Mesenchimal Stroma Cells From Patients with Myelodysplastic Syndrome and Acute Myeloid Leukemia Show Distinct Cytogenetic and DNA-Mutation Data as Compared with Bone Marrow Leukemic Blasts.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4697-4697
Author(s):  
Olga Blau ◽  
Wolf-Karsten Hofmann ◽  
Claudia D Baldus ◽  
Gundula Thiel ◽  
Florian Nolte ◽  
...  

Abstract Abstract 4697 Bone marrow mesenchymal stroma cells (BMSC) are key components of the hematopoietic microenvironment. BMSC from patients with acute myeloid leukemia (AML) and myelodisplasic syndrome (MDS) display functional and quantitative alterations. To gain insight into these questions, we carried out cytogenetic analyses, FISH, FLT3 and NPM1 mutation examinations of both hematopoietic (HC) and BMSC derived from 53 AML and 54 MDS patients and 35 healthy donors after in vitro culture expansion. Clonal chromosomal aberrations were detectable in BMSC of 12% of patients. Using FISH we have assume that cytogenetic markers in BMSC were always distinct as the aberrations in HC from the same individual. 17% and 12% of AML patients showed FLT3 and NPM1 mutations in HC, respectively. In BMSC, we could not detect mutations of NPM1 and FLT3, independent from the mutation status of HC. For control analysis, BMSC cultures from 35 healthy donors were prepared under the same conditions. BMSC from healthy donors did show normal diploid karyotypes and absence of specific DNA-mutations of NPM1 and FLT3. Our data indicate that BMSC from MDS and AML patients are not a part of malignant clone and characterized by genetic aberrations. Lack of aberrations as detected in HC and appearance of novel clonal rearrangements in BMSC may suggest enhanced genetic susceptibility and potential involvement of BMSC in the pathogenesis of MDS and AML. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2580-2580 ◽  
Author(s):  
Desiree Kunadt ◽  
Christian Dransfeld ◽  
Maria Schmiedgen ◽  
Michael Kramer ◽  
Christoph Röllig ◽  
...  

Abstract Background ABCB1 (=MDR1, multidrug resistance protein 1) single nucleotide polymorphisms (SNPs) were shown to have a significant impact on therapy outcome in patients with acute myeloid leukemia (AML). Furthermore, an independent significant impact on treatment response and patient survival of SNPs in the genes for ABCC4 (MRP4), ABCC5 (MRP5) and ABCC11 (MRP8) related SNPs has also been demonstrated. In contrast, therapeutic strategies trying to modulate the anthracycline efflux of these transporters have failed in most clinical trials so far. Recently, higher dosages of daunorubicin used during induction chemotherapy have been associated with a better outcome in certain subgroups of AML patients. Hence, in times of individual diagnostic genetic analyses available as point-of-care diagnostics, the goal of this study was to further investigate whether SNPs in ABC-transporter genes, which are responsible for anthracycline efflux, have an independent impact on treatment outcome. Patients and Methods DNA samples were obtained from bone marrow aspirates of 160 Caucasian patients with newly diagnosed AML as part of the prospective AML2003 trial (NCT00180102). The cohort solely consisted of patients with a normal karyotype, based on conventional G-banding, minimizing false results in case of gain or loss of chromosomal material. All patients received double induction chemotherapy with daunorubicin and cytarabine. After DNA extraction, quantitative real time PCR was performed, using a total of 49 SNP assays investigating SNPs of seven different ABC genes. The identification of the corresponding SNPs was performed in an in silico analysis using the NIH dbSNP database and HapMap while statistical univariate and multivariate analyses were performed using SPSS. Results We detected three ABCC1 (MRP1) SNPs: rs129081 (CACCCC[C/G]ACTCCA), rs212090 (TTACTG[A/T]TCCCAC), and rs212091 (ACCTTA[A/G]AGAACA) with a significant influence on disease-free survival (DFS) or overall survival (OS), respectively. Patients carrying the homozygous rs129081 GG-SNP had a significant longer 5-year OS and 5-year DFS compared to the homozygous wildtype CC and heterozygous CG patients (OS: 68% [GG] vs. 40% [CC] vs. 64%, [CG], p=.035; DFS: 64% vs. 35% vs. 50%, p=.01). SNP rs212090 revealed a statistically significant difference in DFS when comparing homozygous alleles TT and AA (wildtype), 40% vs. 68%, p=.021. SNP rs212091 showed a significant difference concerning OS, with homozygous SNP GG leading to worse OS (0% vs. wildtype AA 64% vs. heterozygous AG 59%, p=.006). Again, there was a significant difference in DFS between both homozygous alleles AA (wildtype) and GG (55% vs. 0%, p=.018). Furthermore, there were no significant differences of standard clinical and laboratory baseline characteristics, FLT3-ITD mutation, or NPM1-mutation status, or chemotherapeutic toxicities. In order to exclude false positive findings of SNPs conferred as a result of leukemic transformation, we obtained saliva germline DNA from patients in complete remission who were treated by chemoconsolidation and performed a confirmatory analysis with the investigated SNPs, including rs129081, rs212090, and rs212091. Here, all SNPs were shown to be expressed in germline DNA in remission and bone marrow samples at diagnosis alike. The multivariate models for rs129081, rs212090 (TT), rs212091(AG), and rs212091(AA) revealed significances of p=.024, p=.029, p=.042, and p=.017 respectively for DFS but not for OS (except for rs212091[AA]). After adjustment for a false discovery rate of 5% still a trend towards the association of the SNPs and DFS could be seen. Therefore, more research is necessary to strengthen this evidence. Conclusion In this study we found a significant influence of rs129081, rs212090, and rs212091 SNPs (ABCC1, MRP1) on survival in AML in univariate analyses. Interestingly, these polymorphisms were not associated with other AML specific characteristics at diagnosis and were shown to be expressed in germline DNA and AML DNA alike. Hence, we suggest a prognostic effect of these SNPs which might be responsible for differential anthracycline susceptibility. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1517-1524 ◽  
Author(s):  
Marjan J. T. Veuger ◽  
M. Willy Honders ◽  
Jim E. Landegent ◽  
Roel Willemze ◽  
Renée M. Y. Barge

