The Ets Transcription Factor, GABP, Is Required by Myeloid Progenitors for Normal Myeloid Differentiation.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 256-256
Author(s):  
Zhongfa Yang ◽  
Karen Drumea ◽  
Junling Wang ◽  
James Cormier ◽  
Alan G. Rosmarin

Abstract Abstract 256 GABP transcription factor regulates genes that are required for innate immunity. GABP is an obligate tetrameric protein complex that contains two molecules of GABPa, which binds to DNA through its ets domain, and two molecules of GABPb, which contains a transcription activation domain. GABP is an essential component of a multiprotein enhanceosome that is required for retinoic acid-dependent myeloid gene transcription. Disruption in mouse embryo fibroblasts of Gabpa, the mouse gene that encodes mouse Gabpa, causes profound cell cycle arrest at the G1-S boundary, due to reduced expression of DNA Polymerase a and Thymidylate Synthase, which are required for DNA synthesis, and of Skp2, a ubiquitin ligase that controls degradation of the cyclin-dependent kinase inhibitors (CDKIs), p21 and p27. Thus, GABP is a key regulator of the cell cycle. In order to define the role of GABP in myeloid differentiation, we generated mice in which exons that encode the Gabpa ets domain are flanked by loxP recombination sites, and bred these floxed mice to mice that bear the Mx1-Cre transgene. Their progeny were treated with pI-C and Gabpa was efficiently deleted in hematopoietic cells of these Gabpa−/− mice. As controls for all experiments, mice that bear Mx1-Cre but which lack the floxed Gabpa allele were also injected with pI-C. Within days, the peripheral blood white blood cell count fell in the Gabpa−/− mice compared to the controls; half of the Gabpa−/− mice died within two weeks. Gabpa−/− mice exhibited a striking loss of Gr1+, CD11b+ cells in the peripheral blood, spleen, and bone marrow. Myeloid cells of Gabpa−/− mice were immature, morphologically dysplastic, and demonstrated aberrant patterns of myeloid gene expression. Bone marrow from Gabpa−/− mice formed reduced numbers of in vitro myeloid colonies in the presence of G-CSF, M-CSF, or GM-CSF; cells isolated from in vitro colonies from Gabpa−/− mice exhibited a strong bias toward macrophage-like morphology. Multicolor flow cytometry revealed a loss of granulocyte-monocyte committed progenitor cells (GMPs) in the bone marrow of Gabpa−/− mice, and these progenitors expressed aberrant patterns of key transcription factors. Especially notable in Gabpa−/− GMPs was reduced expression of Gfi-1, a transcriptional repressor that is mutated in some congenital neutropenic syndromes, and whose genetic disruption causes abnormalities in granulocyte development. We used chromatin immunoprecipitation (ChIP) to identify ets sites in the Gfi-1 promoter that are bound by GABP in vivo. We conclude that GABP is required for proliferation or survival of committed myeloid progenitor cells and for normal maturation of granulocytes. We hypothesize that defects in myeloid cell proliferation and differentiation associated with Gabpa disruption are caused, at least in part, by its regulation of the Gfi-1 transcriptional repressor. Furthermore, we propose that the regulation of Gfi-1 by GABP constitutes a key regulatory pathway in myeloid cell development. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 374-374 ◽  
Author(s):  
Zhong-fa Yang ◽  
Karen Drumea ◽  
Alan G. Rosmarin

