Trogocytosis in Multiple Myeloma.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1681-1681
Author(s):  
Ross D. Brown ◽  
Karieshma Kabani ◽  
Shihong Yang ◽  
Aklilu Esther ◽  
Phoebe Joy Ho ◽  
...  

Abstract Trogocytosis is the transfer of cell membrane material from one cell to another during short term cell-cell contact. Recent studies have suggested that the transfer of cell membrane patches across the immunological synapse is at least partly responsible for immune tolerance, tumor escape and the production of adaptive T regulatory cells (Tregs). We sought to identify the extent of tumor-related trogocytosis in patients with multiple myeloma and have developed an in vitro model for further study. Trogocytosis in patients with multiple myeloma was demonstrated by flow cytometry, immunohistochemistry, confocal microscopy, lack of mRNA expression and by the failure to upregulate costimulatory molecules in vitro after stimulation by IL2 and huCD40LT. Of the costimulatory molecules CD80, CD86, B7-H1, B7-H3 and PD-L2, only CD80 and CD86 showed significant transfer to T cells. Increased CD80 expression was found on the T cells of 9% of patients and CD86 on 13% of patients (n= 95). Both CD4 and CD8 memory (CD45RO+) cells were involved but not naïve T cells (CD45RA+). HLA-G expression was found on less than 1% of T cells in 69/70 different myeloma blood samples. Following biotinylation of plasma cells (CD38++) using an in vitro culture model, trogocytosis was demonstrated in up to 36% of T cells. The presence of trogocytosis on CD3- TCRαβ-mutant Jurkat cells (J.RT3-T3.3) and on normal T cells with HLA incompatibility infers that trogocytosis is independent of immune recognition and TCR engagement. In vitro stimulation with IL-2 and huCD40LT and mRNA studies showed that T cells acquire CD80 and CD86 cell surface antigen but unlike B cells do not produce CD80 and CD86 mRNA (n=5) and cannot be stimulated to express CD80 and CD86 (n=6). Trogocytosis was not evident in age-matched control lymphocytes but could be induced in normal lymphocytes in vitro after exposure to malignant plasma cells. Trogocytosis is common in patients with multiple myeloma and involves the transfer of costimulatory molecules and other cell membrane proteins from malignant plasma cells to T cells. Tumor-induced trogocytosis may be a common cause of the failure of cytotoxic T cells and provide a mechanism of tumor escape.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1908-1908
Author(s):  
Katarina Luptakova ◽  
Heidi Mills ◽  
Jacalyn Rosenblatt ◽  
Dina Stroopinsky ◽  
Turner Kufe ◽  
...  