Deficiency of functional deoxycytidine kinase (dCK) is a common characteristic for in vitro resistance to cytarabine (AraC). To investigate whether dCK is also a target for induction of AraC resistance in patients with acute myeloid leukemia (AML), we determined dCK messenger RNA (mRNA) expression in (purified) leukemic blasts and phytohemagglutinin-stimulated T cells (PHA T cells) from patients with chemotherapy-sensitive and chemotherapy-resistant AML. In control samples from healthy donors (PHA T cells and bone marrow), only wild-type dCK complementary DNA (cDNA) was amplified. Also, in (purified) leukemic blasts from patients with sensitive AML, only wild-type dCK cDNAs were observed. These cDNAs coded for active dCK proteins in vitro. However, in 7 of 12 (purified) leukemic blast samples from patients with resistant AML, additional polymerase chain reaction fragments with a deletion of exon 5, exons 3 to 4, exons 3 to 6, or exons 2 to 6 were detected in coexpression with wild-type dCK. Deletion of exons 3 to 6 was also identified in 6 of 12 PHA T cells generated from the patients with resistant AML. The deleted dCK mRNAs were formed by alternative splicing and did code for inactive dCK proteins in vitro. These findings suggest that the presence of inactive, alternatively spliced dCK mRNA transcripts in resistant AML blasts may contribute to the process of AraC resistance in patients with AML.


Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1517-1524 ◽  
Author(s):  
Marjan J. T. Veuger ◽  
M. Willy Honders ◽  
Jim E. Landegent ◽  
Roel Willemze ◽  
Renée M. Y. Barge

Abstract Deficiency of functional deoxycytidine kinase (dCK) is a common characteristic for in vitro resistance to cytarabine (AraC). To investigate whether dCK is also a target for induction of AraC resistance in patients with acute myeloid leukemia (AML), we determined dCK messenger RNA (mRNA) expression in (purified) leukemic blasts and phytohemagglutinin-stimulated T cells (PHA T cells) from patients with chemotherapy-sensitive and chemotherapy-resistant AML. In control samples from healthy donors (PHA T cells and bone marrow), only wild-type dCK complementary DNA (cDNA) was amplified. Also, in (purified) leukemic blasts from patients with sensitive AML, only wild-type dCK cDNAs were observed. These cDNAs coded for active dCK proteins in vitro. However, in 7 of 12 (purified) leukemic blast samples from patients with resistant AML, additional polymerase chain reaction fragments with a deletion of exon 5, exons 3 to 4, exons 3 to 6, or exons 2 to 6 were detected in coexpression with wild-type dCK. Deletion of exons 3 to 6 was also identified in 6 of 12 PHA T cells generated from the patients with resistant AML. The deleted dCK mRNAs were formed by alternative splicing and did code for inactive dCK proteins in vitro. These findings suggest that the presence of inactive, alternatively spliced dCK mRNA transcripts in resistant AML blasts may contribute to the process of AraC resistance in patients with AML.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2855-2855
Author(s):  
Wanlong Ma ◽  
Xi Zhang ◽  
Iman Jilani ◽  
Farhad Ravandi ◽  
Elihu Estey ◽  
...  

