Role of Stromal Microenvironment in Non-Pharmacological Resistance of CML to Imatinib through Lyn/CXCR4 Interactions.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4248-4248
Author(s):  
Yoko Tabe ◽  
Linhua Jin ◽  
Yixin Zhou ◽  
Naoki Ichikawa ◽  
Kazuhisa Iwabuchi ◽  
...  

Abstract Abstract 4248 In patients with chronic-phase chronic myeloid leukemia (CML), imatinib resistance is of increasing importance. We have recently reported that the constitutively activated Bcr-Abl tyrosine kinase in CML suppresses CXCL12/CXCR4-mediated migration of CML cells to the bone marrow (BM) stroma. This finding can explain the characteristic leukocytosis in CML. In turn, tyrosine kinase inhibitor imatinib inhibits Bcr-Abl, enhances migration of CML cells towards CXCL12-producing BM stromal cells which in turn promotes cell quiescence and development of the microenvironment-mediated, non-pharmacological drug resistance (Jin, Mol Cancer Ther 2008;7:48). In this study, we further investigated the molecular mechanisms of imatinib-induced CML cell migration and adherence to the bone marrow-derived stromal cells (MSC). Src-related kinase Lyn regulates survival and responsiveness of CML cells to inhibition of BCR-ABL kinase and is known to interact with CXCL12/CXCR4 signaling. Lyn frequently localizes in lipid raft fractions, which act as signal transduction platforms for a variety of intracellular processes. Therefore, we investigated the effects of imatinib on the localization of activated Lyn in the lipid raft structures of KBM-5 CML cells under co-culture conditions with CXCL12-secreting MSC or recombinant CXCL12. Confocal microscopy and discontinuous sucrose density gradient fractionation demonstrated that CXCR4 and phosphorylated CXCR4 localized in the higher-density detergent-soluble non-raft cell surface regions in KBM5 cells in the presence and absence of imatinib, with or without MSC, which suggests that CXCR4 does not directly associate with lipid rafts. In contrast, Lyn was present both in the low-density raft and in the high-density non-raft fractions, which contained CXCR4. We have further demonstrated co-localization of CXCR4 with Lyn, and their direct interaction was confirmed by co-immunoprecipitation. Notably, the active form of phosphorylated p-LynTyr396 clustered in lipid rafts, while inactive p-LynTyr507 in non-raft fractions. In suspension KBM-5 cultures imatinib depleted both, p-LynTyr396 and p-LynTyr507. In contrast, under MSC co-culture conditions imatinib repressed p-LynTyr507, but failed to deplete p-LynTyr396 in lipid rafts, and p-LynTyr396 further accumulated in non-raft fractions, likely associating with CXCR4. Knock-down of Lyn by siRNA, Src inhibitor treatment or lipid raft destruction by methyl-b cyclodextrin (MbCD) abrogated imatinib-induced KBM5 migration to MSCs and CXCL12, indicating the critical role of p-LynTyr396 in cell migration. Since the a4b1 integrin VLA-4 represents a cooperative molecular pathway guiding BM homing in addition to CXCL12/CXCR4, we next investigated the localization and expression of VLA-4 in KBM5 cells. Imatinib decreased VLA-4 protein expression both in lipid raft and non-raft fractions without affecting VLA-4 gene expression levels as determined by quantitative RT-PCR. Interestingly, VLA-4 reduction by imatinib or lipid raft destruction by MbCD did not affect the ability to adhere to fibronectin. In conclusion, these findings demonstrate that under conditions mimicking BM microenvironment imatinib restores CXCL12-dependent migration through interactions between CXCR4 and active p-Lyn Tyr396 in non-raft microdomains of CML cells and that p-Lyn Tyr396 localized in lipid rafts is contributing to the CML cell migration. We propose that while CXCR4 is segregated from lipid raft fractions, imatinib through Bcr-Abl kinase inhibition induces the compartmental changes of multivalent Lyn complex between lipid raft and non-raft fractions, restoring the interactions between Lyn and CXCR4 and stimulating cell migration. Our findings indicate that leukemic BM microenvironment may be involved in imatinib resistance in a subset of CML patients through activation of Lyn kinase, consistent with reported higher clinical activity of Bcr-Abl/Src inhibitor dasatinib in patients with imatinib-resistant CML. We propose that BM stroma cells produce abundant CXCL12 and attract migrating cells through adhesive interactions with the extracellular matrix, which may in turn facilitate lodging into BM niches of imatinib-exposed CML cells and promote non-pharmacological resistance to this agent. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3834-3834
Author(s):  
Christophe Desterke ◽  
Costanza Bogani ◽  
Lisa Pieri ◽  
Alessandro M. Vannucchi ◽  
Bernadette Guerton ◽  
...  

