The Introduction of Novel Agents Improves Outcomes of Young Patients with Myeloma (MM) Treated with Autologous Stem Cell Transplant (ASCT)

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1348-1348
Author(s):  
Radovan Saso ◽  
Kevin D Boyd ◽  
Kabir Mohammed ◽  
Ping Wu ◽  
Jennifer Treleaven ◽  
...  

Abstract Abstract 1348 Background: There has been an improvement in the population based survival of patients with MM in the UK (Office of National Statistics), however, because of the way the data is collected it is uncertain what has happened to the outcome of younger patients. High dose melphalan with ASCT has formed an integral part of the treatment of younger patients with myeloma for more than 20 years. During this time the context within which this treatment has been delivered has changed. Peripheral blood stem cell harvesting has replaced bone marrow harvesting, and importantly, novel agents have become available at induction and at relapse. It is not known how these changes have affected patient outcome. We analysed the survival of patients undergoing ASCT for MM in a single referral centre over an 18 year period to assess the impact of these changes. Patients: 1291 patients with myeloma were registered on the Royal Marsden Hospital Database in the period between 1981–2009, of which 875 patients underwent autologous transplantation. Bone marrow transplant (BMT) was performed in 191 patient, while 684 patients had peripheral blood stem cell transplant (SCT). Prognostic Factors: The following factors were found to be associated with improved overall survival (OS) in univariate analysis: Salmon Durie Stage A vs Stage B (p<0.004), ISS Stage I vs II vs III (p<0.001), response to chemotherapy CR vs PR vs Other (p<0.007), Platelets >130 vs <130 × 109/L (p<0.001), Hb >10 vs <10 g/dl (p<0.001), Calcium <10 vs >10mg/dl, Albumin >35 vs <35g/L (p<0.034), B-2M >3.5 vs <3.5 mg/l (p<0.001), IgG vs IgA vs BJ (p<0.038). Variables significant in multivariate testing were: Response to chemotherapy CR vs <CR (HR 1.4; 95% CI 1.0–2.0), Platelets >130 (HR 0.52; 95% CI 0.3–0.9), Calcium (HR1.7; 95% CI 1.2–2.5) and B2M (HR2.1; 95% CI 1.5–2.9). These variables were significantly associated with OS in the overall dataset, and in the subgroup of younger patients under the age of 60. Response and Survival: The overall response (OR) rate following induction chemotherapy was 84%, including 22% complete responses (CR). Following autologous SCT, CR rates improved to 42%, with an OR of 91%. Analysis of actuarial survival for the whole group of patients who had SCT showed that young patients had significantly longer survival (Median survival: <60yrs vs. >60yrs; 8.7yrs vs 6.2yrs, p<0.009). In order to assess the impact of the introduction of new therapeutic agents in, we defined groups of patients treated in five year periods: 1991–1996, 1997–2003, 2004–2009. 5 year OS was unchanged when comparing the first two cohorts. However, the cohort of patients treated from 2004–2009 were associated with significant improvement in 5 year survival rates, from 61% for the earlier quinquennia to 82% for those treated in 2004-9 (p<0.001). We also assessed the impact of the introduction of SCT compared to BMT. SCT entered routine use at this centre in 2002, and patient outcomes did not improve from 2002–2004. The improved survival after 2004 is therefore unlikely to be due to the introduction of SCT. Summary: We found that patient survival following ASCT did not change significantly during the period 1991–2004. However, since 2004 survival rates have improved significantly, and the group that benefitted most were patients under the age of 60. This time period corresponds to the incorporation of novel agents such as thalidomide, bortezomib and lenalidomide into induction and relapse regimens, and suggests that novel agents have significantly improved the outcome of younger patients with myeloma in the context of treatment with ASCT. Disclosures: Boyd: celgene: Honoraria. Davies:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; Ortho Biotech: Honoraria, Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1910-1910 ◽  
Author(s):  
Bruno Paiva ◽  
María-Belén Vidriales ◽  
María-Angeles Montalbán ◽  
María-Victoria Mateos ◽  
Laura Rosiñol ◽  
...  