Abstract Nucleotides insertion in the nucleophosphamin (NPM1) gene has been reported in about one third of patients with acute myeloid leukemia (AML). Multiple studies showed that the presence of NPM1 mutations associated with better outcome in patients with AML. Studies reported to date have analyzed leukemic cells obtained from bone marrow or peripheral blood. We tested for mutations in the NPM1 gene using peripheral blood plasma and compared results with clinical outcome from a single institution. Analyzing plasma from 98 newly diagnosed patient with AML showed NPM1 mutation in 24 (23%) of patient while only one (4%) of 28 previously untreated patients with myelodysplastic syndrome (MDS) showed NPM1 mutation. Compared with peripheral blood cells, 2 (8%) of the 24 positive patients were negative by cells; none were positive by cells and negative by plasma. Most of the mutations detected (45%) were in patients with FAB classification M2, M4 and M5. In addition to the reported 4 bp insertion, we also detected 4 bp deletion in one patient in cells and plasma. Patients with NPM1 mutation had a significantly higher white blood cell count (P = 0.0009) and a higher blast count in peripheral blood (P = 0.002) and in bone marrow (P = 0.002). Blasts in patients with NPM1 mutant expressed lower levels of HLA-DR (P = 0.005), CD13 (P = 0.02) and CD34 (P < 0.0001), but higher CD33 levels (P = 0.0004). Patients with NPM1 mutation appear to have better chance of responding to standard therapy (P = 0.06). Event free survival of patients with NPM1 mutation was longer (P = 0.056) than in patients with intermediate cytogenetic abnormalities. The most striking difference in survival was in patients who required >35 days to respond to therapy (Figure). Survival was significantly longer in patients with NPM1 mutation requiring >35 days to respond (P = 0.027). This data not only support that NPM1 plays a significant role in the biology and clinical behavior of AML, but also show that plasma DNA is enriched with leukemia-specific DNA and is a reliable source for testing. Figure Figure


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4676-4676
Author(s):  
Seo-Jin Park ◽  
Hyun-Sook Chi ◽  
Kyung Ran Jun ◽  
Sook Kyoung Min ◽  
Seongsoo Jang ◽  
...  

