Impaired Expression of p66Shc, a Novel Regulator of B-Cell Survival, in Chronic Lymphocytic Leukemia.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 801-801
Author(s):  
Cosima T. Baldari ◽  
Nagaja Capitani ◽  
Orso Maria Lucherini ◽  
Elisa Sozzi ◽  
Micol Ferro ◽  
...  

Abstract Abstract 801 Intrinsic defects in the apoptotic circuitry underlie to a large extent the extended survival of malignant B cells in chronic lymphocytic leukemia (CLL) and are moreover believed to be responsible for their resistance to chemotherapy. We have recently demonstrated that p66Shc, a member of Shc family of protein adapters, acts as a promoter of apoptosis in T cells. Here we show that p66Shc uncouples the B-cell antigen receptor (BCR) from the Erk and Akt dependent survival pathways, thereby enhancing B-cell apoptosis. Expression of p66Shc was found to be profoundly and consistently impaired in CLL B cells compared to peripheral blood B cells form healthy donors. Moreover, significant differences in p66Shc expression were observed in patients with favorable or unfavorable prognosis, classified on the basis of the mutational status of the IGHV genes, with the lowest expression in the unfavorable prognosis group. Analysis of the expression of genes previously implicated in the apoptosis defects of CLL B cells revealed a selective alteration in the balance of pro- and anti-apoptotic members of the Bcl-2 family in these patients. Reconstitution experiments in CLL B cells, as well as data obtained on B cells from p66Shc-/- mice, showed that p66Shc expression correlates with a bias in the Bcl-2 family towards the pro-apoptotic members. Collectively, the data identify p66Shc as a novel regulator of B cell apoptosis which attenuates survival signals emanating from the BCR and modulates expression of the Bcl-2 family. They moreover provide evidence that the defect in p66Shc expression identified in CLL B cells may be causally related to the imbalance towards the anti-apoptotic Bcl-2 family members observed in these cells. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2010 ◽  
Vol 115 (18) ◽  
pp. 3726-3736 ◽  
Author(s):  
Nagaja Capitani ◽  
Orso Maria Lucherini ◽  
Elisa Sozzi ◽  
Micol Ferro ◽  
Nico Giommoni ◽  
...  

Abstract Intrinsic apoptosis defects underlie to a large extent the extended survival of malignant B cells in chronic lymphocytic leukemia (CLL). Here, we show that the Shc family adapter p66Shc uncouples the B-cell receptor (BCR) from the Erk- and Akt-dependent survival pathways, thereby enhancing B-cell apoptosis. p66Shc expression was found to be profoundly impaired in CLL B cells compared with normal peripheral B cells. Moreover, significant differences in p66Shc expression were observed in patients with favorable or unfavorable prognosis, based on the mutational status of IGHV genes, with the lowest expression in the unfavorable prognosis group. Analysis of the expression of genes implicated in apoptosis defects of CLL showed an alteration in the balance of proapoptotic and antiapoptotic members of the Bcl-2 family in patients with CLL. Reconstitution experiments in CLL B cells, together with data obtained on B cells from p66Shc−/− mice, showed that p66Shc expression correlates with a bias in the Bcl-2 family toward proapoptotic members. The data identify p66Shc as a novel regulator of B-cell apoptosis which attenuates BCR-dependent survival signals and modulates Bcl-2 family expression. They moreover provide evidence that the p66Shc expression defect in CLL B cells may be causal to the imbalance toward the antiapoptotic Bcl-2 family members in these cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2337-2337
Author(s):  
Lesley-Ann Sutton ◽  
Efterpi Kostareli ◽  
Anastasia Hadzidimitriou ◽  
Nikos Darzentas ◽  
Athanasios Tsaftaris ◽  
...  

