Tumor Necrosis Factor-α Contributes to Microenvironmental up- Regulation of NF-κB Activity in Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: Implication for a Novel Therapeutic Target.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1912-1912
Author(s):  
Hui-Jen Tsai ◽  
Seiichiro Kobayashi ◽  
Kiyoko Itoh ◽  
Takaomi Ishida ◽  
Kazuo Umezawa ◽  
...  

Abstract Constitutively activated NF-κB has been demonstrated in primary blast cells and cell lines derived from Philadelphia chromosome (Ph- positive acute lymphoblastic leukemia(Ph- ALL). In our previous study, we have shown the essential role for NF-κB in growth and survival of Ph- ALL cells. To gain insight into the microenvironmental (cytokines and/or stromal cell) regulation of NF-κB activity in Ph- ALL, we lentivirally transduced Ph- ALL cells, IMS-PhL1 and Sup-B15 cells, with NF-κB/luciferase (kB/Luc) reporter construct and established a bioluminescence imaging model of Ph- ALL for in vitro and in vivo analysis. In in vitro study, we checked NF-κB/Luc activity by luminoter. It showed that NF-κB activity of Ph- ALL cells was significantly up-regulated by TNFa stimulation and synergistically augmented by seeding them onto a layer of murine HESS5 stromal cells, which singly didn’t change NF-κB activity in Ph- ALL cells. DHMEQ, a specific inhibitor of nuclear translocation of p65, eradicated constitutive and TNFa inducible NF-κB activity of Ph- ALL cells and induced their substantial apoptosis dose-dependently. However, the inhibitory effect of DHMEQ on TNFa induced NF-κB activity as well as viability of Ph- ALL was alleviated in the presence of HESS5. This alleviatory effect of DHMEQ induced NF-κB suppression by HESS5 was overcame by addition of TNFa inhibitor, Etanercept, in a dose of less than 1ug/ml. (Fig.1) Taken together, TNFa plays an essential role in up-regulation of NF-κB activity in the absence or presence of HESS5 cells. When Ph- ALL cells were treated with TPCA-1, an IKK-2 inhibitor, the TNFa induced NF-κB activity in Ph- ALL cells was suppressed even in the presence of HESS5 cells. Cell proliferation assay also showed inhibitory effect on proliferation of Ph- ALL cells by TPCA-1. In in vivo study, we transplanted Ph- ALL cells into NOD-Scid mice and periodically monitored the NF-κB activity of Ph- ALL cells by a CCD camera. Intriguingly, strong signal was detected in liver, stomach and ovary in addition to bone marrow, which was the predominant site of leukemic cell infiltration. QR-PCR analysis and immunohistochemistry staining for mouse tissue verified tumor infiltration up-regulate murine TNFa production in these tissues. It suggests the essential role of TNFa in the up-regulation of NF-κB signaling in mouse model. However high dose Etanercept, 1mg, subcutaneous injection into Ph- ALL cells transplanted mouse didn’t show significant reduction of NF-κB activity and partial response of NF-κB suppression was seen in the mouse injected with 5mg of Etanercept intraperitoneally. (Fig.2) This result suggests that factors other than TNFa may contribute to in vivo maintenance and/or up-regulation of NF-κB activity in Ph- ALL cells. In conclusion, TNFa-dependent and independent pathways are involved in microenvironmental up-regulation of NF-κB activity, which contribute to survival, expansion and presumably drug-resistance of Ph- ALL cells. The present bioimaging model helps us to dissect the regulatory mechanism of NF-κB signal in Ph- ALL and the results suggest us microenvironment as a novel therapeutic target in the treatment of Ph- ALL. Fig. 1 NF-κB activity of Sup-B15 cells treated with DHMEQ, TNFα and Etanercept(22hrs) Fig. 1. NF-κB activity of Sup-B15 cells treated with DHMEQ, TNFα and Etanercept(22hrs) Fig. 2 In vivo imaging of NF-κB activity in Sup-B15 cells treated with Etanercept Fig. 2. In vivo imaging of NF-κB activity in Sup-B15 cells treated with Etanercept

Blood ◽  
2007 ◽  
Vol 110 (6) ◽  
pp. 2084-2091 ◽  
Author(s):  
Beat C. Bornhauser ◽  
Laura Bonapace ◽  
Dan Lindholm ◽  
Rodrigo Martinez ◽  
Gunnar Cario ◽  
...  