Abstract GABP is an ets transcription factor that regulates genes that are required for innate immunity, including CD18 (β2 leukocyte integrin), lysozyme, and neutrophil elastase. GABP consists of two distinct and unrelated proteins. GABPα binds to DNA through its ets domain and recruits GABPβ, which contains the transactivation domain; together, they form a functional tetrameric transcription factor complex. We recently showed that GABP is required for entry into S phase of the cell cycle through its regulation of genes that are required for DNA synthesis and cyclin dependent kinase inhibitors (Yang, et al. Nature Cell Biol9:339, 2007). Furthermore, GABP is an essential component of a retinoic acid responsive myeloid enhanceosome (Resendes and Rosmarin Mol Cell Biol26:3060, 2006). We cloned Gabpa (the gene that encodes mouse Gabpα) from a mouse genomic BAC library and prepared a targeting vector in which the ets domain is flanked by loxP recombination sites (floxed allele). Deletion of both floxed Gabpa alleles causes an early embryonic lethal defect. In order to define the role of Gabpα in myelopoiesis, we bred floxed Gabpa mice to mice that bear the Mx1-Cre transgene, which drives expression of Cre recombinase in response to injection of the synthetic polynucleotide, poly I-C. Deletion of Gabpa dramatically reduced granulocytes and monocytes in the peripheral blood, spleen, and bone marrow, but myeloid cells recovered within weeks. In vitro colony forming assays indicated that myeloid cells in these mice were derived only from Gabpa replete myeloid precursors (that failed to delete both Gabpa alleles), suggesting strong pressure to retain Gabpα in vivo. We used a novel competitive bone marrow transplantation approach to determine if Gabp is required for myeloid cell development in vivo. Sub-lethally irradiated wild-type recipient mice bearing leukocyte marker CD45.1 received equal proportions of bone marrow from wild type CD45.1 donor mice and floxed-Mx1-Cre donor mice that bear CD45.2. Both the CD45.2 (floxed-Mx1-Cre) and CD45.1 (wild type) bone marrow engrafted well. Mice were then injected with pI-pC to induce Cre-mediated deletion of floxed Gabpa. The mature myeloid and T cell compartments were derived almost entirely from wild type CD45.1 cells. This indicates that the proliferation and/or differentiation of myeloid and T cell lineages requires Gabp. In contrast, B cell development was not impaired. We conclude that Gabpa disruption causes a striking loss of myeloid cells in vivo and corroborates prior in vitro data that GABP plays a crucial role in proliferation of myeloid progenitor cells.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1284-1284
Author(s):  
Zhongfa Yang ◽  
Karen Drumea ◽  
James Cormier ◽  
Junling Wang ◽  
Xuejun Zhu ◽  
...  

Abstract Abstract 1284 GABP is an ets transcription factor that regulates genes which are required for normal hematopoietic development. In myeloid cells, GABP is an essential component of a retinoic acid-inducible enhanceosome that mediates granulocytic gene expression and, in lymphoid cells, GABP regulates expression of IL7-R and the essential transcription factor, Pax5. GABP is a tetrameric complex that includes GABPa, which binds DNA via its ets domain, and GABPb, which contains the transcription activation domain. Genetic disruption of mouse Gabpa caused early embryonic lethality. We created mice in which loxP recombination sites flank exons that encode the Gabpa ets domain, and bred them to mice that bear the Mx1Cre recombinase; injection with pIC induced Cre expression and efficiently deleted Gabpa in hematopoietic cells. One half of the Gabpa knock-out (KO) mice died within two weeks of pIC injection in association with widespread visceral hemorrhage. Gabpa KO mice exhibited a rapid loss of mature granulocytes, and residual myeloid cells exhibited myelodysplasia due, in part, to regulation by Gabp of the transcriptional repressor, Gfi-1. We used bone marrow transplantation to demonstrate that the defect in Gabpa null myeloid cells is cell intrinsic. Although hematopoietic progenitor cells in Gabpa KO bone marrow were decreased more than 100-fold compared to pIC treated control mice, there was not a statistically significant difference in the numbers of Lin−c-kit+Sca-1− hematopoietic stem cells (HSCs) between KO and control mice. Genetic disruption of Gfi-1 disruption in HSCs caused increased cell cycle activity – an effect that is diametrically opposite of the effect of Gabpa KO; this suggests that the effect of Gabpa on HSCs is not due to its control of Gfi-1. In contrast, Gabpa KO HSCs exhibited a marked decrease in cell cycle activity, but did not demonstrate increased apoptosis. The defects in S phase entry of Gabpa null HSCs are reminiscent of the cell cycle defects in Gabpa null fibroblasts, in which expression of Skp2 E3 ubiquitin ligase, which controls degradation of the cyclin dependent kinase inhibitors (CDKIs) p21 and p27, was markedly reduced following Gabpa disruption. We showed that Gabpa KO cells express reduced levels of Skp2. We propose that GABP controls self-renewal and proliferation of mouse bone marrow stem and progenitor cells, in part, through its regulation of Skp2. Thus, Gabpa is a key regulator of myeloid differentiation through its control of Gfi-1, but it is required for cell cycle activity of HSCs, by a distinct effect that may be due to its control of Skp2 and CDKIs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2713-2713
Author(s):  
Karen C. Drumea ◽  
Zhong-fa Yang ◽  
Alan G. Rosmarin