Abstract Abstract 4676 INTRODUCTION Mutations of the nucleophosmin gene (NPM1) occur in up to 40-50% of adult acute myeloid leukemia (AML) with a normal karyotype and are associated with a higher frequency of fms-like tyrosine kinase-3 internal tandem duplications (FLT3-ITD) and responsiveness to induction chemotherapy. The incidence of NPM1 mutations in Caucasians have been previously reported in several studies whereas there have been few reports from Asian countries including Japan, China, and Taiwan. The objectives of our study was to determine the prevalence of NPM1 mutations and distribution of AML subtypes in the normal karyotype AML Korean population in addition to establishing an easily applicable yet reliable method to indentify these mutations. We also examined treatment outcomes and survival (relapse-free survival (RFS) and overall survival (OS)) by stratifying them into groups according to NPM1 and FLT3-ITD mutation status. METHODS We retrospectively analyzed the prevalence of NPM1 mutations in 185 patients with normal karyotype AML diagnosed between 2002 and 2009. Genomic DNA extracted from bone marrow aspirate specimens obtained at diagnosis was amplified by PCR, followed by analysis on an ABI 3130 Genetic Analyzer (Applied Biosystems) by capillary electrophoresis. Cases found to have mutation peaks at 174bp by Gene Mapper ID v3.2 software (Applied Biosystems) were further analyzed by direct sequencing of exon 12 of NPM1 gene. Follow-up data was reviewed by retrospective chart review for treatment outcome and survival analyses. Among the 185 AML patients, 18 with less than a 1-month follow-up period were excluded since they could not be sufficiently evaluated. RESULTS Mutations in exon 12 of NPM1 were found in 37 of 185 (20.0%) normal karyotype AML patients and were composed of TCTG duplications (Type A, 32/37, 86.5%), 3 previously reported variants, and 2 new variants previously not reported. Mutations were most frequently seen in AML M1 patients (12/37, 32.4%) and other subtypes such as M2, and M4 were often observed. NPM1 mutations were particularly associated with CD34-negativity (<0.0001) and higher bone marrow blast (%) at diagnosis (p=0.0067). There was a mild trend towards frequent FLT3-ITD mutations in NPM1+ patients in comparison to the NPM1- group (35.1% and 19.6%, p=0.0787). After exclusion of the 18 patients lost during follow-up, no significant differences in RFS (8.5 and 10.8 months, p=0.7922) and OS (11.5 and 13.6 months, p=0.6147) were observed between the NPM1+ and NPM1- groups. Stratification into good (NPM1+/FLT3-ITD-), intermediate (NPM1-/FLT3-ITD- & NPM1+/FLT3-ITD+), and poor (NPM1-/FLT3-ITD+) prognostic groups did not reveal significant differences in median values of RFS and OS (in months; RFS, 16.0 and 13.8 and 7.3, p=0.1872; OS, 16.0 and 10.8 and 7.3, p=0.3661). However, the Kaplan-Meier survival analysis of these stratified prognostic groups showed a trend toward a difference in RFS (p=0.084) and a significantly longer OS in the NPM1+/FLT3-ITD- (good prognostic) group (p=0.031). CONCLUSIONS The prevalence of NPM1 mutations in normal karyotype AML patients in Koreans was lower than those reported in Western studies. In areas with low prevalence, a screening method to detect mutations enables rapid reporting with only selective cases requiring the labor-intensive direct sequencing step. In accordance with previous studies, a significantly longer OS in the NPM1+/FLT3-ITD- group suggests that NPM1+ may be associated with a favorable outcome. However, discordant parameters such as prevalence and RFS may signify that elucidation of the prognostic significance of NPM1 mutations in different ethnic groups may be necessary. Thus, NPM1 mutation studies should be considered in the diagnostic work-up of all AML patients with a normal karyotype given its role as a prognostic marker. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2154-2154
Author(s):  
Friedrich Stölzel ◽  
Christoph Röllig ◽  
Michael Kramer ◽  
Brigitte Mohr ◽  
Uta Oelschlägel ◽  
...  

Abstract Abstract 2154 Background: Myeloid Sarcoma (MS) is defined as an extramedullary mass composed of myeloid blasts occurring at an anatomical site other than the bone marrow. Furthermore, the term extramedullary manifestation (EM) is applied if it accompanies overt acute myeloid leukemia (AML) and represents non-effacing tissue infiltration. EM is reported to correspond often to the skin but can affect almost every site of the body. The prognosis of MS or EM has been discussed controversially in the past. EM at diagnosis of AML is generally thought to be a rare event. However, data defining the prevalence of EM at diagnosis of AML and its prognostic value are missing. The aim of this analysis was to provide data for estimating the prevalence of EM at diagnosis of AML and to determine its relevance by including clinical and laboratory data from patients being treated in the prospective AML96 trial of the Study Alliance Leukemia (SAL) study group. Patients and Methods: A total of 326 patients with AML (age 17 – 83 years) and EM were treated within the AML96 trial with a median follow up of 8.8 years (95% CI, 8.4 to 9.3 years). All patients received double induction chemotherapy. Consolidation therapy contained high-dose cytosine arabinoside and for patients ≤ 60 years of age the option of autologous or allogeneic hematopoietic stem cell transplantation (HSCT). Logistic regression analyses were used to identify prognostic variables for CR rates. The method of Kaplan-Meier was used to estimate OS and EFS. Confidence interval (CI) estimation for the survival curves was based on the cumulative hazard function using the Greenwood's formula for the SE estimation. Survival distributions were compared using the log rank test. Results: 17% of the AML patients entered into the AML96 trial were diagnosed with EM. In 313 of the 326 patients (96%) EM was evident at diagnosis. The majority of patients with EM were diagnosed with de novo AML (84%, n=273), whereas gingival infiltration (51%, n=166) displayed the main EM of AML with CNS involvement being less common (4%, n=14). The majority of patients had a cytogenetic intermediate risk profile (71%, n=221) with a total of 172 patients (56%) harboring a normal karyotype. Patients with EM had a statistically significant lower median CD34-positivity of bone marrow blasts, higher percentage of FAB subtypes M4 and M5, higher WBC counts and LDH at diagnosis and higher percentage of NPM1 mutations compared to those patients without EM (all p<.001). When comparing achievement of CR between patients with EM to patients without EM, no statistical difference between these two groups was observed. Analysis according to the NPM1/FLT3-ITD mutation status revealed highest 5-year-OS (37%, 95% CI: .24 - .508) and 5-year-EFS (36%, 95% CI: .224 - .448) in the NPM1-mut/FLT3-wt group and lowest 5-year-OS (12%, 95% CI: 0 - .261) and 5-year-EFS (4%, 95% CI: 0 - .124) in the NPM1-wt/FLT3-ITD group, p=.007 and p=.001, respectively. Of the 49 relapsed patients with EM who had a NPM1-mutation at diagnosis 48 deceased despite of intensified relapse therapies. Conclusions: This analysis represents the largest study so far investigating the impact of EM AML. Patients with EM AML have distinct differences from AML patients without EM regarding their clinical and molecular characteristics at diagnosis. However these differences do not translate into differences in response to induction chemotherapy. Compared to patients without EM, survival analysis revealed differences according to the NPM1/FLT3-ITD mutation status which is also described for patients without EM AML. However, the prognosis for patients with EM who harbor a mutated NPM1 the prognosis at relapse seems to be dismal. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1425-1425 ◽  
Author(s):  
Kim R Kampen ◽  
Arja ter Elst ◽  
André B Mulder ◽  
Megan E Baldwin ◽  
Klupacs Robert ◽  
...  