Abstract Abstract 1910 The outcome of multiple myeloma (MM) patients has markedly improved in the last decade. Thus, overall response rates between 85%-95%, with 30%-50% complete remission (CR) rates are now being reported in young patients treated with novel agents plus high-dose therapy/autologous stem cell transplantation (HDT/ASCT). A similar scenario is also emerging in the elderly (non-transplant candidates) population. Accordingly, more sensitive techniques are needed to assess patients’ response; these may contribute to compare the efficacy of different treatment schemas, to monitor minimal residual disease (MRD) and for prognostication. In the present study we have assessed the frequency and the prognostic value of IR by multiparameter flow cytometry in a total of 516 newly diagnosed MM patients included in three consecutive PETHEMA/GEM Spanish trials: two designed for transplant candidate patients - GEM 2000 (n=157) and GEM2005<65y (n=206) - and one for elderly patients - GEM2005>65y (n=153). The GEM2000 trial was based on 6 induction cycles of VBMCP/VBAD followed by HDT/ASCT; the GEM2005<65y included three arms with 6 cycles each (Thalidomide/Dexamethasone -TD-, Bortezomib/Thalidomide/Dexamethasone -VTD- and, VBMCP/VBAD with Bortezomib in the two final cycles -VBMCP/VBAD/Bortezomib) followed by HDT/ASCT; and the GEM2005>65y compared 6 cycles of Bortezomib/Melphalan/Prednisone -VMP- vs. Bortezomib/Thalidomide/Prednisone -VTP-. All three trials had in common that patients received 6 induction cycles and IR was evaluated at this time point. In addition, IR was assessed on day +100 after HDT/ASCT in the first two trials. Patients were defined to be in IR when myelomatous plasma cells (MM-PCs) were undetectable by MFC or when less than one phenotypically aberrant PC was detected among 104 cells analyzed. Patients were referred for MRD studies if they were mainly in CR or VGPR. The IR rates reported here were calculated on intention to treat analysis. Figure 1 summarizes the IR rates after induction. The lowest IR rates corresponded to the VBMCP/VBAD and TD schemes (5% and 6%, respectively) while with the bortezomib-based regimens an approximately 3-fold increment in the IR rates was observed: VTP (12%), VBMCP/VBAD/Bortezomib (15%), VMP (16%) and VTD (17%). After HDT/ASCT, IR rates were found to be significantly increased (p<.001) in the GEM2000 protocol (14%) and in all arms of the GEM2005<65y trial: TD (18%), VBMCP/VBAD/Bortezomib (30%) and VTD (34%). Thus, a minimum 2-fold increment of IR rates was further achieved after HDT/ASCT. In addition, IR rates achieved after HDT/ASCT in patients included in all three arms of the GEM2005<65y trial were significantly superior (p≤.008) to cases treated according to the GEM2000 protocol, indicating that induction regimens with novel agents improved post-transplantation rates of IR. Moreover, bortezomib-based regimens vs. TD were associated with increased IR rates not only before but also after HDT/ACSCT (p=.06 and p=.02 for VBMCP/VBAD/Bortezomib and VTD, respectively). We further compared the impact of achieving an IR after induction and at day+100 after HDT/ASCT in the progression-free (PFS) and overall survival (OS) within the three protocols. Patients in IR status after an induction regimen according to the GEM2000, GEM2005<65y and GEM2005>65y protocols showed significantly longer (p<.001) 3-year PFS rates (100%, 100% and 90%, respectively) compared to patients in a no-IR status (61%, 59% and 35%, respectively). Similarly, 3-year OS rates were significantly longer (p=.01) in IR vs. no-IR patients status (100%, 100% and 94% vs. 84%, 90% and 76% for the GEM2000, GEM2005<65y and GEM05>65y protocols, respectively). Likewise, an IR vs. no-IR status after HDT/ASCT in both the GEM2000 and GEM05<65y trials was also associated with significantly increased 3-year PFS (p<.001) and OS (p=.007) rates. In summary, this study demonstrates that the achievement of an IR is a strong prognostic factor regardless of the type of treatment; thus, higher IR rates may help to identify optimal therapeutical schemes. In this sense, HDT/ASCT is able to markedly increase IR rates after induction even in the era of novel agents, and this translates into extended survival. Disclosures: Off Label Use: VTP is not approved for the treatment of newly diagnosed myeloma patients and VT and VP are not approved for maintenance therapy. None of the combinations proposed, VBCMP/VBAD plus bortezomib, VT and VTD are approved as induction therapy in newly diagnosed myeloma patients. Mateos:Janssen Cilag: Honoraria; Celgene: Honoraria. Rosiñol:Janssen-Cilag: Honoraria; Celgene: Honoraria. Cibeira:Janssen-Cilag: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees. Oriol:Janssen-Cilag: Honoraria; Celgene: Honoraria. de Arriba:Janssen-Cilag: Honoraria; Celgene: Honoraria. Palomera:Janssen Cilag: Honoraria. De La Rubia:Janssen-Cilag: Honoraria; Celgene: Honoraria. Díaz-Mediavilla:Janssen-Cilag: Honoraria; Celgene: Honoraria. Garcia-Laraña:Janssen Cilag: Honoraria; Celgene: Honoraria. Sureda:Janssen-Cilag: Honoraria; Celgene: Honoraria. Alegre:Janssen-Cilag: Honoraria; Celgene: Honoraria. Blade:Janssen cilag: Honoraria; Celgene: Honoraria. Lahuerta:Janssen-Cilag: Honoraria; Celgene: Honoraria. San Miguel:Janssen-Cilag: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Millennium: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1373-1373
Author(s):  
Aung M Tun ◽  
Yucai Wang ◽  
Aasiya Matin ◽  
David J. Inwards ◽  
Patrick B. Johnston ◽  
...  