Abstract GABPα is an ets transcription factor that regulates genes that are required for innate immunity, including CD18 (β2 leukocyte integrin), lysozyme, and neutrophil elastase. GABP consists of two distinct and unrelated proteins that, together, form a functional transcription factor complex. GABPα binds to DNA through its ets domain and forms a multimeric complex by recruiting its partner, GABPβ, which contains the transactivation domain. GABPα is a single copy gene in both the human and murine genomes and it is the only protein that can recruit GABPβ to DNA. We cloned GABPα from a murine genomic BAC library and prepared a targeting vector in which the GABPα ets domain is flanked by loxP recombination sites (floxed allele, designated fl). Mice that bear one intact (and one disrupted copy) of GABPα, i.e. hemizygous mice, are phenotypically normal. Intercrossing of hemizygous mice yielded no nullizygous mice, indicating that homozygous loss of GABPα causes an embryonic lethal defect. To determine the effect of GABPα deletion on myeloid cell development, we bred heterozygous and homozygous floxed mice to mice that bear the interferon-responsive Mx1-Cre transgene, which express Cre in response to injection of the synthetic polynucleotide, poly I-C. Bone marrow cells underwent efficient deletion of GABPα following poly I-C injection; in contrast, other somatic tissues did not efficiently delete the floxed allele. Bone marrow, peripheral blood, and other tissues were examined for cellular morphology and flow cytometry. We compared mice that lack GABPα in bone marrow (i.e. fl/fl Mx1-Cre mice injected with poly I-C) to littermate controls (i.e. fl/fl mice injected with poly I-C). Mice that lack GABPα exhibited a striking and statistically significant decrease in granulocytes and monocytes in bone marrow and peripheral blood, compared with controls; in contrast, there was an increase in erythroid cells in GABPα null bone marrow. This indicates that the loss of GABPα has lineage-specific effects on myeloid cell development. Morphologic analysis indicates that mice which lack GABPα possess more immature granulocytes compared to control mice. Thus, GABP disruption causes a striking loss of myeloid cells in the bone marrow and peripheral blood of mice in a lineage-specific manner. Furthermore, the maturation block of murine granulocytes that is caused by GABPα disruption demonstrates the crucial role of GABP in myeloid differentiation.


1995 ◽  
Vol 15 (6) ◽  
pp. 3147-3153 ◽  
Author(s):  
G A Blobel ◽  
C A Sieff ◽  
S H Orkin

High-dose estrogen administration induces anemia in mammals. In chickens, estrogens stimulate outgrowth of bone marrow-derived erythroid progenitor cells and delay their maturation. This delay is associated with down-regulation of many erythroid cell-specific genes, including alpha- and beta-globin, band 3, band 4.1, and the erythroid cell-specific histone H5. We show here that estrogens also reduce the number of erythroid progenitor cells in primary human bone marrow cultures. To address potential mechanisms by which estrogens suppress erythropoiesis, we have examined their effects on GATA-1, an erythroid transcription factor that participates in the regulation of the majority of erythroid cell-specific genes and is necessary for full maturation of erythrocytes. We demonstrate that the transcriptional activity of GATA-1 is strongly repressed by the estrogen receptor (ER) in a ligand-dependent manner and that this repression is reversible in the presence of 4-hydroxytamoxifen. ER-mediated repression of GATA-1 activity occurs on an artificial promoter containing a single GATA-binding site, as well as in the context of an intact promoter which is normally regulated by GATA-1. GATA-1 and ER bind to each other in vitro in the absence of DNA. In coimmunoprecipitation experiments using transfected COS cells, GATA-1 and ER associate in a ligand-dependent manner. Mapping experiments indicate that GATA-1 and the ER form at least two contacts, which involve the finger region and the N-terminal activation domain of GATA-1. We speculate that estrogens exert effects on erythropoiesis by modulating GATA-1 activity through protein-protein interaction with the ER. Interference with GATA-binding proteins may be one mechanism by which steroid hormones modulate cellular differentiation.