Abstract Incorporation of apoptosis-inducing agents into current therapeutic regimens is an attractive strategy to improve treatment for drug-resistant leukemia. We tested the potential of arsenic trioxide (ATO) to restore the response to dexamethasone in glucocorticoid (GC)–resistant acute lymphoblastic leukemia (ALL). Low-dose ATO markedly increased in vitro GC sensitivity of ALL cells from T-cell and precursor B-cell ALL patients with poor in vivo response to prednisone. In GC-resistant cell lines, this effect was mediated, at least in part, by inhibition of Akt and affecting downstream Akt targets such as Bad, a proapoptotic Bcl-2 family member, and the X-linked inhibitor of apoptosis protein (XIAP). Combination of ATO and dexamethasone resulted in increased Bad and rapid down-regulation of XIAP, while levels of the antiapoptotic regulator Mcl-1 remained unchanged. Expression of dominant-active Akt, reduction of Bad expression by RNA interference, or overexpression of XIAP abrogated the sensitizing effect of ATO. The inhibitory effect of XIAP overexpression was reduced when the Akt phosphorylation site was mutated (XIAP-S87A). These data suggest that the combination of ATO and glucocorticoids could be advantageous in GC-resistant ALL and reveal additional targets for the evaluation of new antileukemic agents.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 723-723
Author(s):  
Hui-Jen Tsai ◽  
Seiichiro Kobayashi ◽  
Kiyoko Itoh ◽  
Takaomi Ishida ◽  
Kazuo Umezawa ◽  
...  

Abstract Constitutive activation of NF-kB via Bcr-Abl has been demonstrated in primary blast cells and cell lines derived from Philadelphia chromosome (Ph) -positive acute lymphoblastic leukemia (Ph-ALL). However, the microenvironmental (cytokine and/or stroma cell) regulation of NF-kB activity in Ph-ALL has not been clarified. To gain insight into these unsolved issues, we lentivirally transduced IMS-PhL1 cells with NF-kB/luciferase (kB/Luc) reporter construct and established a bioluminescence imaging model of Ph-ALL for in vitro and in vivo analysis. Unstimulated PhL1-kB/Luc cells revealed a weak but significant Luc activity over the background, verifying constitutive activation of NF-kB. Among a panel of cytokines, only TNFa potently up-regulated Luc activity in PhL1-kB/Luc cells about 10-fold over the basal level. DHMEQ, a specific inhibitor of nuclear translocation of p65, eradicated constitutive and TNFa-inducible NF-kB activity of PhL1 cells and induced their substantial apoptosis dose-dependently. A series of Ph-ALL cell lines were similarly sensitive to treatment with DHMEQ, suggesting the critical role of constitutive NF-kB activity in survival of Ph-ALL cells. When PhL1-kB/Luc cells were seeded onto a layer of murine HESS-5 stroma cells, Luc activity was not changed. Intriguingly, TNFa stimulation of PhL1-kB/Luc cells in the presence of HESS-5 cells caused synergistic enhancement of Luc activity up to 20 fold over the basal level. This up-regulation was canceled by blocking cell to cell contact with a transwell membrane, suggesting that the direct cell contact may be essential for such a synergistic effect. In HESS-5 cells, NF-kB activity was markedly augmented in response to TNFa, but this up-regulation was not sensitive to DHMEQ. Furthermore, the inhibitory effects of DHMEQ on Luc activity as well as viability of TNFa-treated PhL1-kB/Luc cells were significantly alleviated in the presence of HESS-5 cells. (Fig 1) Taken together, TNFa-triggered HESS-5 cells are likely to up-regulate NF-kB activity of PhL1 cells through DHMEQ-insensitive alternate pathway. Finally, PhL1-kB/Luc cells were transplanted into NOD-SCID mice and subjected to periodic monitoring with a CCD camera. (Fig 2) We successfully detected constitutive and TNFa-inducible bioluminescent signals of leukemia cells. Unexpectedly, by far the strongest constitutive signal was captured in the liver, although massive leukemic infiltration was observed in bone marrow and spleen, implying that hepatic microenvironment may offer proper stimuli to activate NF-kB and constitute leukemic niche. In conclusion, p65-dependent and independent pathways are involved in microenvironmental up-regulation of NF-kB activity, which contribute to survival, expansion and presumably drug-resistance of Ph-ALL cells. The present bioimaging model helps us to dissect the regulatory mechanism of NF-kB signal by cytokines and cellular interactions. Fig. 1 Up-regulation of NF-κB activity in Ph-ALL cells by cytokines and/or stroma. Fig. 2 In vivo imaging of NF-κB activity in Ph-ALL cells Fig. 1. Up-regulation of NF-κB activity in Ph-ALL cells by cytokines and/or stroma. . / Fig. 2 In vivo imaging of NF-κB activity in Ph-ALL cells