Abstract Introduction: Novel therapeutic agents such as immune checkpoint inhibitor (ICI) and brentuximab vedotin (BV) are active in classic Hodgkin lymphoma (cHL), including in patients that relapse after autologous stem cell transplant (ASCT). However, optimal management strategy is unclear for patients with relapsed or refractory (RR) cHL post-ASCT. The aim of the study is to determine the impact of novel agents relative to conventional therapy and allogeneic stem cell transplant (allo-SCT) on survival outcomes of patients with cHL who relapsed after ASCT. Methods: Patients with RR cHL who underwent ASCT between 06/1993 and 10/2017 at 3 Mayo Clinic sites were included. Clinical characteristics, treatment information, and outcome data were abstracted. For patients who relapsed after ASCT, the post-relapse progression free survival (PFS) and overall survival (OS) were analyzed using the Kaplan-Meier method and Cox proportional hazards models. Statistical analyses were done in JMP v15.2.1 and EZR v1.54. Results: A total of 332 patients with RR cHL who underwent salvage therapy and ASCT were identified. After a median post-ASCT follow-up of 8.6 years (range 6.8-9.7), 136 (41%) patients had a relapse or disease progression after ASCT. Patient characteristics of the 136 cases are summarized in the Table. The median age at post-ASCT relapse was 34 years (range 20-73), and 77 (57%) were male. 59 (43%) relapsed within 6 months and 77 (57%) relapsed after 6 months following ASCT. 59 (45%) had an extranodal site involvement at relapse. 14 (10%) had therapy with ICI or BV as salvage therapy prior to ASCT or maintenance therapy post-ASCT. The median post-relapse PFS and OS was 0.8 (95% CI 0.6-1.1) and 3.2 years (95% CI 2.2-5.5) years, respectively. Compared to patients who relapse after 6 months, patients who relapsed within 6 months of ASCT had worse post-relapse PFS (median 0.5 [0.3-0.7] vs 1.3 [0.9-1.9] years, p=0.0003) and OS (median 1.3 [0.5-2.2] vs 6.4 [3.7-10.4] years, p=0.0003). Extranodal site involvement at relapse was not associated with post-relapse PFS (median 0.7 [0.5-1.2] vs 0.9 [0.6-1.3] years, p=0.28) but was associated with worse post-relapse OS (median 2.7 [1.5-4.2] vs 6.4 [2.6-NA] years, p=0.006). Prior therapy with ICI or BV was not associated with post-relapse PFS (median 0.6 [0.3-NA] vs 0.8 [0.6-1.1] year, p=0.8) and OS (median NR [1.0-NA] vs 3.2 [2.2-5.5] years, p=0.5). After post-ASCT relapse, the median lines of subsequent therapy were 2 (range 1-12). For first post-ASCT salvage therapy, novel agents (ICI or BV), compared to other therapies, were associated with superior post-relapse PFS (median 1.7 [0.7-3.6] vs 0.7 [0.5-1.0] years, p=0.004) and OS (median 7.6 [4.7-NA] vs 3.2 [2.2-5.6], p=0.02). Allo-SCT following first post-ASCT relapse (n=9) was not associated with improvement in post-relapse PFS (median 2.2 years [0.3-NA] vs 0.8 [0.6-1.1] years, p=0.1) or OS (median NR [0.5-NA] vs 5.1 [3.2-7.3] years, p=0.7). Patients who received ICI or BV at any point post-ASCT relapse had significantly better post-relapse OS (median 7.6 [4.3-16.7] vs 2.2 [1.4-3.7] years, p=0.004) compared to those who never received any novel agent (Figure 1A). In contrast, allo-SCT at any point post-ASCT relapse (n=27) did not improve post-relapse OS (median 5.6 [2.7-NA] vs 4.7 [2.7-7.3] years, p=0.3) (Figure 1B). In multivariate Cox regression models adjusted for age and sex, exposure to ICI and/or BV was associated with superior post-relapse OS (HR 0.5, 95% CI 0.3-0.8, p=0.007); however, allo-SCT was not associated with improvement in post-relapse OS (HR 0.8, 95% CI 0.4-1.5, p=0.5). Conclusions: Patients relapsing within 6 months of ASCT and those with extranodal involvement at relapse had inferior OS after post-ASCT relapse. Prior therapy with novel agents did not impact post-relapse survival outcomes. In the setting of post-ASCT relapse, novel therapeutic agents significantly improved survival outcomes while allo-SCT did not. Future multicenter studies are needed to explore the role of novel agents and allo-SCT in patients with RR cHL post-ASCT relapse. Figure 1 Figure 1. Disclosures Wang: Eli Lilly: Membership on an entity's Board of Directors or advisory committees; InnoCare: Research Funding; MorphoSys: Research Funding; Genentech: Research Funding; Novartis: Research Funding; LOXO Oncology: Membership on an entity's Board of Directors or advisory committees, Research Funding; Incyte: Membership on an entity's Board of Directors or advisory committees, Research Funding; TG Therapeutics: Membership on an entity's Board of Directors or advisory committees. Paludo: Karyopharm: Research Funding. Tun: Gossamer Bio, Acrotech: Consultancy; Mundipharma, Celgene, BMS, Acrotech, TG therapeutics, Curis, DTRM: Research Funding. Cerhan: Regeneron Genetics Center: Other: Research Collaboration; Genentech: Research Funding; Celgene/BMS: Other: Connect Lymphoma Scientific Steering Committee, Research Funding; NanoString: Research Funding. Habermann: Tess Therapeutics: Other: Data Monitoring Committee; Morphosys: Other: Scientific Advisory Board; Incyte: Other: Scientific Advisory Board; Seagen: Other: Data Monitoring Committee; Loxo Oncology: Other: Scientific Advisory Board; Eli Lilly & Co.,: Other: Scientific Advisor. Witzig: Karyopharm Therapeutics, Celgene/BMS, Incyte, Epizyme: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene/BMS, Acerta Pharma, Kura Oncology, Acrotech Biopharma, Karyopharm Therapeutics: Research Funding. Nowakowski: Celgene, MorphoSys, Genentech, Selvita, Debiopharm Group, Kite/Gilead: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene, NanoString Technologies, MorphoSys: Research Funding. Ansell: Bristol Myers Squibb, ADC Therapeutics, Seattle Genetics, Regeneron, Affimed, AI Therapeutics, Pfizer, Trillium and Takeda: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3109-3109 ◽  
Author(s):  
Heather Landau ◽  
Daniel E Fein ◽  
Hani Hassoun ◽  
Christina Bello ◽  
Joanne F Chou ◽  
...  

Abstract Abstract 3109 Background: High dose melphalan (MEL) is a standard treatment for eligible patients with AL, a disease in which hematologic response is a key determinant of survival. With the advent of novel agents the role of stem cell transplant (SCT) for patients with AL is being questioned, especially given safety concerns. Yet with appropriate patient selection and the use of risk-adapted SCT (RA-SCT), treatment-related mortality (TRM) improved.(Br J Haem 2007;139:224; Bone Marrow Transplantation 2011; 46:970) Moreover, beginning in 2002, we showed in 2 consecutive phase II trials that following RA-SCT patients can safely receive consolidation with thalidomide and dexamethasone (TD) or bortezomib and D (BD), with the goal of improving hematologic response thereby extending overall survival (OS).(Br J Haem 2007;139:224; Amyloid 2010;17:80a) Consolidation was administered for patients achieving less than a complete response (CR). We now describe the outcomes of all patients with AL who underwent RA-SCT at Memorial Sloan-Kettering Cancer Center (MSKCC) since the year 2000. Methods: We performed a retrospective study to assess the OS of all patients who underwent SCT for a diagnosis of AL confirmed at MSKCC. Patients who had >2 major organs involved, NYHA class III or greater CHF, critical arrhythmias or cardiac syncope were ineligible for SCT. OS was calculated from transplant to date of death or last follow up. Median survival was estimated by Kaplan Meier methods. Log-rank test was used to determine whether survival functions differed by covariates of interest. Cumulative incidence function was used to estimate the incidence of cause-specific mortality. Results: A total of 151 patients underwent RA-SCT between February 2000 and June 2011; three lost to follow-up are excluded from this analysis. Of the remaining 148 patients 21%, 52% and 34% received RA-SCT at 100, 140 and 200mg/m2 of melphalan respectively based on age, renal function and cardiac involvement.(Blood 2002; 99: 4276) Five patients died within 100 days of SCT (TRM 3.4%). At a median follow up of 6.7 years, the median OS for all patients is 11.1 years (95% CI, 7.32 - not reached-NR) (Figure 1), and for patients who received MEL 100, 140 or 200 is 4.4 (95% CI, 2.7 – 6.3), NR and 11 years (95% CI, 8.2 – NR) respectively (P = <0.01). Cumulative incidence of disease related mortality at 2 years is 5.5%, and subsequently the rate of death from other causes exceeds that due to AL (Figure 2). Conclusions: RA-SCT for appropriately selected patients is safe and is associated with excellent long-term survival. Consolidation with novel agents may improve survival following RA-SCT and likely accounts for the similar OS seen in patients who received MEL 140 and 200. In the era of novel agents available for post-SCT consolidation, RA-SCT is an effective and important initial treatment for patients with AL. Disclosures: Landau: Millenium: Membership on an entity's Board of Directors or advisory committees, Research Funding; Onyx: Research Funding. Hassoun:Millenium: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Research Funding. Giralt:Millenium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Onyx: Membership on an entity's Board of Directors or advisory committees, Research Funding. Comenzo:Millenium: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3439-3439
