunoglobulin (Ig) secretion. In addition, these conditions were extrapolated using cryopreserved cells and differentiation potential was compared. Results: This study demonstrates improved differentiation efficiency after 9 days of culturing for both B cell and PBMC cultures using CD40L and IL-21 as TD stimuli and 6 days for CpG and IL-2 as TI stimuli. We arrived at optimized protocols requiring 2500 and 25.000 B cells per culture well for TD and TI assays, respectively. The results of the PBMC cultures were highly comparable to the B cell cultures, which allows dismissal of additional B cell isolation steps prior to culturing. In these optimized TD conditions, the addition of anti-BCR showed little effect on phenotypic B cell differentiation, however it interferes with Ig secretion measurements. Addition of IL-4 to the TD stimuli showed significantly lower Ig secretion. The addition of BAFF to optimized TI conditions showed enhanced B cell differentiation and Ig secretion in B cell but not in PBMC cultures. With this approach, efficient B cell differentiation and Ig secretion was accomplished when starting from fresh or cryopreserved samples. Conclusion: Our methodology demonstrates optimized TD and TI stimulation protocols for more indepth analysis of B cell differentiation in primary human B cell and PBMC cultures while requiring low amounts of B cells, making them ideally suited for future clinical and research studies on B cell differentiation of patient samples from different cohorts of B cell-mediated diseases.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1012-1020 ◽  
Author(s):  
JS Moore ◽  
MB Prystowsky ◽  
RG Hoover ◽  
EC Besa ◽  
PC Nowell

The consistent occurrence of T cell abnormalities in patients with B cell chronic lymphocytic leukemia (B-CLL) suggest that the non- neoplastic host T cells may be involved in the pathogenesis of this B cell neoplasm. Because potential defects of immunoglobulin regulation are evident in B-CLL patients, we investigated one aspect of this by studying the T cell-mediated immunoglobulin isotype-specific immunoregulatory circuit in B-CLL. The existence of class-specific immunoglobulin regulatory mechanisms mediated by Fc receptor-bearing T cells (FcR + T) through soluble immunoglobulin binding factors (IgBFs) has been well established in many experimental systems. IgBFs can both suppress and enhance B cell activity in an isotype-specific manner. We investigated the apparently abnormal IgA regulation in a B-CLL patient (CLL249) whose B cells secrete primarily IgA in vitro. Enumeration of FcR + T cells showed a disproportionate increase in IgA FcR + T cells in the peripheral blood of this patient. Our studies showed that the neoplastic B cells were not intrinsically unresponsive to the suppressing component of IgABF produced from normal T cells, but rather the IgABF produced by the CLL249 host T cells was defective. CLL249 IgABF was unable to suppress IgA secretion by host or normal B cells and enhanced the in vitro proliferation of the host B cells. Size fractionation of both normal and CLL249 IgABF by gel-filtration high- performance liquid chromatography (HPLC) demonstrated differences in the ultraviolet-absorbing components of IgABF obtained from normal T cells v that from our patient with defective IgA regulation. Such T cell dysfunction may not be restricted to IgA regulation, since we have found similar expansion of isotype-specific FcR + T cells associated with expansion of the corresponding B cell clone in other patients with B-CLL. These data suggest that this T cell-mediated regulatory circuit could be significantly involved in the pathogenesis of B-CLL.


2020 ◽  
Author(s):  
Bettina Budeus ◽  
Artur Kibler ◽  
Martina Brauser ◽  
Ekaterina Homp ◽  
Kevin Bronischewski ◽  
...  

AbstractThe human infant B cell system is considered premature or impaired. Here we show that most cord blood B cells are mature and functional as seen in adults, albeit with distinct transcriptional programs providing accelerated responsiveness to T cell-independent and T cell-dependent stimulation and facilitated IgA class switching. Stimulation drives extensive differentiation into antibody-secreting cells, thereby presumably limiting memory B cell formation. The neonatal Ig-repertoire is highly variable, but conserved, showing recurrent B cell receptor (BCR) clonotypes frequently shared between neonates. Our study demonstrates that cord blood B cells are not impaired but differ from their adult counterpart in a conserved BCR repertoire and rapid but transient response dynamics. These properties may account for the sensitivity of neonates to infections and limited effectivity of vaccination strategies. Humanized mice suggest that the distinctness of cord blood versus adult B cells is already reflected by the developmental program of hematopoietic precursors, arguing for a layered B-1/B-2 lineage system as in mice. Still, our findings reveal overall limited comparability of human cord blood B cells and murine B-1 cells.Significance StatementNeonates and infants suffer from enhanced susceptibility to infections. Our study contrasts with the current concept of a premature or impaired B cell system in neonates, by showing that most cord blood B cells are mature and functional. However, their responses are rapid but provide only short-term protection, which may help to improve infant vaccination strategies. We propose an altered perspective on the early human B cell system, which looks similar to but functions differently from the adult counterpart. Finally, our analysis indicates that cord blood- and adult B cell development occur layered as in mice, but certain mouse models still may offer a limited view on human neonatal B cell immunity.