Blood ◽  
2007 ◽  
Vol 110 (7) ◽  
pp. 2276-2285 ◽  
Author(s):  
Maria De La Luz Sierra ◽  
Paola Gasperini ◽  
Peter J. McCormick ◽  
Jinfang Zhu ◽  
Giovanna Tosato

The mechanisms underlying granulocyte-colony stimulating factor (G-CSF)–induced mobilization of granulocytic lineage cells from the bone marrow to the peripheral blood remain elusive. We provide evidence that the transcriptional repressor growth factor independence-1 (Gfi-1) is involved in G-CSF–induced mobilization of granulocytic lineage cells from the bone marrow to the peripheral blood. We show that in vitro and in vivo G-CSF promotes expression of Gfi-1 and down-regulates expression of CXCR4, a chemokine receptor essential for the retention of hematopoietic stem cells and granulocytic cells in the bone marrow. Gfi-1 binds to DNA sequences upstream of the CXCR4 gene and represses CXCR4 expression in myeloid lineage cells. As a consequence, myeloid cell responses to the CXCR4 unique ligand SDF-1 are reduced. Thus, Gfi-1 not only regulates hematopoietic stem cell function and myeloid cell development but also probably promotes the release of granulocytic lineage cells from the bone marrow to the peripheral blood by reducing CXCR4 expression and function.


Blood ◽  
1996 ◽  
Vol 88 (8) ◽  
pp. 2859-2870 ◽  
Author(s):  
OJ Borge ◽  
V Ramsfjell ◽  
OP Veiby ◽  
MJ Jr Murphy ◽  
S Lok ◽  
...  

The recently cloned c-mpl ligand, thrombopoietin (Tpo), has been extensively characterized with regard to its ability to stimulate the growth, development, and ploidy of megakaryocyte progenitor cells and platelet production in vitro and in vivo. Primitive hematopoietic progenitors have been shown to express c-mpl, the receptor for Tpo. In the present study, we show that Tpo efficiently promotes the viability of a subpopulation of Lin-Sca-1+ bone marrow progenitor cells. The ability of Tpo to maintain viable Lin-Sca-1+ progenitors was comparable to that of granulocyte colony-stimulating factor and interleukin-1, whereas stem cell factor (SCF) promoted the viability of a higher number of Lin-Sca-1+ progenitor cells when incubated for 40 hours. However, after prolonged (> 40 hours) preincubation, the viability-promoting effect of Tpo was similar to that of SCF. An increased number of progenitors surviving in response to Tpo had megakaryocyte potential (37%), although almost all of the progenitors produced other myeloid cell lineages as well, suggesting that Tpo acts to promote the viability of multipotent progenitors. The ability of Tpo to promote viability of Lin-Sca-1+ progenitor cells was observed when cells were plated at a concentration of 1 cell per well in fetal calf serum-supplemented and serum-depleted medium. Finally, the DNA strand breakage elongation assay showed that Tpo inhibits apoptosis of Lin-Sca-1+ bone marrow cells. Thus, Tpo has a potent ability to promote the viability and suppress apoptosis of primitive multipotent progenitor cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2190-2190 ◽  
Author(s):  
Pieter K. Wierenga ◽  
Ellen Weersing ◽  
Bert Dontje ◽  
Gerald de Haan ◽  
Ronald P. van Os