Author(s):  
Brandon B. Wang ◽  
Mark A. Fiala ◽  
Mark A. Schroeder ◽  
Tanya Wildes ◽  
Armin Ghobadi ◽  
...  

Abstract Background: In the current era, autologous stem cell transplant (ASCT) remains an effective form of treatment for patients diagnosed with multiple myeloma (MM), but it is not curative and a relapse is inevitable. A second, or salvage, ASCT provides better outcomes than conventional chemotherapy but it is infrequently used. Maintenance therapy after initial ASCT has been adopted as the standard in the US; however, there is limited data on the effects of maintenance therapy following salvage ASCT and the benefits are still unclear. Methods: We performed retrospective chart review of all patients with MM who received a second, salvage ASCT at time of first relapse at Washington University in St. Louis from 2008 to 2016. We identified two cohorts of patients, those who received maintenance therapy following salvage ASCT and those who did not. Patients who received maintenance therapy post-initial ASCT were excluded as the objective of this study was to determine the impact of maintenance post-salvage ASCT and maintenance post-initial ASCT may confound the results. Results: Sixty-five patients (who underwent second/salvage ASCT) were identified. Three were excluded from the analysis-two had treatment-related mortality following salvage ASCT and one received maintenance other than a proteasome inhibitor (PI) or an immunomodulatory drug (IMID). The maintenance cohort consisted of 31 patients, with 68% (n = 21) males and 32% (n = 10) females; the median age at salvage ASCT was 61 years (range 38-73). The no-maintenance cohort consisted of 31 patients as well with 45% (n = 14) males and 55% (n = 17) females. Their median age at salvage ASCT was 62 years (range 44-74). The characteristics of the two cohorts are summarized in Table 1. Most patients received PIs and/or IMIDs as part of their induction regimens prior to initial ASCT. All received melphalan conditioning. The response to treatment was similar between the two cohorts, with respective CR rates of 68% (n = 21) and 77% (n = 24) and median progression-free survival (PFS) of 46 months compared to 33 months. Following relapse, 16% (n = 5) of patients in the no-maintenance cohort proceeded directly to salvage ASCT without re-induction. All other patients received re-induction, mostly with PIs and/or IMIDs, with a median of 4 cycles for the maintenance cohort and 2 cycles for the no-maintenance cohort. For conditioning prior to salvage ASCT, 4 patients received Velcade-BEAM conditioning as part of a prospective trial at our site (NCT01653418); 3 from the maintenance cohort and 1 from the no-maintenance cohort. The rest received melphalan conditioning. Both cohorts had a CR rate of 52% (n = 16) post-salvage ASCT. Maintenance therapy after salvage ASCT consisted of lenalidomide (74%, n = 23), bortezomib (23%, n = 7), or pomalidomide (3%, n = 1). Three of the patients on bortezomib were originally started on lenalidomide but were switched due to intolerance. At time of data collection, the median follow-up was 49 months (range 9-105) for the maintenance cohort and 61 months (range 19-113) for the no-maintenance cohort. 45% (n = 14) of patients in the maintenance cohort and 90% (n = 28) of the no-maintenance cohort had relapsed. In the maintenance cohort, PFS following salvage ASCT was similar to what was observed following initial ASCT. The median estimated PFS post-salvage ASCT was 53 months (95% CI 42-64) compared to 46 months post initial ASCT (p = 0.144). Conversely, in the no-maintenance cohort PFS following salvage was only about 60% that of initial ASCT (21 months [95% CI 18-24]; compared to 33 months; p = 0.002). Conclusion: These results suggest that maintenance following salvage ASCT is associated with improved outcomes. Although patients who received maintenance post-initial ASCT were excluded, the benefits of maintenance post-salvage ASCT may extend to them as well. Ongoing prospective clinical trials will further clarify these benefits. Disclosures Schroeder: Amgen Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees. Wildes:Janssen: Research Funding. Vij:Jazz Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Jansson: Honoraria, Membership on an entity's Board of Directors or advisory committees; Karyopharma: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4496-4496 ◽  
Author(s):  
Luke Eastburg ◽  
David A. Russler-Germain ◽  
Ramzi Abboud ◽  
Peter Westervelt ◽  
John F. DiPersio ◽  
...  