2000 ◽  
Vol 192 (7) ◽  
pp. 953-964 ◽  
Author(s):  
Richard K.G. Do ◽  
Eunice Hatada ◽  
Hayyoung Lee ◽  
Michelle R. Tourigny ◽  
David Hilbert ◽  
...  

B lymphocyte stimulator (BLyS) is a newly identified monocyte-specific TNF family cytokine. It has been implicated in the development of autoimmunity, and functions as a potent costimulator with antiimmunoglobulin M in B cell proliferation in vitro. Here we demonstrate that BLyS prominently enhances the humoral responses to both T cell–independent and T cell–dependent antigens, primarily by attenuation of apoptosis as evidenced by the prolonged survival of antigen-activated B cells in vivo and in vitro. BLyS acts on primary splenic B cells autonomously, and directly cooperates with CD40 ligand (CD40L) in B cell activation in vitro by protecting replicating B cells from apoptosis. Moreover, although BLyS alone cannot activate the cell cycle, it is sufficient to prolong the survival of naive resting B cells in vitro. Attenuation of apoptosis by BLyS correlates with changes in the ratios between Bcl-2 family proteins in favor of cell survival, predominantly by reducing the proapoptotic Bak and increasing its prosurvival partners, Bcl-2 and Bcl-xL. In either resting or CD40L-activated B cells, the NF-κB transcription factors RelB and p50 are specifically activated, suggesting that they may mediate BLyS signals for B cell survival. Together, these results provide direct evidence for BLyS enhancement of both T cell–independent and T cell–dependent humoral immune responses, and imply a role for BLyS in the conservation of the B cell repertoire. The ability of BLyS to increase B cell survival indiscriminately, at either a resting or activated state, and to cooperate with CD40L, further suggests that attenuation of apoptosis underlies BLyS enhancement of polyclonal autoimmunity as well as the physiologic humoral immune response.


2016 ◽  
Vol 213 (11) ◽  
pp. 2413-2435 ◽  
Author(s):  
Yi Wang ◽  
Cindy S. Ma ◽  
Yun Ling ◽  
Aziz Bousfiha ◽  
Yildiz Camcioglu ◽  
...  

Combined immunodeficiency (CID) refers to inborn errors of human T cells that also affect B cells because of the T cell deficit or an additional B cell–intrinsic deficit. In this study, we report six patients from three unrelated families with biallelic loss-of-function mutations in RLTPR, the mouse orthologue of which is essential for CD28 signaling. The patients have cutaneous and pulmonary allergy, as well as a variety of bacterial and fungal infectious diseases, including invasive tuberculosis and mucocutaneous candidiasis. Proportions of circulating regulatory T cells and memory CD4+ T cells are reduced. Their CD4+ T cells do not respond to CD28 stimulation. Their CD4+ T cells exhibit a "Th2" cell bias ex vivo and when cultured in vitro, contrasting with the paucity of "Th1," "Th17," and T follicular helper cells. The patients also display few memory B cells and poor antibody responses. This B cell phenotype does not result solely from the T cell deficiency, as the patients’ B cells fail to activate NF-κB upon B cell receptor (BCR) stimulation. Human RLTPR deficiency is a CID affecting at least the CD28-responsive pathway in T cells and the BCR-responsive pathway in B cells.


2021 ◽  
Vol 118 (46) ◽  
pp. e2108157118
Author(s):  
Kerstin Narr ◽  
Yusuf I. Ertuna ◽  
Benedict Fallet ◽  
Karen Cornille ◽  
Mirela Dimitrova ◽  
...  