Abstract Abstract 2337 Poster Board II-314 Several studies indicate that the development of chronic lymphocytic leukemia (CLL) may be influenced by antigen (Ag) recognition through the clonotypic B cell receptors (BCRs). However, it is still unclear whether Ag involvement is restricted to the malignant transformation phase or whether the putative Ag(s) may continuously trigger the CLL clone. Valuable insight into these issues may be gleaned from the study of intraclonal diversification (ID) within the immunoglobulin (IG) genes through ongoing somatic hypermutation (SHM). Definitive data regarding ID within IG genes in CLL remains limited and conflicting. In the present study we systematically explored the presence of ID within IG genes of CLL, not only at cohort level but also in subgroups defined by BCR stereotypy and IG gene mutational status. We thus conducted a large-scale subcloning study of both IG heavy and light variable genes, in a total of 1496 and 1008 subcloned sequences from 71 and 56 CLL cases, respectively. The analysis was intentionally biased to cases expressing IGHV4-34/IGKV2-30 IGs (subset #4) and IGHV3-21/IGLV3-21 IGs (subset #2) that exhibit distinctive, subset-biased SHM patterns. PCR reactions were run using the high-fidelity Accuprime Pfx polymerase and at least 14 colonies/case were analyzed. All “non-ubiquitous” sequence changes from the germline were evaluated and recorded as follows: (i) unconfirmed mutation (UCM) - a mutation observed in only one subcloned sequence from the same sample (ii) confirmed mutation (CM) - a mutation observed more than once among subcloned sequences from the same sample. Analysis of heavy chain sequences revealed that 40% (28/71) of cases carried intraclonally diversified IGHV-D-J genes with CMs amongst subclones, whilst 32% (23/71) of cases carried only UCMs. The remaining 28% (20/71) of cases carried sets of identical IGHV-D-J subcloned sequences. Although most cases showed no or low levels of ID, an intense and, likely, functionally driven ID was evident in selected cases, especially those belonging to subset #4. The distinct ID in subset #4 was statistically significant when compared to all other groups defined by IGHV gene usage and mutation status, BCR stereotypy or heavy chain isotype. Subsequent analysis of the clonotypic light chains revealed that the impact of ID was generally low, with the outstanding exception again relating to subset #4. In fact, of 22 IGKV-J rearrangements exhibiting CMs, 11 (50%) utilized the IGKV2-30 gene and notably 10/11 (91%) of these were expressed by subset #4 cases. In such cases, the expressed IGKV2-30 gene was affected by an active and precisely targeted ID, analogous to their partner IGHV4-34 gene. These findings suggest that the SHM mechanism may continuously operate in certain subsets of CLL patients, particularly those cases expressing stereotyped IGHV4-34/IGKV2-30 BCRs typical of subset #4. In such cases, the observed ID patterns attest to the very precise targeting of the SHM process and may be considered as evidence for a “stereotyped response” to an active, ongoing interaction with Ag(s). Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3593-3593
Author(s):  
Sonal C. Temburni ◽  
Ryon M. Andersen ◽  
Luke Janson ◽  
Xiao-Jie Yan ◽  
Barbara Sherry ◽  
...  