Abstract Abstract 1425 Previously, it was demonstrated that exogenous addition of vascular endothelial growth factor C (VEGFC) increased the leukemic cell viability, reduced apoptosis via activation of Bcl-2, and decreased chemotherapy induced apoptosis via its receptor FLT-4 (Further revert to as VEGFR3) (Dias et al. Blood 2002). Furthermore, it was shown that VEGFC promotes angiogenesis by induction of COX-2 through VEGFR3 activation in THP-1 cells (Chien et al. Carcinogenesis 2005). We have previously found that endogenous VEGFC expression is associated with decreased drug responsiveness in childhood acute myeloid leukemia (AML), both in vitro as well as in vivo (de Jonge et al. Clinical Cancer Research 2008). In addition, high VEGFC mRNA expression is strongly associated with reduced complete remission and overall survival in adult as well as pediatric AML (de Jonge et al. Blood 2010). It was thought that the leukemic blast population is organized as a hierarchy, whereby leukemia initiating cells (LICs) reside at the top of this hierarchy, and it is only these cells that have the capacity to engraft in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice. The LIC is thought to be enriched in the CD34+ leukemic cell fraction and is shown to expand in vitro using a myeloid cytokine mix of IL-3, TPO, and G-CSF in colony forming cell (CFC) assays and long-term culture-initiating cell (LTC-IC) assays (Guan et al. Exp. Hematol. 2002, van Gosliga et al. Exp. Hematol. 2007). Moreover, LTC-IC assays performed in limiting dilution detect the in vitro outgrowth potential of stem-like cells that reside underneath the stromal cell layer. In this study, we set out to investigate the potential of anti-VEGFC treatment as an inhibitor of the outgrowth of LICs within the CD34+ fraction of primary AML samples. First, we determined the possibility of an autocrine loop for VEGFC in AML. Pediatric AML cell (n=7) derived VEGFC levels were found to be 1.4-fold increased (P =.008) compared to secreted VEGFC levels from normal bone marrow (NBM) cells (n=4). Pediatric AML blast cells showed KDR (further revert to as VEGFR2) membrane expression in 44 out of 50 patient samples (varying 8–99% of the total blast population), whereas on NBM cells VEGFR2 expression was below 5%. VEGFR3 expression was below 5% on both leukemic blasts and NBM cells. We evaluated the effect of anti-VEGFC (VGX-100, kindly provided by Vegenics, used at a concentration of 30 μg/ml) treatment on the CD34+ isolated compartment of pediatric AML bone marrow samples. Anti-VEGFC treatment reduced the outgrowth potential of AML derived CD34+ cells (n=2) with >25% in CFC assays. Interestingly, morphological analysis revealed a 3-fold enhanced formation of macrophages. LTC-IC assays demonstrated a (15% to 50%) decrease in the long-term growth of CD34+ isolated AML cells in 3 out of 4 patient samples. Morphological characterization of the suspension cells suggested a shift in development along the myelomonocytic lineage after two weeks of anti-VEGFC treatment. With FACS analysis, these cells showed a higher number of cells stained positive for CD11b, and CD14, and lower numbers where positive for CD34. Anti-VEGFC treated LTC-IC assays in limiting dilution demonstrated a (44% and 74%) reduction in the outgrowth potential of long-term cultured CD34+ isolated AML cells and blocked the erythroid colony formation in 2 out of 3 patient samples. Anti-VEGFC treatment did not have an effect on the outgrowth of CD34+ sorted NBM cells in the various assays (n=2). In conclusion, anti-VEGFC treatment of the CD34+ isolated fraction from primary pediatric AML samples showed a reduction of AML outgrowth. Differentiating cells are skewed to the myelomonocytic lineage upon anti-VEGFC treatment. We hypothesize that deprivation of VEGFC in primary CD34+ AML cell cultures results in enhanced leukemic cell death and abates an important proliferation signal for AML cells. Yet, further investigations are warranted.Figure 1.Skewing of LTC-IC assay suspension cells towards the myelomonocytic lineage upon anti-VEGFC treatment. MGG stained cytospins of suspension cells of the LTC-IC co-culture obtained during demi-depopulation at week 2.Figure 1. Skewing of LTC-IC assay suspension cells towards the myelomonocytic lineage upon anti-VEGFC treatment. MGG stained cytospins of suspension cells of the LTC-IC co-culture obtained during demi-depopulation at week 2. Disclosures: Baldwin: Circadian Technologies Limited: Employment. Robert:Circadian Technologies Limited: Employment, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3456-3456 ◽  
Author(s):  
Ming-Yu Yang ◽  
Jan-Gowth Chang ◽  
Pai-Mei Lin ◽  
Jui-Feng Hsu ◽  
Cheng-Han Wu ◽  
...  