Chronic viral infections subvert protective B cell immunity. An early type I interferon (IFN-I)–driven bias to short-lived plasmablast differentiation leads to clonal deletion, so-called “decimation,” of antiviral memory B cells. Therefore, prophylactic countermeasures against decimation remain an unmet need. We show that vaccination-induced CD4 T cells prevented the decimation of naïve and memory B cells in chronically lymphocytic choriomeningitis virus (LCMV)-infected mice. Although these B cell responses were largely T independent when IFN-I was blocked, preexisting T help assured their sustainability under conditions of IFN-I–driven inflammation by instructing a germinal center B cell transcriptional program. Prevention of decimation depended on T cell–intrinsic Bcl6 and Tfh progeny formation. Antigen presentation by B cells, interactions with antigen-specific T helper cells, and costimulation by CD40 and ICOS were also required. Importantly, B cell–mediated virus control averted Th1-driven immunopathology in LCMV-challenged animals with preexisting CD4 T cell immunity. Our findings show that vaccination-induced Tfh cells represent a cornerstone of effective B cell immunity to chronic virus challenge, pointing the way toward more effective B cell–based vaccination against persistent viral diseases.


2006 ◽  
Vol 80 (8) ◽  
pp. 3923-3934 ◽  
Author(s):  
Vito Racanelli ◽  
Maria Antonia Frassanito ◽  
Patrizia Leone ◽  
Maria Galiano ◽  
Valli De Re ◽  
...  

ABSTRACT There is growing interest in the tendency of B cells to change their functional program in response to overwhelming antigen loading, perhaps by regulating specific parameters, such as efficiency of activation, proliferation rate, differentiation to antibody-secreting cells (ASC), and rate of cell death in culture. We show that individuals persistently infected with hepatitis C virus (HCV) carry high levels of circulating immunoglobulin G (IgG) and IgG-secreting cells (IgG-ASC). Thus, generalized polyclonal activation of B-cell functions may be supposed. While IgGs include virus-related and unrelated antibodies, IgG-ASC do not include HCV-specific plasma cells. Despite signs of widespread activation, B cells do not accumulate and memory B cells seem to be reduced in the blood of HCV-infected individuals. This apparent discrepancy may reflect the unconventional activation kinetics and functional responsiveness of the CD27+ B-cell subset in vitro. Following stimulation with T-cell-derived signals in the absence of B-cell receptor (BCR) engagement, CD27+ B cells do not expand but rapidly differentiate to secrete Ig and then undergo apoptosis. We propose that their enhanced sensitivity to BCR-independent noncognate T-cell help maintains a constant level of nonspecific serum antibodies and ASC and serves as a backup mechanism of feedback inhibition to prevent exaggerated B-cell responses that could be the cause of significant immunopathology.


Blood ◽  
1993 ◽  
Vol 81 (12) ◽  
pp. 3343-3349 ◽  
Author(s):  
BK Link ◽  
GJ Weiner

Abstract Bispecific monoclonal antibodies (bsabs) recognizing both CD3 and a tumor antigen can redirect T-cell-mediated cytotoxicity toward cells bearing that antigen. Such bsabs have been shown to be more effective than monospecific monoclonal antibodies (MoAbs) at preventing tumor growth in animal models of B-cell malignancy. The current studies describe the production and preliminary evaluation of a bsab designed to induce the lysis of malignant human B cells by human T cells. The bsab was obtained from a hybrid-hybridoma cell line produced by fusing OKT3-secreting hybridoma cells with hybridoma cells that secrete 1D10. 1D10 is an MoAb that recognizes an antigen found on a majority of malignant human B cells that has not been detected to a significant degree on normal resting or activated lymphocytes. High performance liquid chromatography (HPLC) was used to separate bsab from monospecific antibodies that were also present in the hybrid-hybridoma antibody product. The bsab was then evaluated in vitro for its ability to induce lysis of malignant B cells by activated T cells. The bsab consistently induced extensive lysis in vitro of 1D10 (+) cells, including both cell lines and cells obtained from patients with a variety of B-cell malignancies. No such effect was seen with activated T cells alone or activated T cells with monospecific antibody. No increased lysis was seen with 1D10 (-) cell lines. The bsab also mediated lysis of malignant B cells by autologous T cells. We conclude bsab containing an OKT3 arm and a 1D10 arm can induce T-cell-mediated lysis in a manner that is both potent and specific. This supports further evaluation of this bsab as a potential immunotherapy of B-cell malignancy.