Abstract Abstract 3593 Unlike other hematologic disorders, chronic lymphocytic leukemia(CLL) exhibits remarkable heterogeneity in the rates of disease progression among cases. CLL cells survive by receiving signals from the microenvironment via various receptors: B-cell antigen receptor (BCR), Toll-like receptors (TLRs) and cytokine and chemokine receptors. We previously reported that CLL clones with somatically mutated IGHVs and high (≥30%) percentage of CD38 expressing cells have the highest percentage of CCR4-expressing cells. To further explore the functional contribution of the CCR4:CCL17 axis in CLL, we studied CCL17-induced chemotactic behavior in 16 CLL cases. In transwell cultures we observed a bimodal migratory response to CCL17 at 2 doses in a dose range of 0.78– 25ng/ml, in ~60% of cases; the remaining cases showed maximal migration at a single dose (1.56 or 3.12ng/ml). A comparison of phenotypes of the migrated and non-migrated cell populations was undertaken in 10 cases, analyzing CXCR3, CXCR4, CCR4 and CCR7 that are involved in homing of cells to sites favoring growth, and CD31, CD38 and CD69, activation related molecules. The migrated cells consistently showed significantly higher percentages and densities of CD38 expression than the non-migrated cells suggesting a role for CD38 in the CCR4-mediated downstream pathway. CCR4 ligand, CCL17, is constitutively expressed in the thymus and is produced by dendritic cells, endothelial cells, keratinocytes and fibroblasts, whereas CCL22 is produced by tumor cells and the tumor microenvironment. Serum levels of both these ligands in untreated patients were quantified by ELISA. CCL17 levels ranged between 45-1, 229 pg/ml in U-CLL cases (n=23) and between 43-1, 418 pg/ml in M-CLL cases (n=30). CCL22 levels ranged between 121-5, 497 pg/ml in U-CLL cases (n=23) and 409-5, 502 pg/ml in M-CLL cases (n=30). The percentages of CCR4- expressing B cells directly correlated with percentages of T cells expressing CCR4 in individual cases, whereas they inversely correlated with both, serum levels of CCL17 (p< 0.01) and CCL22 (p< 0.05). CCL17 produced by DCs in peripheral organs may exert an accessory role in BCR- and TLR-9-mediated immune responses in B cells. We therefore tested if CCL17 supported BCR- and TLR-mediated proliferative responses in a cohort of 31 (16 U-CLL and 15M-CLL) CLL cases. CCL17 augmented BCR-mediated B-cell proliferation in 9/16 (56%) U-CLL cases, but only in 3/15 (20%) M-CLL cases. On the other hand, CCL17 showed an additive effect in promoting TLR-9-mediated cell proliferation in 13/15 (87%) M-CLL cases at a dose of 2ng/nl (approximating that detected in serum); it also augmented TLR-9 mediated B cell proliferation in 6/16 U-CLL cases but at a 5-fold or higher dose (10-25 ng/ml). In a subset of this cohort (8 cases) CCL17-induced modulation of molecules involved in the apoptotic process was studied. We found upregulation of anti-apoptotic proteins Mcl-1 and Bcl2 and down-regulation of pro-apoptotic molecules Bim, PUMA, and Bid in 5 of these cases. The pro-survival effects of CCL17 were partially abrogated by the blocking anti-CCR4 mAb (1G1). Taken together, these findings suggest that CCL17 plays a role in modulating TLR-9-mediated signaling and migration in CLL. Therefore, inhibition of CCR4:CCL17 interaction in vivo represents a novel therapy by preventing migration of CLL cells towards an environment that promotes their survival. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3859-3859
Author(s):  
Marek Mraz ◽  
Laura Z. Rassenti ◽  
Emanuela M. Ghia ◽  
Liguang Chen ◽  
Jessie-Farah Fecteau ◽  
...  