Abstract Abstract 1908 Introduction: Tumor vaccines hold promise as a means of eliciting anti-myeloma immunity and controlling disease that may be resistant to chemotherapy and biologic therapy. We have developed a whole cell tumor vaccine, whereby patient derived plasma cells are transduced with an attenuated vaccinia vector that contains transgenes for the costimulatory molecules B7.1 (CD80), ICAM-1 (CD54), and LFA-3 (CD58), designated TRIad of COstimulatory Molecules (TRICOM). In this manner, a broad array of tumor antigens, including those which may be specific to a given patient, are presented in the context of costimulatory molecules that have been shown to be synergistic in the stimulation of the effector T-cells. In the present study, we evaluated the phenotype and functional characteristics of TRICOM transduced primary myeloma cells. Methods and results: Plasma cells were isolated from bone marrow aspirates obtained from patients with multiple myeloma following Ficoll density centrifugation. Bone marrow derived mononuclear cells were infected with a replication-defective poxviral vector, the modified vaccinia Ankara strain (MVA), encoding TRICOM, or a control empty MVA vector. The expression of costimulatory molecules was assessed using flow cytometric analysis 3 hrs following viral infection. Viral transduction using the TRICOM vector at the dose of 20 MOI (multiplicity of infection) increased the mean percentage of CD38+ cells expressing CD80, CD54 and CD58 from a minimal baseline level (below 5%) to 70%, 56% and 47%, respectively (n=4). Transduction with control MVA vector did not augment expression of costimulatory molecules on plasma cells (mean percent expression of CD80, CD54 and CD58 of 2.6%, 2.7% and 3.8%, respectively, n=4). Of note, compared to CD38+ plasma cells, the CD38 negative fraction of bone marrow derived mononuclear cells demonstrated a significantly lower TRICOM transduction efficiency (mean percent expression of CD80, CD54 and CD58 of 16%, 17% and 16%, respectively, n=4, p<0.05 compared to CD38+ plasma cells). The ability of MVA-TRICOM transduced plasma cells to stimulate autologous T cell populations in vitro was assessed. Patient derived T-cells were purified from the non-adherent portion of PBMC by magnetic bead separation. MVA-TRICOM or empty MVA vector infected plasma cells were irradiated with 20Gy and co-cultured with autologous T cells at a 10:1 ratio of effector cells to vaccine for 7 days. MVA-TRICOM transduced plasma cells potently stimulated activated T cell responses, as assessed by the percentage of CD4+/CD25+/CD69+ T-cells (mean 7.8% of activated T-cells with TRICOM vaccine vs. 2.7% with control vaccine, n=3, p<0.05). In contrast, vaccine stimulation did not result in regulatory T-cell expansion, assessed as the percentage of cells co-expressing CD4,CD25 and FoxP3 (2.4% vs. 2.3%, for TRICOM and control vaccine, respectively, n=3). In concert with these findings, vaccine stimulation resulted in a polarization towards Th1 cytokine secretion, with 7.9% of CD4+ T-cells expressing intracellular IFN-γ after stimulation with TRICOM vaccine as compared to 5.4% after stimulation with the control vaccine (n=3, p<0.05). To further assess the expansion of tumor specific T cell populations, the ability of vaccine stimulated T cells to kill autologous tumor was assessed in a cell-based fluorogenic cytotoxicity assay. MVA-TRICOM transduced plasma cells potently stimulate the expansion of myeloma specific CTLs with the capacity to lyse autologous tumor targets. Mean CTL lysis was 20% and 8% for vaccine stimulated and unstimulated T cells respectively (n=2). Conclusions: Malignant plasma cells transduced with MVA-TRICOM strongly express costimulatory molecules, and potently stimulate activated, tumor reactive T cell populations. This preclinical data serves as a platform for developing a phase 1 clinical trial evaluating the use of MVA-TRICOM transduced autologous plasma cells in patients with multiple myeloma. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1944-1944 ◽  
Author(s):  
David J Dilillo ◽  
Kara Olson ◽  
Katja Mohrs ◽  
T. Craig Meagher ◽  
Kevin Bray ◽  
...  