Abstract Adhesion molecules have been implicated in the interactions of hematopoietic stem and progenitor cells with the bone marrow extracellular matrix and stromal cells. In this study we examined the role of very late antigen-5 (VLA-5) in the process of stem cell mobilization and homing after stem cell transplantation. In normal bone marrow (BM) from CBA/H mice 79±3 % of the cells in the lineage negative fraction express VLA-5. After mobilization with cyclophosphamide/G-CSF, the number of VLA-5 expressing cells in mobilized peripheral blood cells (MPB) decreases to 36±4%. The lineage negative fraction of MPB cells migrating in vitro towards SDF-1α (M-MPB) demonstrated a further decrease to 3±1% of VLA-5 expressing cells. These data are suggestive for a downregulation of VLA-5 on hematopoietic cells during mobilization. Next, MPB cells were labelled with PKH67-GL and transplanted in lethally irradiated recipients. Three hours after transplantation an increase in VLA-5 expressing cells was observed which remained stable until 24 hours post-transplant. When MPB cells were used the percentage PKH-67GL+ Lin− VLA-5+ cells increased from 36% to 88±4%. In the case of M-MPB cells the number increased from 3% to 33±5%. Although the increase might implicate an upregulation of VLA-5, we could not exclude selective homing of VLA-5+ cells as a possible explanation. Moreover, we determined the percentage of VLA-5 expressing cells immediately after transplantation in the peripheral blood of the recipients and were not able to observe any increase in VLA-5+ cells in the first three hours post-tranpslant. Finally, we separated the MPB cells in VLA-5+ and VLA-5− cells and plated these cells out in clonogenic assays for progenitor (CFU-GM) and stem cells (CAFC-day35). It could be demonstared that 98.8±0.5% of the progenitor cells and 99.4±0.7% of the stem cells were present in the VLA-5+ fraction. Hence, VLA-5 is not downregulated during the process of mobilization and the observed increase in VLA-5 expressing cells after transplantation is indeed caused by selective homing of VLA-5+ cells. To shed more light on the role of VLA-5 in the process of homing, BM and MPB cells were treated with an antibody to VLA-5. After VLA-5 blocking of MPB cells an inhibition of 59±7% in the homing of progenitor cells in bone marrow could be found, whereas homing of these subsets in the spleen of the recipients was only inhibited by 11±4%. For BM cells an inhibition of 60±12% in the bone marrow was observed. Homing of BM cells in the spleen was not affected at all after VLA-5 blocking. Based on these data we conclude that mobilization of hematopoietic progenitor/stem cells does not coincide with a downregulation of VLA-5. The observed increase in VLA-5 expressing cells after transplantation is caused by preferential homing of VLA-5+ cells. Homing of progenitor/stem cells to the bone marrow after transplantation apparantly requires adhesion interactions that can be inhibited by blocking VLA-5 expression. Homing to the spleen seems to be independent of VLA-5 expression. These data are indicative for different adhesive pathways in the process of homing to bone marrow or spleen.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2476-2476
Author(s):  
Kasia Mierzejewska ◽  
Ewa Suszynska ◽  
Sylwia Borkowska ◽  
Malwina Suszynska ◽  
Maja Maj ◽  
...  