Abstract Abstract 3859 Chronic lymphocytic leukemia (CLL) is the first disease in which miRNAs (hsa-miR-15a-16–1) were directly linked to cancer pathogenesis (Calin et al. PNAS, 2002). We and others have also shown that expression of certain miRNAs associates with disease activity in patients with CLL (Calin et al. NEJM, 2005; Mraz et al. Blood, 2012; Mraz et al. Leukemia, 2009). Moreover, patients with more aggressive disease have CLL cells that generally express unmutated IGHV and/or ZAP-70 and have a miRNA expression profile that differs from that of CLL cells from patients with indolent disease (Calin et al. NEJM, 2005). However, we still have very limited understanding of how miRNAs affect CLL cell-biology and expression of genes that play a critical role in either promoting or arresting the disease. We used pooled samples from 10 CLL patients to screen (TaqMan miRNA Cards-ABI, 750 miRNAs) for abundantly expressed miRNAs that could hypothetically influence CLL B cell biology. We identified miR-150 as the most abundant miRNA in CLL cells and also as being strongly expressed when compared to CD19+ blood lymphocytes of normal adults (N=5, P=0.008). This miRNA already has been reported to influence the differentiation and gene expression of normal B cells (Xiao et al. Cell, 2007) suggesting its possible relevance for CLL B cell biology. We examined additional CLL cell samples (N=168) and confirmed high miR-150 levels and also noted heterogeneity in its expression between CLL cells of patients with aggressive versus indolent disease. In our cohort, CLL cells of patients that expressed ZAP-70 (20% cut-off, N=74) or had unmutated IGHV (N=72) expressed significantly lower median-levels of miR-150 (fold change −1.7 and −2.0 respectively, p<0.005). Moreover, the lower levels of miR-150 also directly associated with higher response to stimulation of B-cell receptor (BCR) on CLL cells with anti-IgM (P<0.05, N=36, quantified by flow cytometric measurement of calcium mobilization). To understand the gene network regulated by miR-150 in CLL we performed array-based transcriptome analyses (HG-U133 Plus 2.0, Affymetrix) of 110 patient samples, which identified differential expression of 215 genes between CLL cells expressing low versus high levels of miR-150 (SAM analysis of upper and lower terciles). Thirty-eight of these 215 genes (17%) are predicted targets of miR-150 (determined by TargetScan, www.targetscan.org). Two well annotated genes (GAB1 and FOXP1) have evolutionary conserved binding sides for miR-150 in their 3‘UTRs, suggesting the possible importance of miR-150 in their regulation. GAB1 is an adaptor molecule and plays a key role in variety of cell signaling pathways (PLCγ, Ras/Erk, PI3K/Akt, CrkL). Interestingly, GAB1 modulates PI3K/Akt-pathway through binding domain identical to Bruton’s tyrosine kinase (Rameh et al. JBC, 1997) and is a key molecule involved in regulating BCR-signaling (Ingham et al. JBC, 1998, 2001), a process that factors prominently in the pathogenesis and progression of CLL. FOXP1 is an essential participant in the transcriptional regulatory network of B lymphopoiesis and has been identified as playing a role in disease progression of other B-cell lymphomas (Hu et al. Nat Immunol, 2006). The immunoblot analysis of GAB1 and FOXP1 in CLL cells confirmed their higher protein levels in cases with low miR-150 expression (P<0.005, fold change >10.0). Importantly, cells with higher expression of GAB1 or FOXP1 were more responsive to BCR stimulation in vitro (P<0.01, N=36) and higher expression of each associates with shorter overall survival (OS) (13.9 vs. 22.7 years, 13.9 vs. 21.1 years; N=168; P<0.05). Most notably, a reverse trend was observed for miR-150, where higher levels (>median) were associated with significantly longer OS (not-reached vs. 13.9 years, N=168, P=0.006). Additionally, the expression level of miR-150 was an independent predictor of OS and time to first treatment (TTFT) in multivariate analyses, which included IGHV status, ZAP-70, CD38, Rai stage, gender, and age (OS HR: 3.4 [CI 1.4–8.6], P=0.009; TTFT HR: 2.3 [CI 1.3–4.2], P=0.004). We conclude that there is an inverse association between high-risk disease and expression of miR-150, which may reflect its capacity to regulate the expression of genes encoding proteins that may contribute to BCR-signaling and/or survival of CLL B cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 668-668
Author(s):  
Phuong-Hien Nguyen ◽  
Nina Reinart ◽  
Michael Hallek