Abstract Improving therapies for multiple myeloma (MM) remains a high medical need because of the significant morbidity and mortality of the disease. Targeted immunotherapies represent a promising opportunity to fill this clinical need. B cell maturation antigen (BCMA) is an attractive cell-surface target for MM due to its consistent expression on MM patient malignant plasma cells and expression limited in normal tissue primarily to plasma cells. Redirection of a patient's T cells to recognize tumors by CD3-binding bispecific molecules or through the generation of chimeric antigen receptor (CAR) T cells, has shown preliminary evidence of clinical activity. Bispecific antibodies concurrently engage a tumor antigen on cancer cells and the CD3 signaling machinery on T cells, bringing the tumor cell and T cell into proximity and facilitating T cell activation and tumor cell killing. By contrast, CAR T cell therapy involves re-infusion of the patient's own T cells after ex vivo engineering to express CARs targeting tumor antigens and triggering T cell signaling. Here we describe the generation of REGN5458, a human bispecific antibody that binds to BCMA and CD3. In vitro, REGN5458 efficiently activates T cells and induces polyclonal T cell killing of myeloma cell lines with a range of BCMA cell-surface densities, and also induces cytotoxicity of primary human plasma cells. Similar to gamma-sectretase inhibitors, incubation of myeloma cell lines with REGN5458 increased surface levels of BCMA. In xenogenic studies, after BCMAhigh NCI-H929 and BCMAlow MOLP-8 MM cells were co-implanted with PBMC and grown subcutaneously in immunodeficient NOD/SCID/L2Rgamma-deficient (NSG) mice, REGN5458 doses as low as 0.4 mg/kg significantly suppressed the growth of both tumors. Using aggressive, systemic xenogenic tumor models, in which NSG mice were engrafted with PBMC and intravenously injected with BCMAhigh OPM-2 cells or BCMAlow MOLP-8 cells expressing luciferase, REGN5458 reduced tumor burden and suppressed tumor growth at doses as low as 0.4 mg/kg. In immunocompetent mice genetically engineered to express human CD3, REGN5458 inhibited the growth of syngeneic murine tumors expressing human BCMA at doses as low as 0.04 mg/kg. Finally, as REGN5458 binds to cynomolgus CD3 and BCMA and mediates cytotoxicity of primary cynomolgus plasma cells, the pharmacology of REGN5458 was evaluated in cynomolgus monkeys. REGN5458 administration was well-tolerated, resulting in a mild inflammatory response characterized by transiently increased CRP and serum cytokines. Importantly, REGN5458 treatment led to the depletion of BCMA+ plasma cells in the bone marrow, demonstrating cytotoxic activity in non-human primates. The anti-tumor efficacy of REGN5458 was compared to BCMA-specific CAR T cells using 2nd generation CAR lentiviral constructs containing a single-chain variable fragment binding domain from REGN5458's BCMA binding arm and 4-1BB and CD3z signaling domains. Human PBMC-derived T cells were transduced to express this CAR and expanded. Both REGN5458 and the BCMA CAR T cells demonstrated similar targeted cytotoxicity of myeloma cell lines and primary patient blasts in vitro, and were capable of clearing established systemic OPM-2-luciferase myeloma tumors in NSG mice, but with different kinetics: treatment with REGN5458 resulted in rapid clearance of tumors within 4 days, whereas treatment with BCMA CAR T cells allowed tumors to continue to grow for 10-14 days following injection before rapidly inducing tumor clearance. Thus, REGN5458 exerts its therapeutic effect rapidly after injection, using effector T cells that are already in place. In contrast, BCMA CAR T cells require time to traffic to the tumor site and expand, before exerting anti-tumor effects. Collectively, these data demonstrate the potent pre-clinical anti-tumor activity of REGN5458 that is comparable to that of CAR T cells, and provide a strong rationale for clinical testing of REGN5458 in patients with MM. Disclosures Dilillo: Regeneron Pharmaceuticals: Employment. Olson:Regeneron Pharmaceuticals: Employment. Mohrs:Regeneron Pharmaceuticals: Employment. Meagher:Regeneron Pharmaceuticals: Employment. Bray:Regeneron Pharmaceuticals: Employment. Sineshchekova:Regeneron Pharmaceuticals: Employment. Startz:Regeneron Pharmaceuticals: Employment. Retter:Regeneron Pharmaceuticals: Employment. Godin:Regeneron Pharmaceuticals: Employment. Delfino:Regeneron Pharmaceuticals: Employment. Lin:Regeneron Pharmaceuticals: Employment. Smith:Regeneron Pharmaceuticals: Employment. Thurston:Regeneron Pharmaceuticals: Employment. Kirshner:Regeneron Pharmaceuticals: Employment.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 383-383 ◽  
Author(s):  
Siler H Panowski ◽  
Tracy Kuo ◽  
Amy Chen ◽  
Tao Geng ◽  
Thomas J Van Blarcom ◽  
...  