Abstract Abstract 3834 Introduction: CD9, a four transmembrane glycoprotein belonging to the tetraspanin family, is suggested to regulate cell motility and adhesion and to play a role in megakaryopoiesis. It has been reported to be a molecular marker of primary myelofibrosis (PMF) being characterized by myeloproliferation, dysmegakaryopoiesis, alterated bone marrow/spleen stroma and extramedullary haematopoiesis. CD9 mRNA has been shown to be overexpressed in CD34+ PMF HPs and its membrane expression level was correlated with platelet counts. Our recent data evidencing an alteration of CD9 expression in PMF megakaryocytes (MK) have encouraged us to investigate whether CD9 participates in the dysmegakaryopoiesis and whether it is involved in the dialogue between MK and stromal cells in PMF patients. Patients and Methods: CD34+ cells were MACS selected from the peripheral blood of PMF patients (n=67) and of unmobilized healthy donors (n=61). Functional studies were performed on MK precursor-derived from CD34+ cells cultured in MK medium with ou without monoclonal antibodies (Syb mAb) or siRNAs targeting CD9. CXCL12-induced MK migration was performed in Boyden chambers. Bone marrow mesenchymal stromal cells (MSC) from healthy donors and PMF patients were cultured in DMEM+10%FCS. Results: Our results showed that CD9 membrane expression was altered on CD34+ cells and on MK precursor-derived from PMF CD34+ cells. Binding of CD9 with Syb mAb restored the in vitro megakaryocyte differentiation process that was altered in patients as shown by an increase in: i) megakaryocytic colony formation in semisolid medium, ii) CD41 and CD62p MK differentiation marker and GATA-1 expression, iii) MK cytoplasmic maturation, iv) apoptotic MK number (reduced AKT phosphorylation and Bcl-XL expression and increased percentage of Annexin+ cells). Activation of CD9 was also associated with regulation of MAPK and AKT-GSK3β pathways whose balance is involved in MK differentiation. Treatment of PMF MK precursors by Syb modulated activation of the MAPK pathway as shown by an increased of p38, JNK and GSK3β phosphorylation and of AP-1 mRNA expression. Taking into account the structure of the tetraspanin molecular network, binding with Syb mAb might also impact the effects associated to the multimolecular complex in which CD9 is involved. This prompted us to study the effects of a molecular silencing of CD9 on the PMF MK differentiation. We showed that, in contrast to the Syb mAb, addition of CD9 siRNA to PMF megakaryocytes reduced their transcriptional program including c-Myb, a transcription factor that is involved in CD9 regulation during megakaryopoiesis. Given the role of CD9 in cell migration, we further investigated whether it could be involved in the megakaryocytic precursor migration observed in patients. We showed that silencing CD9 reduced the CXCL12-dependent megakaryocytic precursor migration as well as the CXCR4 and CXCL12 transcription and that this migration involved actin polymerization. c-Myb siRNA restored CXCR4 and CXCL12 expression and reduced actin polymerization suggesting that CD9 was involved, via c-Myb, in the CXCL12-dependent megakaryocytic precursor migration. Effect of CD9 on cell migration is often interpreted as related to modulation of integrins participating in the integrin/tetraspanin network and of their interaction with mesenchymal stromal cells (MSC). We showed that several genes involving the CD9 partner interactome were over-expressed in MSC from PMF bone marrow as compared to MSC from healthy donors. Preliminary results showing that PMF MK precursors display different behaviour in terms of cell survival and adhesion when co-cultured on bone marrow MSC from PMF patients as compared to healthy donors suggest that interactions between MKs and bone marrow MSC is involved in PMF dysmegakaryopoiesis. Addition of Syb reverses these alterations suggesting the participation of CD9 in the abnormal dialogue between MK and MSC. Conclusion: Our results show a deregulation of CD9 expression in megakaryocytes from PMF patients. They also suggest that CD9 i) participates in PMF dysmegakaryopoieis in terms of MK differentiation and survival and ii) is involved in the increased MK precursor migration through alterations of the CXCL12/CXCR4 axis. Our data further support the role of bone marrow stroma in PMF dysmegakaryopoeisis through CD9 interactions. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3390-3390
Author(s):  
Yoko Tabe ◽  
Linhua Jin ◽  
Zhou Yixin ◽  
Naoki Ichikawa ◽  
Kazuhisa Iwabuchi ◽  
...  