Abstract The Src family kinase Lyn is predominantly expressed in B cells and plays a central role in initiating B cell receptor (BCR) signaling. Lyn is associated with BCR complexes and is renowned for its role in B cell activation and proliferation. Active Lyn contributes to positive regulation of signalling through tyrosine phosphorylation of components of the BCR. Intriguingly, Lyn was also shown as a negative regulator of BCR signal transduction. Lyn plays an essential role in negative regulation of signalling through its unique ability to phosphorylate immunoreceptor tyrosine based inhibition motifs (ITIM) in inhibitory cell surface receptors. ITIM phosphorylation induces the recruitment of inhibitory phosphatases such as SHP-1/2 and SHIP-1, which attenuate BCR signalling. Lyn-deficient mice have reduced number of B cells and increased numbers of myeloid progenitors. It was reported that expression and activity of Lyn in human chronic lymphocytic leukemia (CLL) is elevated compared to healthy B cells. Besides, higher levels of Lyn are associated with a shorter treatment-free survival of CLL patients. This rises up a hypothesis about Lyn’s significant role in B cell tumorigenesis, malignant transformation of B cells, and the balance between myeloid cells and B lymphocytes. We generated Eµ-TCL1 transgenic LYN-deficient mice (TCL1+/wtLYN-/-) and monitored them in order to identify the population of malignant B cells and to characterize the development of malignant cells in these mice in comparison with Eµ-TCL1 transgenic mice (TCL1+/wtLYNwt/wt). In comparison to TCL1+/wtLYNwt/wt mice, TCL1+/wtLYN-/- mice show a significantly reduced number of malignant B cells in the peripheral blood, as well as a reduced leukocyte count. Besides, TCL1+/wtLYN-/- mice have significantly decreased infiltration of malignant B cells in lymphoid tissues such as spleen, liver, lymph node and bone marrow. This result is also resembled in a hepato-splenomegaly in the TCL1+/wtLYNwt/wt mice. These mice develop severe splenomegaly and hepatomegaly due to infiltration of malignant cells, while TCL1+/wtLYN-/- mice do not develop hepatomegaly. The non-transgenic LYN-/- control mice develop splenomegaly due to infiltration of myeloid cells. Although TCL1+/wtLYN-/- mice have hindered development of TCL1-induced CLL, preliminary data suggest it is not only due to LYN-deficiency in B cell compartment of these mice. Indeed, B cell of TCL1+/wtLYN-/- mice show enhanced proliferation and better survival ex vivo compared to TCL1+/wtLYNwt/wt mice. Notably, TCL1+/wtLYN-/- mice developed a skewed microenvironment which might contribute to CLL down regulation. LYN-/- microenvironment, particularly in aged mice, does not support engraftment of TCL1-induced leukemic B cell as well as LYNwt/wt mice in our transplantation model. These results point to a complex regulation of Lyn signalling in CLL involving not only leukemic cells but also cells of the micromillieu, that needs further investigation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1361-1361
Author(s):  
Gerardo Ferrer ◽  
Kate E Hodgson ◽  
Victor Ciria ◽  
Gael Roue ◽  
Dolors Colomer ◽  
...  

Abstract Abstract 1361 The two TNF family proteins (B-cell activating factor [BAFF] and a proliferation-inducing ligand [APRIL]) and their three receptors (transmembrane activator and CAML interactor [TACI], B-cell maturation antigen [BCMA], and BAFF receptor [BAFF-R]) play a critical role in the process of differentiation, maturation and survival of normal B cells. Additionally, recent studies indicate that activation or inhibitory signals can modulate the sensitivity of normal B cells to BAFF and APRIL through the regulation of their receptors. In chronic lymphocytic leukemia (CLL), BAFF and APRIL have been shown to increase survival of neoplastic B cells in vitro. We investigated whether stimulation of CLL cells through the B cell receptor (BCR) or CD40 ligation could regulate the expression of BAFF-R, TACI and BCMA and enhance BAFF and APRIL sensitivity. Purified B cells were obtained from 23 CLL patients and nine healthy controls. Receptor expression was measured by flow cytometry at baseline and at 48 hours after stimulation with F(ab’)2 antihuman IgM (10 μg/ml) and CD40L (500ng/ml) plus IL-4 (20ng/ml). Cell activation and viability, as assessed by labeling CD69 and Annexin V/TO-PRO-3, were evaluated at 48, and at 72 hours after co-stimulation with either soluble BAFF (100ng/ml) or APRIL (500ng/ml). Baseline analyses showed that BAFF-R was the most highly expressed receptor in CLL cells and normal B cells (Mean fluorescence intensity (MFI) ratios, 213.5 and 185.8, respectively). TACI and BCMA were also expressed in all CLL cells and normal B cells (MFI ratios TACI: 2.5 and 1.9; BCMA: 14.8 and 6.6, respectively), but at a significantly lower level than BAFF-R (p<0.001). Furthermore, BCMA MFI ratio was significantly higher in CLL than in normal B cells (p=0.015). After 48h of culture, an increase of all three receptors was observed in normal B cells in response to either BCR stimulation or CD40 ligation. In contrast, in CLL cells BCR stimulation induced almost no variation in the receptors expression in all cases. This was accompanied by a failure of cell activation and a significant decreased viability of CLL cells (from 36% to 24% p=0.013). By contrast, CD40 ligation in CLL cells induced a significant upregulation of TACI expression (p=0.007) and a significant reduction of BCMA (p=0.007), which correlated with an increase of CLL cell activation and viability (p<0.001). BAFF-R levels did not change. The addition of exogenous soluble BAFF or APRIL showed increase in the viability of normal B cells at 72 hours independently of whether cells were unstimulated or stimulated through the BCR or by CD40 ligation. In CLL cells, however, the viability was significantly increased in CD40-stimulated cells whereas in either unstimulated or BCR-stimulated CLL cells, the addition of BAFF and APRIL had a modest effect on viability (Table). These findings indicate that stimulation of CLL cells through the BCR and CD40 modifies the sensitivity of CLL cells to respond to BAFF and APRIL which reflects the regulation of BCMA, TACI and BAFF-R. In contrast to normal B cells, CD40-ligation in CLL cells upregulated only TACI expression. The fact that the addition of CD40L plus IL-4 and BAFF increased viability in CLL cells while BAFF alone had almost no effect may be related to the ability of CD40 ligation to increase TACI expression. Although BCR stimulation failed to increase the expression of the receptors, co-stimulation by BAFF plus BCR increased viability in CLL cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4122-4122
Author(s):  
Melanie Märklin ◽  
Jonas S. Heitmann ◽  
David Worbs ◽  
Alexandra Poljak ◽  
Claude Evouna ◽  
...  