Abstract Multiple myeloma (MM) is a debilitating disease characterized by the abnormal accumulation of malignant plasma cells in the bone marrow. Despite recent advances in myeloma therapy, including proteasome inhibitors, immunomodulatory drugs, and targeted antibody therapies, patients relapse and the disease remains incurable and one of high unmet need. T cell redirecting therapies are a new and exciting class of therapeutics that harness the potent cytotoxic activity of T cells and redirect it to target tumor cells. T cell redirecting therapies are only as good as their targeted tumor associated antigen (TAA) and the potent nature of the therapy requires a lack of TAA expression in essential normal tissue. B-cell Maturation Antigen, BCMA, is a tumor necrosis factor superfamily member highly expressed on the surface of myeloma cells. Detectable normal BCMA tissue expression appears limited to plasmablasts and mature plasma cells, making it an ideal T cell redirecting target for the treatment of MM. Other groups have developed T cell redirecting therapies against BCMA, including CAR T and BiTE therapy (a short half-life CD3 bispecific). Here we present preclinical studies on a fully-human IgG CD3 bispecific molecule targeting BCMA (half-life in mice of ~3 days). This molecule utilizes anti-BCMA and anti-CD3 targeting arms paired through hinge mutation technology and placed in an IgG2A backbone. The molecule binds to BCMA-expressing myeloma cell lines and to T cells with affinities of 20pM and ~40nM, respectively. T cells co-cultured with MM cell lines were activated and de-granulated in the presence of BCMA bispecific. In vitro cytotoxicity assays revealed the high potency of the molecule, as it was able to drive lysis of MM target cells with an EC50 of 6± 8 pM (mean ± SD). We also observed strong in vitro potency with the BCMA bispecific in four different MM primary patient samples, EC50 =0.093±0.1 nM (mean ± SD). When the same four samples were targeted with a BCMA antibody drug conjugate (ADC), 3 of the samples gave EC50 values of 1.25±0.7 nM (mean ± SD) - i.e. a 43 fold decrease in potency compared to the CD3 bispecific. The fourth patient did not respond to the ADC. Together, these results illustrate the potential advantages of a CD3 bispecific over an ADC for targeting BCMA. In orthotopic, established, tumor mouse models utilizing three different MM cell lines, (OPM2, MM.1S and MOLP8), a single injection of BCMA bispecific effectively treated tumors in a dose-dependent manner. Re-dosing the bispecific was able to provide additional and prolonged efficacy. The extreme potency of T cell redirecting therapies results in outstanding efficacy, but can also lead to lysis of normal cells expressing even minute levels of target. The species cross-reactivity of the BCMA bispecific allowed for exploratory toxicity studies in cynomologus monkeys. The molecule was able to effectively deplete normal plasma B cells expressing low levels of BCMA, providing evidence of activity. Activity was accompanied by a cytokine spike following initial dosing. No cytokine release was observed following a second bispecific dose. Encouragingly, animals experienced no additional adverse events (AEs), confirming the favorable safety profile of BCMA as a target for MM. In summary, we report on a fully human IgG CD3 bispecific molecule targeting BCMA for the treatment of multiple myeloma. Our BCMA bispecific is expected to have an antibody-like half-life in humans and, taken together, our findings support that the molecule has the potential to be both a potent and safe therapeutic. Disclosures Panowski: Pfizer Inc.: Employment. Kuo:Alexo Therapeutics: Employment. Chen:Alexo Therapeutics: Employment. Geng:Kodiak Sciences: Employment. Van Blarcom:Pfizer Inc.: Employment. Lindquist:Pfizer Inc.: Employment. Chen:Pfizer Inc.: Employment. Chaparro-Riggers:Pfizer Inc.: Employment. Sasu:Pfizer Inc.: Employment.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1680-1680 ◽  
Author(s):  
Giuseppina Bonanno ◽  
Maria Corallo ◽  
Andrea Mariotti ◽  
Anna Di Maggio ◽  
Annabella Procoli ◽  
...  