2021 ◽  
Author(s):  
Yang-Yang Ding ◽  
Hannah Kim ◽  
Kellyn Madden ◽  
Joseph P Loftus ◽  
Gregory M Chen ◽  
...  

Systems biology approaches can identify critical targets in complex cancer signaling networks to inform therapy combinations and overcome conventional treatment resistance. Herein, we developed a data-driven, network controllability-based approach to identify synergistic key regulator targets in Philadelphia chromosome-like B-acute lymphoblastic leukemia (Ph-like B-ALL), a high-risk leukemia subtype associated with hyperactive signal transduction and chemoresistance. Integrated analysis of 1,046 childhood B-ALL cases identified 14 dysregulated network nodes in Ph-like ALL involved in aberrant JAK/STAT, Ras/MAPK, and apoptosis pathways and other critical processes. Consistent with network controllability theory, combination small molecule inhibitor therapy targeting a pair of key nodes shifted the transcriptomic state of Ph-like ALL cells to become less like kinase-activated BCR-ABL1-rearranged (Ph+) B-ALL and more similar to prognostically-favorable childhood B-ALL subtypes. Functional validation experiments further demonstrated enhanced anti-leukemia efficacy of combining the BCL-2 inhibitor venetoclax with tyrosine kinase inhibitors ruxolitinib or dasatinib in vitro in human Ph-like ALL cell lines and in vivo in multiple patient-derived xenograft models. Our study represents a broadly-applicable conceptual framework for combinatorial drug discovery, based on systematic interrogation of synergistic vulnerability pathways with pharmacologic targeted validation in sophisticated preclinical human leukemia models.


2013 ◽  
Vol 19 (1) ◽  
pp. 158-167 ◽  
Author(s):  
Harpreet Singh ◽  
Anang A. Shelat ◽  
Amandeep Singh ◽  
Nidal Boulos ◽  
Richard T. Williams ◽  
...  

Signaling by the BCR-ABL fusion kinase drives Philadelphia chromosome–positive acute lymphoblastic leukemia (Ph+ ALL) and chronic myelogenous leukemia (CML). Despite their clinical activity in many patients with CML, the BCR-ABL kinase inhibitors (BCR-ABL-KIs) imatinib, dasatinib, and nilotinib provide only transient leukemia reduction in patients with Ph+ ALL. While host-derived growth factors in the leukemia microenvironment have been invoked to explain this drug resistance, their relative contribution remains uncertain. Using genetically defined murine Ph+ ALL cells, we identified interleukin 7 (IL-7) as the dominant host factor that attenuates response to BCR-ABL-KIs. To identify potential combination drugs that could overcome this IL-7–dependent BCR-ABL-KI–resistant phenotype, we screened a small-molecule library including Food and Drug Administration–approved drugs. Among the validated hits, the well-tolerated antimalarial drug dihydroartemisinin (DHA) displayed potent activity in vitro and modest in vivo monotherapy activity against engineered murine BCR-ABL-KI–resistant Ph+ ALL. Strikingly, cotreatment with DHA and dasatinib in vivo strongly reduced primary leukemia burden and improved long-term survival in a murine model that faithfully captures the BCR-ABL-KI–resistant phenotype of human Ph+ ALL. This cotreatment protocol durably cured 90% of treated animals, suggesting that this cell-based screening approach efficiently identified drugs that could be rapidly moved to human clinical testing.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1845-1845 ◽  
Author(s):  
Arinobu Tojo ◽  
Kiyoko Izawa ◽  
Rieko Sekine ◽  
Tokiko Nagamura-Inoue ◽  
Seiichiro Kobayashi