Abstract Abstract 3390 In chronic myeloid leukemia (CML), the mechanisms of resistance to tyrosine kinase inhibitors (TKIs) beyond the Bcr-Abl mutations are not well understood. We have previously reported that TKI imatinib induces cell-surface expression of the chemokine receptor CXCR4, which results in enhanced migration towards CXCL12-producing BM stromal cells, promotes cell quiescence and development of the microenvironment-mediated, non-pharmacological drug resistance (Jin, Mol Cancer Ther 2008;7:48). Bcr-Abl tyrosine kinase directly activates Src-related kinase Lyn known to frequently localize in lipid raft plasma membrane microdomains and interact with CXCL12/CXCR4 signaling and is directly activated by p210Bcr-Abl. In this study, we investigated the effects of TKIs on the localization and interaction of CXCR4 and Lyn in the lipid rafts, and the role of lipid rafts as the signal transduction platform for CML cell migration. Confocal microscopy and discontinuous sucrose density gradient fractionation demonstrated that in CML cells CXCR4 primarily localized in the non-raft cell surface regions, while Lyn was present both in the lipid raft and non-raft fractions. In turn, the active, phosphorylated form (p-)LynTyr396 is present within the lipid rafts, while inactive p-LynTyr507 in non-raft fractions. Imatinib treatment under co-culture with mesenchymal stem cells (MSC) induced CXCR4 clustering in lipid raft fractions, which was directly co-immunoprecipitaed with Lyn. Under these culture conditions, imatinib repressed p-LynTyr507, but failed to deplete p-LynTyr396. Knock-down of Lyn by siRNA, Src inhibitor treatment, or lipid raft destruction by methyl-b cyclodextrin (MbCD) abrogated imatinib-induced KBM5 migration to MSCs and CXCL12 without affecting CXCR4 surface expression. Consistent with its effects on Src, dual Src/Abl kinase inhibitor dasatinib induced significantly less migration of CML cells to CXCL12 compared with imatinib or nilotinib (p =0.04). In summary, our data indicate that stromal cells interfere with inhibitory effects of TKI on active Lyn (p-Lyn)Tyr396 in CML cells and promote clustering of CXCR4 in lipid rafts where it co-localizes with p-LynTyr396 and facilitates migration of CML cells to the MSC monolayer. Lipid raft disruption by cholesterol depletion inhibit CML cells migration, suggesting that lipid rafts represent one of the key signaling modules responsible for interactions of CML cells with cells of BM niche. We propose that pharmacological disruption of lipid rafts may eliminate BM-resident CML cells through interference with microenvironment-mediated resistance. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3742-3742
Author(s):  
Anna M Eiring ◽  
Ira L Kraft ◽  
David J Anderson ◽  
Elie Traer ◽  
Qian Yu ◽  
...  