Abstract Abstract 3456 Studies in large-scale genome sequencing have shown that only 2% of the mammalian genome encodes mRNAs, but the most part is transcribed as long and short non-coding RNAs (ncRNAs). The ncRNAs with gene regulatory functions are starting to be seen as a common feature of mammalian gene regulation. Genomic imprinting is a form of epigenetic regulation and imprinted genes are silenced in a parental-specific manner. Imprinted genes tend to occur in clusters and ncRNAs have been found at all well-characterized imprinted clusters. Although the exact mechanism how imprinted ncRNA regulates gene expression remains largely unknown, it is general accepted that imprinted ncRNAs binds to chromatin modifying complexes, such as PRC2, TRX, and G9a, and generates specific silencing of genomic loci both in cis and trans. Imprinting is associated with many human diseases or syndromes (e.g. Prader-Willi, Angelman, Beckwith-Wiedemann, Retts, and Silver-Russell syndromes) and various cancers (e.g. breast, prostate, and colorectal cancers), but its role in leukemogenesis remain elusive. In this present study, a panel of 24 human imprinted ncRNAs genes, including ampd3, cpa4, snuf, rasgrf1, slc22a3, lgf2, treb3c, gabrb3, c15orf2, sfmbt2, rtl1, copg2, h19, l3mbtl, ppp1r9a, tspan32, lnpp5f, impact, nr3251, nr3252, znf215, prim2, peg3as and znf264, has been mined using Bioinformatics approach. We investigated the expression of these imprinted ncRNA genes using real-time quantitative RT-PCR in 67 newly-diagnosed acute myeloid leukemia patients with normal karyotypes (AML-NK), 22 AML patients with abnormal karyotypes (AML-AK), and 39 healthy individuals. In AML-NK patients, the expression of lgf2, h19, slc22a3, copg2, and impact were significantly upregulated than in healthy individuals (p < 0.0001). In AML-AK patients, besides lgf2, h19 and impact genes, ampd3 and gabrb3 were also significantly upregulated than in healthy individuals (p < 0.0001). Expression of igf2 was almost undetectable in healthy individuals but drastically increased in all AML patients. Both lgf2 and h19 were significantly increased in both AML-NK and AML-AK patients. From our preliminary results, it is reasonable to hypothesize that loss imprinting of lgf2/h19 is critical for the leukemogenesis of AML and under NK or AK conditions different additional ncRNAs are activated and affect different imprinted gene expression and thus leading to different clinical outcomes. Based on our findings, we will further perform methylation analysis of promoter CpG sites in AML patients to investigate if hypomethylation is responsible for the upregulation of these imprinted ncRNAs. We will also carry out in vitro functional analysis to elucidate the functions and mechanisms of these imprinted ncRNAs in AML tumorigenesis. Updated results of these analysis will be presented at the meeting. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document