Abstract Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph-ALL) is one of the most intractable hematological malignancies, readily acquires resistance to chemotherapeutic drugs including imatinib mesylate (IM), and shows a high relapse rate even after allogeneic stem cell transplantation. Nevertheless, primary blast cells are generally susceptible to apoptotic cell death in sort-term suspension culture after isolation from patients with Ph-ALL. We established two Ph-ALL cell lines and characterized their growth properties supported by adhesive interaction with a murine bone marrow stromal cell line, HESS-5. IMS-PhL1 (L1) cells mainly expressed p210-type BCR-ABL mRNA with wild type sequences in the ABL kinase domain and were weakly positive for p190-type mRNA. IMS-PhL2 (L2) cells exclusively expressed p190-type transcripts with Y253H mutation and showed much lower sensitivity to imatinib than L1 cells. The growth of L1 cells was slowly autonomous in suspension culture, but became more vigorous and their apoptosis was prevented by co-culture with HESS-5 cells. In contrast, the sustained growth and survival of L2 cells was absolutely dependent on direct contact with HESS-5 cells and did not respond to soluble cytokines including SCF, IL3and IL7. Both cell lines adhered to and migrated beneath the HESS-5 cell layer, resulting in the formation of cobblestone areas. This migration was significantly inhibited by the pretreatment of those with a neutralizing antibody against α4-integrin. While non-adherent L1 cells were eradicated by 1 mM IM, a portion of adherent L1 cells could survive even at 10 mM IM. Similarly, adherent L2 cells considerably resisted prolonged exposure to 10 mM IM. Intravenous injection of both cell lines caused leukemia in NOD-SCID mice after distinct latent periods. Leukemia cells appeared in peripheral blood, bone marrow as well as spleen. Interestingly, expression of α5-integrin was significantly down-regulated in both leukemia cells collected from those tissues, but was restored after co-culture with HESS-5. The study of L1 and L2 cells in vitro and in vivo will not only contribute to further insights into microenvironmental regulation of clonal maintenance and progression of Ph-ALL but also provide a unique model for experimental therapeutics against Ph-ALL. Figure Figure


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuiyan Wu ◽  
You Jiang ◽  
Yi Hong ◽  
Xinran Chu ◽  
Zimu Zhang ◽  
...  

Abstract Background T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a high risk of induction failure and poor outcomes, with relapse due to drug resistance. Recent studies show that bromodomains and extra-terminal (BET) protein inhibitors are promising anti-cancer agents. ARV-825, comprising a BET inhibitor conjugated with cereblon ligand, was recently developed to attenuate the growth of multiple tumors in vitro and in vivo. However, the functional and molecular mechanisms of ARV-825 in T-ALL remain unclear. This study aimed to investigate the therapeutic efficacy and potential mechanism of ARV-825 in T-ALL. Methods Expression of the BRD4 were determined in pediatric T-ALL samples and differential gene expression after ARV-825 treatment was explored by RNA-seq and quantitative reverse transcription-polymerase chain reaction. T-ALL cell viability was measured by CCK8 assay after ARV-825 administration. Cell cycle was analyzed by propidium iodide (PI) staining and apoptosis was assessed by Annexin V/PI staining. BRD4, BRD3 and BRD2 proteins were detected by western blot in cells treated with ARV-825. The effect of ARV-825 on T-ALL cells was analyzed in vivo. The functional and molecular pathways involved in ARV-825 treatment of T-ALL were verified by western blot and chromatin immunoprecipitation (ChIP). Results BRD4 expression was higher in pediatric T-ALL samples compared with T-cells from healthy donors. High BRD4 expression indicated a poor outcome. ARV-825 suppressed cell proliferation in vitro by arresting the cell cycle and inducing apoptosis, with elevated poly-ADP ribose polymerase and cleaved caspase 3. BRD4, BRD3, and BRD2 were degraded in line with reduced cereblon expression in T-ALL cells. ARV-825 had a lower IC50 in T-ALL cells compared with JQ1, dBET1 and OTX015. ARV-825 perturbed the H3K27Ac-Myc pathway and reduced c-Myc protein levels in T-ALL cells according to RNA-seq and ChIP. In the T-ALL xenograft model, ARV-825 significantly reduced tumor growth and led to the dysregulation of Ki67 and cleaved caspase 3. Moreover, ARV-825 inhibited cell proliferation by depleting BET and c-Myc proteins in vitro and in vivo. Conclusions BRD4 indicates a poor prognosis in T-ALL. The BRD4 degrader ARV-825 can effectively suppress the proliferation and promote apoptosis of T-ALL cells via BET protein depletion and c-Myc inhibition, thus providing a new strategy for the treatment of T-ALL.