Abstract Chronic Lymphocytic Leukemia (CLL) is a hematological malignancy of mature B cells and constitutes the most common leukemia in adults. It is characterized by a progressive accumulation of clonal B cells, which coexpress CD19, CD23 and CD5. The clinical course of CLL can be predicted by serveral prognostic markers like CD38, ZAP70 and cytogenetic abnormalities. While the treatment of CLL has significantly improved during recent years, it remains an essentially incurable disease and the molecular events that lead to its development are still largely elusive. NFAT is a family of highly phosphorylated transcription factors residing in the cytoplasm of resting cells. Upon dephosphorylation NFAT proteins translocate to the nucleus where they orchestrate developmental and activation programs in diverse cell types. NFAT is inactivated by a network of several kinases. Several recent studies have demonstrated that Ca2+/NFAT signaling is involved in the pathogenesis of a wide array of different tumor types including pancreatic adenocarcinoma, breast cancer and Non Hodgkin´s lymphoma. In this study we investigated the significance of the Ca2+/NFAT signaling pathway in B-CLL. For this purpose, we analyzed CLL cell lines (MEC-1, JVM-3) as well as primary blood samples from patients with CLL (n=30). The analyzed patient population exhibited a representative distribution of age, sex, Binet stage, WBC count, cytogenetics and IGVH mutational status. We detected a profound overexpression of NFAT2 mRNA as well as NFAT2 protein in all CLL samples. Using qRT-PCR we found that CD19+CD5+ CLL cells exhibited an at least three fold overexpression of NFAT2 as compared to CD19+ B cells isolated from healthy donors. In one case, NFAT2 expression in CLL cells was 200 times higher than in the corresponding controls. This profound overexpression of NFAT2 in CLL cells could be confirmed on the protein level using Western Blotting and Immunocytochemistry. We could further demonstrate that even under resting conditions significant amounts of NFAT2 protein had translocated to the nucleus in CLL cells, whereas virtually all NFAT2 was in the cytoplasm in healthy B cells. NFAT2 nuclear translocation could be inhibited using pretreatment with Cyclosporin A demonstrating that this process was still calcineurin-dependent in CLL cells. We could further show that nuclear NFAT2 in CLL cells was able to bind DNA using electrophoretic mobility shift assays (EMSA). To assess the transcriptional activity of NFAT2 in human CLL we determined the expression of the apoptosis regulators OX40L, osteopontin and PD-L2, which we previously identified as NFAT2 target genes in a gene expression analysis with CD19+CD5+ CLL cells from TCL1 transgenic mice with intact NFAT2 and NFAT2 deletion, respectively. Interestingly, qRT-PCR revealed a tremendous reduction of all three target genes in the analyzed CLL samples as compared to control B cells from healthy donors. This is particularly remarkable, since in the TCL1 mouse model we observed a similar reduction of the expression of these genes in CLL cells with NFAT2 ablation. In summary, these results provide strong evidence that the Ca2+/NFAT signaling axis is constitutively activated in CD19+CD5+ CLL cells. Our data suggest that the profound overexpression of NFAT2 in CLL cells leads to its targeting to aberrant genetic loci different from its phsiological target genes resulting in a consecutive knock out phenotype with respect to the expression of the apoptosis regulators OX40, osteopontin and PD-L2 in CLL. Further investigation is therefore warranted to decipher the therapeutic potential of modulating the Ca2+/Calcineurin/NFAT signaling pathway in this disease. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Author(s):  
Ferran Nadeu ◽  
Romina Royo ◽  
Guillem Clot ◽  
Martí Duran-Ferrer ◽  
Alba Navarro ◽  
...  