Abstract Multiple myeloma (MM) is a plasma cell (PC) malignancy characterized by a unique ability to evade immunosurveillance through the induction of antigen-presenting cell dysfunction, the release of immunoregulatory cytokines and the expansion of regulatory T cells (Treg). Hepatocyte growth factor (HGF), a mesenchyme-derived cytokine, is greatly elevated in MM and confers an unfavorable prognosis. We have previously shown that HGF induces the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) in human monocyte-derived dendritic cells. This study aimed to determine whether HGF may also promote IDO expression and/or function in MM plasma cells. We first measured IDO-1 expression by a panel of human MM cell lines using real-time PCR, before and after their in vitro treatment with 10 ng/ml IFN-γ. Exposure to IFN-γ translated into a 5-fold induction of IDO-1 mRNA in LP-1 and OPM-2 cells, in parallel with an increased ability to release kynurenines in culture supernatants. Conversely, mRNA signals for IDO-1 were undetectable in MOLP-8 and HUNS-1 cells. Next, the IDO-expressing MM cell lines were evaluated for their ability to release HGF. Whereas OPM-2 cells were incapable of producing HGF, LP-1 cells secreted copious amounts of HGF (8,393 pg/ml on average after 96 hours of culture), and promoted the in vitro conversion of naïve allogeneic CD4+CD25− T cells into bona fide CD4+CD25+FoxP3+ Treg cells, and this was reverted by the IDO inhibitor 1-methyl-tryptophan. In order to provide convincing evidence in favor of HGF effects on IDO expression, we challenged IDO-negative HUNS-1 cells with 100 ng/ml HGF. Under these conditions, an average 6-fold induction of IDO mRNA could be detected starting from 24 hours of culture. Accordingly, the addition of blocking antibodies against HGF to IDO-positive LP-1 cells was associated with an average 6-fold reduction of IDO mRNA. Interestingly, the co-culture of IDO-negative HUNS-1 cells with normal bone marrow (BM)-derived stromal cells promoted the induction of IDO mRNA, suggesting that microenvironmental interactions might also be implicated in IDO expression by the malignant PC. In a final set of ex vivo experiments, we purified CD56+CD138+ malignant PC from 9 patients with either newly diagnosed MM or with MM in partial remission. IDO-1 mRNA could be readily detected in 6 out of 9 cases (median IDO-1 mRNA content equal to 5 [range 2.1–14.1] relative to the HUNS-1 MM cells set arbitrarily at 1). IDO-1 mRNA levels in the malignant PC positively correlated with the frequency of circulating CD4+CD25+FoxP3+ Treg cells (p = 0.04). Furthermore, serum HGF was increased in patients’ peripheral blood (median 1,407 pg/ml, range 370–4940) and BM fluid (median 2,735 pg/ml, range 870–8,620) compared with healthy controls (median 1,000 pg/ml, range 710–1,300 and 1,875 pg/ml, range 1,310–2,430 in peripheral blood and BM, respectively). HGF levels positively correlated with the amount of M-component (p = 0.002), a measure of disease burden, and with the percentage of circulating Treg cells (p = 0.02). Serum kynurenines were increased in 6 patients with MM (median level equal to 3.8 μM, range 2.9–4.43, compared with 2.5 μM in healthy controls; p = 0.03). In line with this, serum tryptophan was significantly decreased in patients with MM (median value equal to 42.34 μM) compared with healthy controls (median value equal to 83.9 μM; p = 0.0012). Collectively, these data suggest that IDO-1 may be expressed by MM PC and that the IDO-mediated generation of immunosuppressive tryptophan metabolites may play a role in the in vivo expansion of the Treg compartment. Whether this will impact on the ability of the immune system to control disease progression remains to be prospectively investigated in larger cohorts of patients.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 98-98 ◽  
Author(s):  
Guenther Koehne ◽  
Satyajit Kosuri ◽  
Ekaterina Doubrovina ◽  
Tao Dao ◽  
Andrew Scott ◽  
...  