Abstract Background Hematopoietic stem/progenitor cells (HSPCs) are exposed in vivo to several growth factors, cytokines, chemokines, and bioactive lipids in bone marrow (BM) in addition to various sex hormones circulating in peripheral blood (PB). It is known that androgen hormones (e.g., danazol) is employed in the clinic to treat aplastic anemia patients. However, the exact mechanism of action of sex hormones secreted by the pituitary gland or gonads is not well understood. Therefore, we performed a complex series of experiments to address the influence of pregnant mare serum gonadotropin (PMSG), luteinizing hormone (LH), follicle-stimulating hormone (FSH), androgen (danazol) and prolactin (PRL) on murine hematopoiesis. In particular, from a mechanistic view we were interested in whether this effect depends on stimulation of BM-residing stem cells or is mediated through the BM microenvironment. Materials and Methods To address this issue, normal 2-month-old C57Bl6 mice were exposed or not to daily injections of PMSG (10 IU/mice/10 days), LH (5 IU/mice/10 days), FSH (5 IU/mice/10 days), danazol (4 mg/kg/10 days) and PRL (1 mg/day/5days). Subsequently, we evaluated changes in the BM number of Sca-1+Lin–CD45– that are precursors of long term repopulating hematopoietic stem cells (LT-HSCs) (Leukemia 2011;25:1278–1285) and bone forming mesenchymal stem cells (Stem Cell & Dev. 2013;22:622-30) and Sca-1+Lin–CD45+ hematopoietic stem/progenitor cells (HSPC) cells by FACS, the number of clonogenic progenitors from all hematopoietic lineages, and changes in peripheral blood (PB) counts. In some of the experiments, mice were exposed to bromodeoxyuridine (BrdU) to evaluate whether sex hormones affect stem cell cycling. By employing RT-PCR, we also evaluated the expression of cell-surface and intracellular receptors for hormones in purified populations of murine BM stem cells. In parallel, we studied whether stimulation by sex hormones activates major signaling pathways (MAPKp42/44 and AKT) in HSPCs and evaluated the effect of sex hormones on the clonogenic potential of murine CFU-Mix, BFU-E, CFU-GM, and CFU-Meg in vitro. We also sublethally irradiated mice and studied whether administration of sex hormones accelerates recovery of peripheral blood parameters. Finally, we determined the influence of sex hormones on the motility of stem cells in direct chemotaxis assays as well as in direct in vivo stem cell mobilization studies. Results We found that 10-day administration of each of the sex hormones evaluated in this study directly stimulated expansion of HSPCs in BM, as measured by an increase in the number of these cells in BM (∼2–3x), and enhanced BrdU incorporation (the percentage of quiescent BrdU+Sca-1+Lin–CD45– cells increased from ∼2% to ∼15–35% and the percentage of BrdU+Sca-1+Lin–CD45+ cells increased from 24% to 43–58%, Figure 1). These increases paralleled an increase in the number of clonogenic progenitors in BM (∼2–3x). We also observed that murine Sca-1+Lin–CD45– and Sca-1+Lin–CD45+ cells express sex hormone receptors and respond by phosphorylation of MAPKp42/44 and AKT in response to exposure to PSMG, LH, FSH, danazol and PRL. We also observed that administration of sex hormones accelerated the recovery of PB cell counts in sublethally irradiated mice and slightly mobilized HSPCs into PB. Finally, in direct in vitro clonogenic experiments on purified murine SKL cells, we observed a stimulatory effect of sex hormones on clonogenic potential in the order: CFU-Mix > BFU-E > CFU-Meg > CFU-GM. Conclusions Our data indicate for the first time that not only danazol but also several pituitary-secreted sex hormones directly stimulate the expansion of stem cells in BM. This effect seems to be direct, as precursors of LT-HSCs and HSPCs express all the receptors for these hormones and respond to stimulation by phosphorylation of intracellular pathways involved in cell proliferation. These hormones also directly stimulated in vitro proliferation of purified HSPCs. In conclusion, our studies support the possibility that not only danazol but also several other upstream pituitary sex hormones could be employed to treat aplastic disorders and irradiation syndromes. Further dose- and time-optimizing mouse studies and studies with human cells are in progress in our laboratories. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1997 ◽  
Vol 89 (1) ◽  
pp. 72-80 ◽  
Author(s):  
Robert Möhle ◽  
Malcolm A.S. Moore ◽  
Ralph L. Nachman ◽  
Shahin Rafii

To study the role of bone marrow endothelial cells (BMEC) in the regulation of hematopoietic cell trafficking, we have designed an in vitro model of transendothelial migration of hematopoietic progenitor cells and their progeny. For these studies, we have taken advantage of a human BMEC-derived cell line (BMEC-1), which proliferates independent of growth factors, is contact inhibited, and expresses adhesion molecules similar to BMEC in vivo. BMEC-1 monolayers were grown to confluency on 3 μm microporous membrane inserts and placed in 6-well tissue culture plates. Granulocyte-colony stimulating factor (G-CSF )–mobilized peripheral blood CD34+ cells were added to the BMEC-1 monolayer in the upper chamber of the 6-well plate. After 24 hours of coincubation, the majority of CD34+ cells remained nonadherent in the upper chamber, while 1.6 ± 0.3% of the progenitor cells had transmigrated. Transmigrated CD34 cells expressed a higher level of CD38 compared with nonmigrating CD34+ cells and may therefore represent predominantly committed progenitor cells. Accordingly, the total plating efficiency of the transmigrated CD34+ cells for lineage-committed progenitors was higher (14.0 ± 0.1 v 7.8% ± 1.5%). In particular, the plating efficiency of transmigrated cells for erythroid progenitors was 27-fold greater compared with nonmigrating cells (8.0% ± 0.8% v 0.3% ± 0.1%) and 5.5-fold compared with unprocessed CD34+ cells (2.2% ± 0.4%). While no difference in the expression of the β1-integrin very late activation antigen (VLA)-4 and β2-integrin lymphocyte function-associated antigen (LFA)-1 was found, L-selectin expression on transmigrated CD34+ cells was lost, suggesting that shedding had occurred during migration. The number of transmigrated cells was reduced by blocking antibodies to LFA-1, while L-selectin and VLA-4 antibodies had no inhibitory effect. Continuous coculture of the remaining CD34+ cells in the upper chamber of the transwell inserts resulted in proliferation and differentiation into myeloid and megakaryocytic cells. While the majority of cells in the upper chamber comprised proliferating myeloid precursors such as promyelocytes and myelocytes, only mature monocytes and granulocytes were detected in the lower chamber. In conclusion, BMEC-1 cells support transmigration of hematopoietic progenitors and mature hematopoietic cells. Therefore, this model may be used to study mechanisms involved in mobilization and homing of CD34+ cells during peripheral blood progenitor cell transplantation and trafficking of mature hematopoietic cells.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1396-1396
Author(s):  
Jianfeng Wang ◽  
Farshid Dayyani ◽  
Christopher Brynczka ◽  
David A. Sweetser