The use of post-transplant cyclophosphamide (PTCy) in the context of haploidentical stem cell transplant (haplo-SCT) has led to drastically reduced rates of Graft-vs-Host (GvH) disease through selective depletion of highly allo-reactive donor T-cells. Early trials utilized a reduced-intensity Flu/Cy/TBI preparative regimen and bone marrow grafts; however, relapse rates remained relatively high (Luznik et al. BBMT. 2008). This led to the increased use of myeloablative (MA) regimens for haplo-SCT, which have been associated with decreased relapse rates (Bashey et al. J Clin Oncol. 2013). Most studies have used a MA total body irradiation (TBI) based regimen for haplo-SCT. Preparative regimens using fludarabine and melphalan (FluMel), with or without thiotepa, ATG, and/or low dose TBI have also been reported using bone marrow grafts. Reports on the safety and toxicity of FluMel in the haplo-SCT setting with PTCy and peripheral blood stem cell (PBSC) grafts are lacking. In this two-center retrospective analysis, the safety/toxicity of FluMel as conditioning for haplo-SCT was evaluated. We report increased early mortality and toxicity using standard FluMel conditioning and PBSC grafts for patients undergoing haplo-SCT with PTCy. 38 patients at the University of Rochester Medical Center and the Washington University School of Medicine underwent haplo-SCT with FluMel conditioning and PBSC grafts between 2015-2019. Outcomes were measured by retrospective chart review through July 2019. 34 patients (89.5%) received FluMel(140 mg/m2). Two patients received FluMel(100 mg/m2) and two patients received FluMel(140 mg/m2) + ATG. The median age at time of haplo-SCT was 60 years (range 21-73). 20 patients were transplanted for AML, eight for MDS, two for PMF, two for NHL, and five for other malignancies. The median Hematopoietic Cell Transplantation-specific Comorbidity Index (HCT-CI) score was 4 (≥3 indicates high risk). 11 patients had a history of prior stem cell transplant, and 16 patients had active disease prior to their haplo-SCT. Seven patients had sex mismatch with their stem cell donor. Median donor age was 42 (range 21-71). 20 patient deaths occurred by July 2019 with a median follow up of 244 days for surviving patients. Nine patients died before day +100 (D100, "early mortality"), with a D100 non-relapse mortality (NRM) rate of 24%. Median overall and relapse free survival (OS and RFS, respectively) were 197 days (95% CI 142-not reached) and 180 days (95% CI 141-not reached), respectively, for the entire cohort. The 1 year OS and NRM were 29% and 50%. The incidence of grades 2-4cytokine release syndrome (CRS) was 66%, and 52% of these patients were treated with tocilizumab. CRS was strongly associated with early mortality, with D100 NRM of 36% in patients with grade 2-4 CRS compared to 0% in those with grade 0-1. The incidence of acute kidney injury (AKI) was 64% in patients with grade 2-4 CRS, and 8% in those without (p < 0.001). 28% of patients with AKI required dialysis. Grade 2-4 CRS was seen in 54% of patients in remission prior to haplo-SCT and in 92% of those with active disease (p = 0.02). Of the 9 patients with early mortality, 89% had AKI, 44% needed dialysis, and 100% had grade 2-4 CRS, compared to 31%, 10%, and 55% in those without early mortality (p = 0.002, p = 0.02, p = 0.01). Early mortality was not significantly associated with age, HCT-CI score, second transplant, disease status at transplant, total dose of melphalan, volume overload/diuretic use, or post-transplant infection. In conclusion, we observed a very high rate of NRM with FluMel conditioning and PBSC grafts for haplo-SCT with PTCy. The pattern of toxicity was strongly associated with grade 2-4 CRS, AKI, and need for dialysis. These complications may be mediated by excessive inflammation in the context of allo-reactive donor T-cell over-activation. Consistent with this, multiple groups have shown that FluMel conditioning in haplo-SCT is safe when using bone marrow or T-cell depleted grafts. Based on our institutional experiences, we would discourage the use of FluMel as conditioning for haplo-SCT with PTCy with T-cell replete PBSC grafts. Alternative regimens or variations on melphalan-based regimens, such as fractionated melphalan dosing or inclusion of TBI may improve outcomes but further study and randomized controlled trials are needed. This study is limited in its retrospective design and sample size. Figure Disclosures DiPersio: WUGEN: Equity Ownership, Patents & Royalties, Research Funding; Karyopharm Therapeutics: Consultancy; Magenta Therapeutics: Equity Ownership; Celgene: Consultancy; Cellworks Group, Inc.: Membership on an entity's Board of Directors or advisory committees; NeoImmune Tech: Research Funding; Amphivena Therapeutics: Consultancy, Research Funding; Bioline Rx: Research Funding, Speakers Bureau; Macrogenics: Research Funding, Speakers Bureau; Incyte: Consultancy, Research Funding; RiverVest Venture Partners Arch Oncology: Consultancy, Membership on an entity's Board of Directors or advisory committees. Liesveld:Onconova: Other: Data safety monitoring board; Abbvie: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3150-3150 ◽  