Abstract Introduction: The Wilms' tumor 1 (WT1) protein is a tumor associated antigen that is potentially targetable by immunotherapeutic approaches. We have demonstrated the overexpression of WT1 in myeloma cells by IHC and in HLA-A*0201+ pts by staining with a high-affinity fully human IgG1 mAb (ESK1) specific to the RMFPNAPYL/HLA-A*0201 complex on malignant plasma cells. We report initial results from pts with plasma cell leukemia (PCL) or relapsed/refractory multiple myeloma (rMM) who have been treated with CD34-selected allo transplants followed by the administration of donor-derived WT1-specific T-cell infusions to induce an immunotherapeutic effect. Methods: In situ expression of WT1 was assessed by IHC analyses using a sequential double staining technique of MoAbs specific for CD138 and WT1.For staining with the RMFPNAPYL/HLA-A*0201 complex, BM samples were blocked with human FcR Blocking Reagent and then directly stained with MoAbs specific for CD38, CD56, CD45 and ESK1 or its isotype control human IgG1 and were analyzed by flow cytometry. WT1-specific T cells were generated from the original stem cell donors by sensitization of CD3+ enriched T-cell fractions with autologous APCs loaded with the pool of overlapping pentadecapeptides of WT1 (Invitrogen, Boston, MA). Cells were propagated in vitro with weekly restimulation and supplementation with IL-2 beginning at day 10-16. After 35-49 days, T-cells were harvested, counted and tested for antigen specific cytotoxicity, HLA-restriction, lack of alloreactivity and sterility. Pts received CD34-selected PBSC allografts after myeloablative cytoreduction with busulfan, melphalan and fludarabine. Pts were treated with 3 infusions of donor-derived WT1-specific T-cell infusions (5x10e6 cells/kg) starting 6 weeks post allo HSCT and at 4 weekly thereafter. Results: Marrow from all pts with immunohistochemical documented plasma cell involvement stained positive for WT1 IHC while WT1 staining remained negative in pts in CR. Only pts expressing HLA-A*0201 that stained positively for WT1 by IHC also demonstrated expression of WT1 by the RMFPNAPYL/HLA-A*0201 complex, whereas pts lacking HLA-A*0201 but with active disease stained positive for WT1 IHC but not ESK1 staining. Of 7 pts, 3 PCL and 4 rMM, treated with WT1-specific T cells, 4 pts had persistent disease post CD34-selected allotransplant. Of these 4 pts 2 pts developed a striking rise of WT1-specific T-cell frequencies and developed a complete remission post WT1 CTL infusions lasting for >2years. Conclusion: WT1 is overexpressed on malignant plasma cells and serves as a target for potential immunotherapeutic approaches in pts with multiple myeloma. Pts with persistent PCL following CD34-selected allografts treated with adoptive transfer of donor-derived WT1-specific cytotoxic T cells can achieve long lasting remission underscoring the therapeutic potential of T-cells specific for immunogenic WT1 peptides expressed on malignant plasma cells. Disclosures O'Reilly: Atara Biotherapeutics: Research Funding.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 8017-8017 ◽  
Author(s):  
Ben Buelow ◽  
Duy Pham ◽  
Starlynn Clarke ◽  
Shelley Force Aldred ◽  
Kevin Dang ◽  
...  

8017 Background: Although BCMA is a plasma cell specific surface molecule attractive as an antibody target in multiple myeloma, its scarcity on the cell surface may limit the efficacy of a conventional antibody. T-cell engaging bispecific antibody approaches are highly efficacious and are particularly well suited for a membrane target with limited expression, such as BCMA. Teneobio has developed a multivalent antibody platform based on modular human VH domains, which allowed us to build T cell engaging bispecific antibodies with low and high T cell agonistic activities. Methods: UniRats were immunized with either CD3 or BCMA antigens and antigen-specific UniAbs were identified by antibody repertoire sequencing and high-throughput gene assembly, expression, and screening. High affinity binding VH sequences were selected using recombinant proteins and cells. In vitro efficacy studies included T-cell activation by cytokine- and tumor cell kill by calcein-release assays. In vivo efficacy of the molecules was evaluated in NSG mice harboring myeloma cells and human PBMCs. Results: BCMA-specific UniAbs bound plasma cells with high affinities (100-700pM) and cross-reacted with cynomolgus plasma cells. Strong and weak T cell agonists were identified that bound human T cells with high and low affinities respectively and cross-reacted with cynomolgus T cells. T cell engaging bispecifics with a strong (H929 cytotoxicity:EC50=27pM) and a weak T cell activating arm (H929 cytotoxicity: EC50=1170pM) demonstrated T-cell activation and tumor-cell cytotoxicity in vitro; bispecifics with a weak CD3 engaging arm showed markedly reduced cytokine production even at doses saturating for cytotoxicity. In viv o, BCMAxCD3 bispecific antibodies reduced tumor load and increased survival when co-administered with human PBMCs as compared to controls. Conclusions: Our results suggest that T cell engaging bispecifics with low-affinity anti-CD3 arms could be preferred for the treatment of Multiple Myeloma.


Blood ◽  
2002 ◽  
Vol 100 (1) ◽  
pp. 230-237 ◽  
Author(s):  
Marina Ratta ◽  
Francesco Fagnoni ◽  
Antonio Curti ◽  
Rosanna Vescovini ◽  
Paolo Sansoni ◽  
...  