Abstract The Groucho (Gro)/TLE family of transcriptional co-repressor proteins have been called master regulatory genes based on their interaction with a variety of transcription factors and their critical role in development. The TLEs have also been shown to play major roles in brain and lymphocyte differentiation. We became interested in this gene family after finding two family members, TLE1 and TLE4, localized to the commonly deleted region on chromosome 9q in acute myeloid leukemia (AML). This deletion is tightly associated with t(8;21), and we recently showed loss of TLE1 and TLE4 cooperated with AML1-ETO to affect myeloid cell proliferation and survival, implicating TLE1 and 4 as potential tumor suppressor genes in AML. Based on their known ability to inhibit the function of several signaling pathways and transcription factors including Wnt/b-catenin, NF-kB, AML1, and Pu.1 known to be important in leukemogenesis and hematopoiesis, we undertook a series of experiments to determine whether the TLEs could affect myeloid cell differentiation and proliferation. We showed that expression of either TLE1 or TLE4 was able to induce differentiation in the HL-60 myeloid cell line as demonstrated by morphological changes, increased expression of the myeloid differentiation makers CD11b, CD14 and CD15, downregulated myeloperoxidase activity, as well as increased nitroblue tetrazolium (NBT) staining. Furthermore, when HL-60 cells were induced to differentiate by exposure to all-trans-retinoic acid (ATRA) we observed a 150-fold transient increase in TLE1 message after three days. Knockdown of TLE1 with specific shRNAs partially blocked ATRA-induced differentiation as monitored by CD11b expression, suggesting this burst of TLE1 expression is critical for ATRA induced myeloid cell differentiation. To determine the role of the TLEs in primary human cells, human cord blood cells were sorted, and TLE mRNA levels were determined in progenitor cells (CD34+/CD33−/CD16−/CD15−/CD14−), early myeloid precursors (CD34−/CD33+/CD16−/CD15−CD14−) and mature granulocytes (CD34−/CD33+/CD16+/CD15−CD14−). Lowest levels of TLE1 and TLE4 were found in progenitor cells with a peak of expression in early myeloid precursors. To help determine the significance of these low TLE levels in hematopoietic stem/progenitor cells, we designed shRNAs to simultaneously knockdown both TLE1 and TLE4. Knockdown of TLE1/4 in cord blood cells resulted in a 6.3-fold expansion of CD34+CD38− cells after 4 days’ coculture with M2-10B4 in the presence of hSCF, hFlt3-ligand, and hTPO, as compared with only 2.6-fold expansion of cells transfected with control shRNA. Similarly, using mouse bone marrow cells cultured in vitro in the presence of mIL-3, mIL-6 and mSCF, we found a 2.1-fold increase in mouse bone marrow Lin−/Sca-1+/c-kit+ (LSK) cells transfected with TLE1/4 shRNA as compared to cells transfected with scrambled control shRNA. Our results indicate that modulation of TLE levels is capable of influencing both myeloid differentiation, as well as expansion of the stem cell and/or progenitor population.


Sign in / Sign up

Export Citation Format

Share Document