Author(s):  
Raymond L. Comenzo ◽  
Daniel E Fein ◽  
Hani Hassoun ◽  
Christina Bello ◽  
Joanne F Chou ◽  
...  

Abstract Abstract 3150 Background: AL is a plasma cell dyscrasia characterized by the pathologic production of monoclonal light chains which misfold, deposit in various organs, including the heart, and can cause early death. High dose melphalan with stem cell transplant (SCT) results in high hematologic response rates and is a standard treatment for eligible patients. Achieving a complete hematologic response (CR) to SCT results in extended event-free and overall survival (OS), up to 8 and 13 years respectively in one large series. (Blood 2011; 118:4346) We have studied the addition of novel agents as consolidation following risk-adapted SCT (RA-SCT) in order to improve hematologic response (HR) rates and therefore outcomes. (Br J Haem 2007;139:224; Amyloid 2010;17:80a) In this report we examine the long-term outcomes of patients who received initial therapy with RA-SCT followed by consolidation for hematologic response less than CR (HR < CR). Methods: We performed a retrospective study to assess the HR rates, incidence of hematologic progression and overall survival (OS) of AL patients enrolled at diagnosis on two consecutive phase II trials using RA-SCT with consolidation for HR < CR (NCT01527032 and NCT00458822). OS was calculated from date of transplant to date of death or last follow up. Median event free survival (EFS) and OS were estimated by the method of Kaplan Meier. Cumulative incidence function was used to estimate the incidence of progression and death. Results: Between 2002 and 2011, 83 patients were enrolled and underwent RA-SCT on these trials and, following RA-SCT, those with HR < CR received consolidation with thalidomide and dexamethasone (TD) in the first and bortezomib and dexamethasone (BD) in the second trial. Thirty-six patients had cardiac involvement (43%) and all patients had free light chain measurements employed to score hematologic response and progression using consensus criteria (Am J Hematol 2005;79:319; Blood 2010;116:1364a). The frequency of CR following SCT was 24% and increased to 48% with post-SCT consolidation. The CR rates increased at 1 year compared to 3 months post-SCT from 21% to 36% with TD and from 28% to 62% with BD. With a median follow up of 5.1 years, the EFS is 4.5 years (95% CI: 2.6 to not reached) and the OS of all patients has not been reached (Figure 1). Sixteen patients died prior to hematologic progression and 26 patients have progressed with a cumulative incidence of hematologic progression of 8%, 18%, and 29% at 1, 2 and 3 years, respectively (Figure 2). Thirty-one percent (8/26) of relapsed patients have not required second-line therapy while among those who have, 78% (14/18) have responded including 44% (8/18) with CR. The median OS following hematologic progression was 5 years (95% CI: 2.6–5.8). Conclusions: Half of the AL patients on initial therapy trials employing RA-SCT and consolidation for HR < CR achieved CR with 36% of pts on the TD and 62% on the BD consolidation trial in CR at 1 year post-SCT respectively. At 3 years post-SCT the cumulative incidence of relapse was 29% and a third of relapsed patients did not require therapy, likely due to the very sensitive serum free light chain assay that detects low level hematologic progression in the absence of organ progression. Almost 80% of patients requiring second-line therapy responded, over half with CR, and median OS after relapse was 5 years. These results indicate that initial therapy with RA-SCT and consolidation is an effective initial treatment strategy for patients with AL in the era of novel agents. With over 5 years of follow up the median OS has not been reached. Disclosures: Comenzo: Millennium Pharmaceuticals, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding. Off Label Use: Use of the investigational agent MLN9708, an oral proteasome inhibitor, in the treatment of relapsed or refractory light-chain amyloidosis. Hassoun:Millenium: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Research Funding. Giralt:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Millenium: Membership on an entity's Board of Directors or advisory committees; Onyx: Membership on an entity's Board of Directors or advisory committees, Research Funding. Landau:Millenium: Membership on an entity's Board of Directors or advisory committees, Research Funding; Onyx: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5536-5536
Author(s):  
Yizel Elena Paz Nuñez ◽  
Beatriz Aguado Bueno ◽  
Isabel vicuña Andrés ◽  
Ángela Figuera Álvarez ◽  
Miriam González-Pardo ◽  
...  