B-cell receptor (BCR) signaling is crucial for chronic lymphocytic leukemia (CLL) biology. IGLV3-21-expressing B-cells may acquire a single point mutation (R110) that triggers autonomous BCR signaling conferring aggressive behavior. Epigenetic studies have defined three CLL subtypes based on methylation signatures reminiscent of naïve-like (n-CLL), intermediate (i-CLL) and memory-like B-cells (m-CLL) with different biological features. i-CLL carry a borderline IGHV mutational load and a significant higher usage of IGHV3-21/IGLV3-21. To determine the clinical and biological features of IGLV3-21R110 CLL and its relationship to these epigenetic subtypes we have characterized the immunoglobulin gene of 584 CLL cases using whole-genome/exome and RNA sequencing. IGLV3-21R110 was detected in 6.5% of cases, being 30/79 (38%) i-CLL, 5/291 (1.7%) m-CLL and 1/189 (0.5%) n-CLL. All stereotype subset #2 cases carried IGLV3-21R110 while 62% of IGLV3-21R110 i-CLL had non-stereotyped B-cell receptor immunoglobulins. IGLV3-21R110 i-CLL had significantly higher number of SF3B1 and ATM mutations, and total number of driver alterations. Nonetheless, the R110 mutation was the sole alteration in one i-CLL and accompanied only by del(13q) in three. Although composite regarding IGHV mutational status, IGLV3-21R110 i-CLL transcriptomically resembled naïve-like/unmutated IGHV CLL with a specific signature including WNT5A/B overexpression. Contrarily, i-CLL lacking the IGLV3-21R110 mirrored memory-like/mutated IGHV cases. IGLV3-21R110 i-CLL had a short time to first treatment and overall survival similar to n-CLL/unmutated IGHV cases whereas non-IGLV3-21R110 i-CLL had a good prognosis similar to memory-like/mutated IGHV. Altogether, IGLV3-21R110 defines a CLL subgroup with specific biological features and an unfavorable prognosis independent of the IGHV mutational status and epigenetic subtypes.


Blood ◽  
2006 ◽  
Vol 107 (9) ◽  
pp. 3584-3592 ◽  
Author(s):  
Sarah J. Richardson ◽  
Christine Matthews ◽  
Mark A. Catherwood ◽  
H. Denis Alexander ◽  
B. Sean Carey ◽  
...  