Blood ◽  
1981 ◽  
Vol 58 (3) ◽  
pp. 431-439 ◽  
Author(s):  
LG Lum ◽  
MC Seigneuret ◽  
RF Storb ◽  
RP Witherspoon ◽  
ED Thomas

Abstract Twenty-four patients with aplastic anemia or acute leukemia were treated by marrow grafts from HLA-identical donors after conditioning with high doses of cyclophosphamide and/or today body irradiation. They were studied between 4 and 63 mo (median 14.2) after transplantation. Seventeen patients had chronic graft-versus-host disease (C-GVHD) and 7 were healthy. They were studied for defects in their T- and B-cell function using and indirect hemolytic plaque assay for Ig production after 6 days of culture in the presence of pokeweek mitogen. T or B cells from the patients with or without C-GVHD were cocultured with T or B cells from their HLA-identical marrow donors or unrelated normal controls. Intrinsic B-cell defects, lack of helper T-cell activity, and suppressor T-cell activity were more frequently found in patients with C-GVHD than in healthy patients. Fifteen of the 17 patients with C-GVHD showed on or more defects in their T-and B-cell function compared to only 3 of the 7 patients without C-GVHD. None of the healthy controls, including the marrow donors, showed defects in their T- and B-cell functions. These in vitro findings may be helpful in assessing the process of immune reconstitution and the immunologic aberration found after human marrow transplantation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2668-2668
Author(s):  
Abdul Tawab ◽  
Yoshiyuki Takahashi ◽  
Childs Richard ◽  
Kurlander J. Roger

Abstract In vitro stimulation of human peripheral blood B cells with recombinant IL-4 and CD40 ligand (CD40L) markedly increases their expression of MHC and costimulatory molecules, thus enhancing antigenic peptide presentation to T cells. Because these cells proliferate extensively in vitro (unlike monocytes or dendritic cells), they represent a promising and convenient reagent for the generation and maintenance of antigen-specific T cells for use in a variety of experimental or therapeutic settings. However, the impact of this type of B cell APC on cytokine production by responder T cells has hitherto not been examined. To address this issue, we stimulated normal human T cells with either allogeneic B cells (generated in vitro) or with MNCs obtained from the same donor. After 7 days, T cells were washed and re-challenged with the same APCs. The resulting alloreactive cytokine response was measured using quantitative ELISPOT methods and expressed as the frequencies of IFN-γ, IL-4, and IL-5 producing cells per thousand responder cells added. B cell- and MNC-primed cell lines both produced vigorous lymphokine responses, but B cell-stimulated T cells consistently produced more IL-5 spots (mean of 265 vs. 98/1000 responders, p<0.002) and fewer IFN-γ spots (163 vs 386/1000 cells, p<0.005) than MNC-stimulated cells. Further, the ratio of IFN-γ to IL-5 spots was almost ten-fold lower in B cell-stimulated cultures compared to MNC-induced cultures (0.67 vs. 5.2, p<0.001). ELISPOT studies assessing the ratio of IFN-γ to IL-4 spots and ELISA assays comparing IFN-γ and IL-5 levels from culture supernatants demonstrated the same pattern of marked type 2 skewing by B cells. This pattern was unaffected by the presence of anti-IL-4 antibody suggesting type 2 skewing was not mediated by IL-4. Cytokine skewing produced by B cells or MNC could be partially reversed by swapping MNC and B cells during re-stimulation on day 7, but this plasticity was markedly reduced after 3 (weekly) cycles of B cell or MNC re-stimulation in vitro. Type 2 skewing by B cells was enhanced when monocytes were removed from responder T cell populations by either depleting CD14+ positive cells or by positive selection of T cells prior to stimulation. In contrast, type 2 polarization could be prevented using recombinant IL-12. Not all cells of B-cell origin share the same propensity to type 2 skewing observed with IL-4/CD40L-stimulated B cells; under identical conditions, EBV-transformed B cells stimulated alloimmune T cells to produce a strong type 1 cytokine response comparable to that produced by MNCs. In summary, IL-4/CD40L-stimulated B cells strongly promote a type 2 T cell response during primary alloimmune challenge; this skewing can become fixed after repeated B cell stimulation. Investigators using these cells as APC should be aware of this potential phenomenon, particularly during primary T cell responses. It is also important to consider the factors described above that may exacerbate or ameliorate this effect.


Sign in / Sign up

Export Citation Format

Share Document