Abstract Abstract 3742 In Philadelphia chromosome positive leukemia, mutations in the BCR-ABL kinase domain are a well established mechanism of resistance to tyrosine kinase inhibitors (TKIs), but fail to explain many cases of primary and acquired resistance. Extrinsic survival signals from the bone marrow microenvironment can protect CML cells from the effects of TKIs in a STAT3-dependent manner. To define the role of pSTAT3 in extrinsic versus intrinsic TKI resistance, we used BCR-ABL+ cell lines exhibiting ‘extrinsic resistance' through culture in conditioned media (CM) from human HS-5 bone marrow stromal cells (Re), or derivative lines expressing native BCR-ABL with ‘intrinsic resistance' adapted for growth in the presence of 1.0–2.5 μM imatinib (Ri). Immunoblot analysis showed near-complete suppression of BCR-ABL tyrosine kinase activity upon exposure to imatinib in all Re and Ri cells tested, suggesting BCR-ABL-independent resistance in both cases. K562-Ri and AR230-Ri cells proliferating in 1.0 μM imatinib showed upregulation of pAKTS473, pJAK2Y1007/1008, pSTAT3, and pSTAT5 compared to sensitive cells under the same conditions. When imatinib was increased (2.5 μM), pJAK2Y1007/1008 and pSTAT5 were markedly reduced, suggesting regulation by BCR-ABL kinase activity. In contrast, levels of pSTAT3 and pAKTS473 were further increased. Similar to Ri cells, extrinsically resistant cells (K562-Re, LAMA84-Re, KBM5-Re) showed increased pSTAT3 when cultured in HS-5 CM; however, upregulation was not observed for pAKTS473. Of key importance, pSTAT3 levels were also increased by HS-5 CM in CD34+ cells from newly diagnosed CML patients. To further investigate the role of pSTAT3 in TKI resistance, we used lentiviral shRNA to knockdown STAT3 (shSTAT3) in sensitive and resistant BCR-ABL+ cells. Cells were kept in culture for 24 hours with and without 1.0 μM imatinib in regular medium or CM, followed by trypan blue exclusion and/or plating in semisolid medium. Compared to cells expressing a scrambled control (shSCR), shSTAT3 reduced the in vitro growth of intrinsically resistant K562-Ri and AR230-Ri cells by 54.6% and 33.3% in the presence of imatinib (1.0 μM), respectively. Consistent with these observations, shSTAT3 impaired the clonogenic potential of K562-Ri cells by 65.0% following culture in 1.0 μM imatinib, and similar results were obtained for AR230-Ri cells, indicating that STAT3 plays a functional role in mediating intrinsic TKI resistance in multiple BCR-ABL-expressing cell lines. In extrinsic resistance, 3–12 hours of culture with CM from HS-5 stromal cells enhanced the clonogenic potential of K562-Re and LAMA84-Re cells by 25–40% in the presence of imatinib compared to controls cultured in regular medium. However, the protective effects of CM were abrogated by introduction of shSTAT3. In contrast, shSTAT3 had no effect on colony formation following growth in regular medium, consistent with the low level of pSTAT3 in parental K562 and LAMA-84 cells. These data suggest that STAT3 activation is a prominent feature of both extrinsic and intrinsic BCR-ABL-independent imatinib resistance. Additionally, preliminary experiments implicate pSTAT3 in intrinsic BCR-ABL-independent resistance to the third-generation TKI, ponatinib (AP24534), suggesting that activated STAT3 may have a role in resistance to other TKIs. Altogether, our data suggest that intrinsic and extrinsic pathways converge on STAT3 as a critical mediator of BCR-ABL-independent TKI resistance, and implicate this pathway as a potential therapeutic target for the treatment of patients with TKI resistance despite BCR-ABL inactivation. We posit that microenvironmental cues activate pathways that initially support survival of leukemia cells despite BCR-ABL inhibition, and that overt resistance develops when these cells establish an intrinsic mechanism to maintain activation of the same pathways. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Tao Qiu ◽  
Jiangqiao Zhou ◽  
Tianyu Wang ◽  
Zhongbao Chen ◽  
Xiaoxiong Ma ◽  
...  

AbstractAcute lung injury (ALI) is an acute inflammatory disease. Leukocyte immunoglobulin-like receptor B4 (LILRB4) is an immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing inhibitory receptor that is implicated in various pathological processes. However, the function of LILRB4 in ALI remains largely unknown. The aim of the present study was to explore the role of LILRB4 in ALI. LILRB4 knockout mice (LILRB4 KO) were used to construct a model of ALI. Bone marrow cell transplantation was used to identify the cell source of the LILRB4 deficiency-aggravated inflammatory response in ALI. The effect on ALI was analyzed by pathological and molecular analyses. Our results indicated that LILRB4 KO exacerbated ALI triggered by LPS. Additionally, LILRB4 deficiency can enhance lung inflammation. According to the results of our bone marrow transplant model, LILRB4 regulates the occurrence and development of ALI by bone marrow-derived macrophages (BMDMs) rather than by stromal cells in the lung. The observed inflammation was mainly due to BMDM-induced NF-κB signaling. In conclusion, our study demonstrates that LILRB4 deficiency plays a detrimental role in ALI-associated BMDM activation by prompting the NF-κB signal pathway.