Molecular markers like IgVH mutational status, chromosomal abnormalities, and CD38 and ZAP-70 expression have prognostic value in B-cell chronic lymphocytic leukemia (B-CLL). These may be pathogenetic because of the coincidental expression of ZAP-70 and increased B-cell receptor (BCR) signaling and the signaling function of CD38 in CLL. This study shows that ZAP-70+ CLL B cells respond in vitro more readily than ZAP-70– CLL and normal B cells to chemokine migratory signals through enhanced surface CCR7 expression (P = .009; P < .001) and increased responsiveness to its ligands CCL19 and CCL21, demonstrated by F-actin polymerization (P < .05) and cellular migration (P < .01). In addition, ZAP-70+ CLL cells exhibit sustained ERK phosphorylation/activation following stimulation with CXCL12 (SDF1-α, a survival factor produced by stromal cells) compared with ZAP-70– cells (P = .004). Following coculture with nurse-like cells, the survival of ZAP-70+ but not ZAP-70– CLL cells is significantly enhanced by the addition of CXCL12 (P < .05), an effect that is partially blocked by the MEK inhibitor PD98059. These advantageous migratory and survival responses may promote easier access to and greater proliferation in pseudo-germinal centers and explain in part the more progressive nature of ZAP-70+ disease.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2788-2788
Author(s):  
Xiao J. Yan ◽  
Michael Centola ◽  
Igor Dozmorov ◽  
Rajendra N. Damle ◽  
Steven L. Allen ◽  
...  

Abstract B-cell chronic lymphocytic leukemia (B-CLL) is characterized by the progressive accumulation of mature B cells. The growth and accumulation of B-CLL cells requires survival and migratory signals from endogenously produced cytokines and chemokines, many of which are supplied by stromal cells. In this comparative study we analyzed the expression, as a function of B-CLL disease, of a set of inflammatory and immune cytokines and chemokines known to regulate the growth, survival and/or trafficking of B cells. Serum cytokines were measured in 87 B-CLL patients and in 32 healthy subjects using a combination of multiplex cytokine bead and protein array technologies. A subset of cytokines and chemokines were found to be significantly elevated in serum from B-CLL patients as compared to healthy age-matched controls: IL-17 (p<0.01), MIP-1β (p<0.001), MIP-1α (p<0.01), IL-6 (p<0.05), IL-8 (p<0.001), IL-10 (p<0.001), IL-12 (p<0.05), MIG (p<0.01), and ITAC (p<0.001). Serum levels of IL-1β, IL-1α, IL-2, IL-4, IL-5, IL-12, IL-13, IL-15, TNFα, IFNγ, IFNα, GM-CSF, Eotaxin, and MCP-1 were not significantly different in B-CLL patients as compared to healthy age-matched controls. Previous studies have reported elevated levels of IL-6, IL-8, IL-10, and MIG in B-CLL, and these molecules may contribute anti-apoptotic and growth-promoting signals that allow the expansion of B-CLL cells. IL-17 is known to promote angiogenesis and induce stromal cell expression of cytokines and chemokines that support B-CLL survival, suggesting potential mechanisms whereby this cytokine may impact on B-CLL biology. MIG and ITAC are ligands for CXCR3, a chemokine receptor expressed on B-CLL cells. These chemokines positively affect the responsiveness of pDC to the homing chemokine, SDF-1, raising the possibility that their elevation in B-CLL may lead to increased responsiveness of B-CLL cells to SDF-1, a stromal factor that enhances their survival. MIP-1α and MIP-1β are inflammatory chemokines that regulate cell recruitment and activation. Interestingly, MIP-1α and MIP-1β trigger stromal cells to produce RANKL, which has recently been suggested to contribute to B-CLL pathogenesis by triggering production of IL-8. B-CLL patients divide into populations that present with (a) stable disease and favorable prognostics including mutated VH and low CD38 expression, and (b) progressive disease with poor prognostics including unmutated VH and high CD38. When serum cytokines were analyzed as a function of select prognostic indicators discrete differences were observed. IL-8 levels correlated with mutated VH, IL-17 and IL-6 levels correlated with unmutated VH, and MIG, IP-10 and ITAC levels correlated with high CD38 expression. MIP-1α and MIP-1β levels differed significantly from controls irrespective of mutational status or CD38 expression. The correlation of IL-17, which in addition to its stromal activating properties is known to promote angiogenesis, with unmutated VH suggests a potential role for this cytokine in mediating the increased angiogenic phenotype that has been observed in poor prognosis CLL.


Sign in / Sign up

Export Citation Format

Share Document