Cancers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 525 ◽  
Author(s):  
Alexander Ring ◽  
Cu Nguyen ◽  
Goar Smbatyan ◽  
Debu Tripathy ◽  
Min Yu ◽  
...  

Background: Triple negative breast cancers (TNBCs) are an aggressive BC subtype, characterized by high rates of drug resistance and a high proportion of cancer stem cells (CSC). CSCs are thought to be responsible for tumor initiation and drug resistance. cAMP-response element-binding (CREB) binding protein (CREBBP or CBP) has been implicated in CSC biology and may provide a novel therapeutic target in TNBC. Methods: RNA Seq pre- and post treatment with the CBP-binding small molecule ICG-001 was used to characterize CBP-driven gene expression in TNBC cells. In vitro and in vivo TNBC models were used to determine the therapeutic effect of CBP inhibition via ICG-001. Tissue microarrays (TMAs) were used to investigate the potential of CBP and associated proteins as biomarkers in TNBC. Results: The CBP/ß-catenin/FOXM1 transcriptional complex drives gene expression in TNBC and is associated with increased CSC numbers, drug resistance and poor survival outcome. Targeting of CBP/β-catenin/FOXM1 with ICG-001 eliminated CSCs and sensitized TNBC tumors to chemotherapy. Immunohistochemistry of TMAs demonstrated a significant correlation between FOXM1 expression and TNBC subtype. Conclusion: CBP/β-catenin/FOXM1 transcriptional activity plays an important role in TNBC drug resistance and CSC phenotype. CBP/β-catenin/FOXM1 provides a molecular target for precision therapy in triple negative breast cancer and could form a rationale for potential clinical trials.


2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Ilaria Iacobucci ◽  
Andrea Ghelli Luserna Di Rorà ◽  
Maria Vittoria Verga Falzacappa ◽  
Claudio Agostinelli ◽  
Enrico Derenzini ◽  
...  

2020 ◽  
Vol 21 (24) ◽  
pp. 9724
Author(s):  
Valentina Giudice ◽  
Andrea Ghelli Luserna di Rorà ◽  
Bianca Serio ◽  
Roberto Guariglia ◽  
Maria Benedetta Giannini ◽  
...  

Adult acute lymphoblastic leukemia (ALL) with BCR-ABL1 rearrangement (Philadelphia chromosome, Ph) is a hematological aggressive disease with a fatal outcome in more than 50% of cases. Tyrosine kinase inhibitors (TKIs) targeting the activity of BCR-ABL1 protein have improved the prognosis; however, relapses are frequent because of acquired somatic mutations in the BCR-ABL1 kinase domain causing resistance to first, second and third generation TKIs. Axitinib has shown in vitro and ex vivo activity in blocking ABL1; however, clinical trials exploring its efficacy in ALL are missing. Here, we presented a 77-year-old male with a diagnosis of Ph positive ALL resistant to ponatinib and carrying a rare threonine to leucine (T315L) mutation on BCR-ABL1 gene. The patient was treated with axitinib at 5 mg/twice daily as salvage therapy showing an immediate although transient benefit with an overall survival of 9.3 months. Further dose-finding and randomized clinical trials are required to assess the real efficacy of axitinib for adult Ph positive ALL resistant to third generation TKIs.


Sign in / Sign up

Export Citation Format

Share Document