2015 ◽  
Vol 39 (10) ◽  
pp. 1099-1110 ◽  
Author(s):  
Iordanis Pelagiadis ◽  
Eftichia Stiakaki ◽  
Christianna Choulaki ◽  
Maria Kalmanti ◽  
Helen Dimitriou

Blood ◽  
1994 ◽  
Vol 84 (8) ◽  
pp. 2531-2538 ◽  
Author(s):  
T Agui ◽  
X Xin ◽  
Y Cai ◽  
T Sakai ◽  
K Matsumoto

Abstract Endothelin (ET) produced by endothelial cells has recently been found to be a potent vasoconstricting hormone. In this report, ET is shown to be a potent stimulator of interleukin-6 (IL-6) production by rat bone marrow (BM)-derived stromal cells. It was also shown that ET increased the level of mRNA for IL-6 in these cells. The two types of ET receptor (R), ETAR and ETBR, were shown to be expressed on both BM-derived stromal cells in culture and ex vivo in BM tissue, suggesting that ET works as a physiologic stimulator of IL-6 production in the BM. It was shown that ETAR is coupled to phospholipase C activation, leading to the production of inositol 1,4,5-trisphosphate (IP3) and 1,2- diacylglycerol (DAG) as second messengers in BM-derived stromal cells. This was corroborated by data showing that IL-6 production in these cells was induced by combined stimulation with ionomycin and phorbol myristate acetate, thereby bypassing the effects of IP3 and DAG, respectively. This is the first report on the hormonal regulation of IL- 6 production by BM stromal cells, indicating that hematopoiesis is subject to endocrinologic regulation under physiologic conditions. ET has recently been reported to be produced by macrophages in response to bacterial lipopolysaccharide and human immunodeficiency virus-1 glycoprotein 120. These facts, taken together with our findings, raise the possibility that ET shares the same role of IL-1 as a local cytokine, mediating an intercellular signal between macrophages and BM stromal cells in response to bacterial or viral stimulation.


Blood ◽  
1986 ◽  
Vol 68 (6) ◽  
pp. 1348-1354 ◽  
Author(s):  
A Johnson ◽  
K Dorshkind

Abstract Hemopoiesis in long-term bone marrow cultures (LTBMC) is dependent on adherent stromal cells that form an in vitro hemopoietic microenvironment. Myeloid bone marrow cultures (MBMC) are optimal for myelopoiesis, while lymphoid bone marrow cultures (LBMC) only support B lymphopoiesis. The experiments reported here have made a comparative analysis of the two cultures to determine whether the stromal cells that establish in vitro are restricted to the support of myelopoiesis or lymphopoiesis, respectively, and to examine how the different culture conditions affect stromal cell physiology. In order to facilitate this analysis, purified populations of MBMC and LBMC stroma were prepared by treating the LTBMC with the antibiotic mycophenolic acid; this results in the elimination of hemopoietic cells while retaining purified populations of functional stroma. Stromal cell cultures prepared and maintained under MBMC conditions secreted myeloid growth factors that stimulated the growth of granulocyte-macrophage colonies, while no such activity was detected from purified LBMC stromal cultures. However, this was not due to the inability of LBMC stroma to mediate this function. Transfer of LBMC stromal cultures to MBMC conditions resulted in an induction of myeloid growth factor secretion. When seeded under these conditions with stromal cell- depleted populations of hemopoietic cells, obtained by passing marrow through nylon wool columns, the LBMC stromal cells could support long- term myelopoiesis. Conversely, transfer of MBMC stroma to LBMC conditions resulted in a cessation of myeloid growth factor secretion; on seeding these cultures with nylon wool-passed marrow, B lymphopoiesis, but not myelopoiesis, initiated. These findings indicate that the stroma in the different LTBMC are not restricted in their hemopoietic support capacity but are sensitive to culture conditions in a manner that may affect the type of microenvironment formed.


Sign in / Sign up

Export Citation Format

Share Document