Abstract We studied concentration, phenotype, and function of peripheral blood (PB) dendritic cells (DCs) from patients with multiple myeloma (MM). The absolute number of circulating precursors of myeloid and plasmacytoid DCs was significantly lower in MM patients than in healthy subjects. After maturation, PBDCs from MM patients showed significantly lower expression of HLA-DR, CD40, and CD80 antigens and impaired induction of allogeneic T-cell proliferation compared with controls. Remarkably, they were not capable of presenting the patient-specific tumor idiotype to autologous T cells. Conversely, DCs generated in vitro from CD14+ monocytes from the same patients, and PBDCs freshly isolated from healthy donors efficiently stimulated allogeneic and autologous T cells. To clarify the mechanism of PBDC deficiency in MM, we investigated the effects of the main plasma cell growth factor, interleukin-6 (IL-6), on the development of DCs from CD34+ cells. IL-6 inhibited the colony growth of CD34+ DC progenitors and switched the commitment of CD34+ cells from DCs to CD14+CD1a−CD86−CD80− CD40±HLA-DR ± monocytic cells exerting potent phagocytic activity but no antigen-presentation capacity. This effect was reversed by anti–IL-6 antibodies. Growing CD34+ cells in the presence of autologous serum (without IL-6) also suppressed the development of functional DCs. This study demonstrates that PBDCs from MM patients are functionally defective, partially because of IL-6–mediated inhibition of development. This brings into question the advisability of using PBDCs as antigen carriers for immunotherapy trials in MM. The results also suggest a novel mechanism whereby myeloma cells escape immune recognition.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Yu ◽  
Alejandra Vargas Valderrama ◽  
Zhongchao Han ◽  
Georges Uzan ◽  
Sina Naserian ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) exhibit active abilities to suppress or modulate deleterious immune responses by various molecular mechanisms. These cells are the subject of major translational efforts as cellular therapies for immune-related diseases and transplantations. Plenty of preclinical studies and clinical trials employing MSCs have shown promising safety and efficacy outcomes and also shed light on the modifications in the frequency and function of regulatory T cells (T regs). Nevertheless, the mechanisms underlying these observations are not well known. Direct cell contact, soluble factor production, and turning antigen-presenting cells into tolerogenic phenotypes, have been proposed to be among possible mechanisms by which MSCs produce an immunomodulatory environment for T reg expansion and activity. We and others demonstrated that adult bone marrow (BM)-MSCs suppress adaptive immune responses directly by inhibiting the proliferation of CD4+ helper and CD8+ cytotoxic T cells but also indirectly through the induction of T regs. In parallel, we demonstrated that fetal liver (FL)-MSCs demonstrates much longer-lasting immunomodulatory properties compared to BM-MSCs, by inhibiting directly the proliferation and activation of CD4+ and CD8+ T cells. Therefore, we investigated if FL-MSCs exert their strong immunosuppressive effect also indirectly through induction of T regs. Methods MSCs were obtained from FL and adult BM and characterized according to their surface antigen expression, their multilineage differentiation, and their proliferation potential. Using different in vitro combinations, we performed co-cultures of FL- or BM-MSCs and murine CD3+CD25−T cells to investigate immunosuppressive effects of MSCs on T cells and to quantify their capacity to induce functional T regs. Results We demonstrated that although both types of MSC display similar cell surface phenotypic profile and differentiation capacity, FL-MSCs have significantly higher proliferative capacity and ability to suppress both CD4+ and CD8+ murine T cell proliferation and to modulate them towards less active phenotypes than adult BM-MSCs. Moreover, their substantial suppressive effect was associated with an outstanding increase of functional CD4+CD25+Foxp3+ T regs compared to BM-MSCs. Conclusions These results highlight the immunosuppressive activity of FL-MSCs on T cells and show for the first time that one of the main immunoregulatory mechanisms of FL-MSCs passes through active and functional T reg induction.


2021 ◽  
Vol 11 (10) ◽  
pp. 4451
Author(s):  
Coralia Cotoraci ◽  
Alina Ciceu ◽  
Alciona Sasu ◽  
Eftimie Miutescu ◽  
Anca Hermenean

Multiple myeloma (MM) is one of the most widespread hematological cancers. It is characterized by a clonal proliferation of malignant plasma cells in the bone marrow and by the overproduction of monoclonal proteins. In recent years, the survival rate of patients with multiple myeloma has increased significantly due to the use of transplanted stem cells and of the new therapeutic agents that have significantly increased the survival rate, but it still cannot be completely cured and therefore the development of new therapeutic products is needed. Moreover, many patients have various side effects and face the development of drug resistance to current therapies. The purpose of this review is to highlight the bioactive active compounds (flavonoids) and herbal extracts which target dysregulated signaling pathway in MM, assessed by in vitro and in vivo experiments or clinical studies, in order to explore their healing potential targeting multiple myeloma. Mechanistically, they demonstrated the ability to promote cell cycle blockage and apoptosis or autophagy in cancer cells, as well as inhibition of proliferation/migration/tumor progression, inhibition of angiogenesis in the tumor vascular network. Current research provides valuable new information about the ability of flavonoids to enhance the apoptotic effects of antineoplastic drugs, thus providing viable therapeutic options based on combining conventional and non-conventional therapies in MM therapeutic protocols.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A198-A198
Author(s):  
Tingting Zhong ◽  
Xinghua Pang ◽  
Zhaoliang Huang ◽  
Na Chen ◽  
Xiaoping Jin ◽  
...  

BackgroundTIGIT is an inhibitory receptor mainly expressed on natural killer (NK) cells, CD8+ T cells, CD4+ T cells and Treg cells. TIGIT competes with CD226 for binding with CD155. In cancers, CD155 has been reported to up-regulate on tumor cells, and TIGIT was found to increase on TILs.1 Activation of TIGIT/CD155 pathway would mediate immunosuppression in tumor; while blockade of TIGIT promotes anti-tumor immune response.MethodsAK126 and AK113 are two humanized anti-human TIGIT monoclonal antibodies developed by Akesobio. Binding activity of AK126 and AK113 to human TIGIT, and competitive binding activity with CD155 and CD112, were performed by using ELISA, Fortebio, and FACS assays. Cross-reactivity with cynomolgus monkey TIGIT and epitope binning were also tested by ELISA assay. In-vitro assay to investigate the activity to promote IL-2 secretion was performed in mixed-culture of Jurkat-TIGIT cells and THP-1 cells.ResultsAK126 and AK113 could specifically bind to human TIGIT with comparative affinity and effectively blocked the binding of human CD155 and CD112 to human TIGIT. X-ray crystal structure of TIGIT and PVR revealed the C’-C’’ loop and FG loop regions of TIGIT are the main PVR interaction regions.2 The only amino acid residue differences in these regions between human and monkey TIGIT are 70C and 73D. AK126 binds to both human and monkey TIGIT, AK113 binds only to monkey TIGIT. This suggests that these residues are required for AK113 binding to human TIGIT, but not required for AK126. Interestingly, results from cell-based assays indicated that AK126 and AK113 showed significantly different activity to induce IL-2 secretion in mixed-culture of Jurkat-TIGIT cells and THP-1 cells (figure 1A and B), in which AK126 had a comparable capacity of activity to 22G2, a leading TIGIT mAb developed by another company, to induce IL-2 secretion, while, AK113 showed a significantly higher capacity than 22G2 and AK126.Abstract 184 Figure 1Anti-TIGIT Antibodies Rescues IL-2 Production in Vitro T-Cell Activity Assay in a dose dependent manner. Jurkat-TIGIT cells (Jurkat cells engineered to over-express human TIGIT) were co-cultured with THP-1 cells, and stimulated with plate-bound anti-CD3 mAb in the presence of TIGIT ligand CD155 (A) or CD112 (B) with anti-TIGIT antibodies. After incubated for 48h at 37° C and 5.0% CO2, IL-2 levels were assessed in culture supernatants by ELISA. Data shown as mean with SEM for n = 2.ConclusionsWe discovered two distinct types of TIGIT antibodies with differences in both epitope binding and functional activity. The mechanism of action and clinical significance of these antibodies require further investigation.ReferencesSolomon BL, Garrido-Laguna I. TIGIT: a novel immunotherapy target moving from bench to bedside. Cancer Immunol Immunother 2018;67:1659–1667.Stengel KF, Harden-Bowles K, Yu X, et al. Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering. Proc Natl Acad Sci USA 2012;109:5399–5404.


Sign in / Sign up

Export Citation Format

Share Document