Abstract Introduction The prognosis of patients with multiple myeloma (MM) has improved in the last years due to the important advances in the knowledge of the biology of the disease, the implementation of new drugs and the incorporation of autologous hematopoietic stem cell transplant (autoHSCT). The allogenic hematopoietic stem cell transplant (alloHSCT) continues to be controversial: it offers a curative potential but with the cost of high toxicity, limiting the procedure to those young patients with a high-risk disease. This procedure shall be performed in expert centers and, whenever possible, in the context of a clinical trial. In the following we describe the experience of our center with alloHSCT in advance multiple myeloma patients. Patients and methods A total of 18 patients were diagnosed with multiple myeloma received an alloHSCT during a 13 year period (1996-2013), with a median age of 46 ± 5.9 years. All of our patients received an allogenic HLA matched sibling donor with reduced-intensity conditioning. The majority of patients were transplanted because of advanced disease, relapse after an autologous transplant or as part of a sequential transplant in patient with a high risk disease. One patient received, in two occasions, an alloHSCT. Around 70% of patients had received more than 3 previous lines of treatment including, in nearly 95%, an autoHSCT. Patient's characteristics can be found on table 1, characteristics of the procedure can be found in table 2.Table 1.Patient«s CharacteristicsN (%)GenderMale Female10 (55,5%) 9 (44,4%)Secreted ProteinIgGκ IgG λ IgA κ BJ Plasmocitoma8 (44,4%) 4 (22,2%) 2 (11,1%) 3 (16,7%) 1 (5,6%)Debut DS stageII-A II-B III-A III-B Plasmocitoma5 (27,8%) 1 (5,6%) 8 (44,4%) 3 (16,7%) 1 (5,6%)Cytogentics at diagnosisMissing Unfavorable Favorable10 (55,5%) 6 (33,3%) 2 (11,1%)Previous lines of treatment²2 3-4 ³56 (33,3%) 10 (55,5%) 2 (11,1%)Previous autoHSCTYes No17 (94,5%) 1 (5,6%)Previous radiotherapyYes No8 (44,4%) 10 (55,6%)Disease status at transplantComplete remission Partial remission Relapse9 (50,0%) 3 (16,7%) 6 (33,3%)Table 2.Treatment characteristicsN (%)Conditioning regimenMyeloablative Reduced-intensity6 (33,3%) 12 (66.7%)Stem cell sourceBone marrow Peripheral blood4 (22.2%) 14 (77.8%)GVHD prophylaxisCsA+MTXCsA+CSCsA+MMF10 (55.6%) 3 (16.7%) 5 (27.8%)InfectionsYes No16 (88.9%) 2 (11.1%)MucositisYes No12 (66.7%) 6 (33.3%)Acute GVHDYes II-IV III-IV No4 (22.3%) 3 (16.7%) 1 (5.6%) 14 (77.8%)Chronic GVHDNo Limited Extensive8 (44.3%) 5 (27.8%) 5 (27.8%) Results: Transplant related mortality (TRM) before day 100th was one case due to a thromboembolic event. Global TRM was 16.6% (3 cases). The incidence of acute graft versus host disease (aGVHD) was 22%, controlled on most cases when corticosteroids were initiated. More than half of the patients developed chronic graft versus host disease (cGVHD), with an equal distribution on either presentation as limited or extensive. (Table 2) The total number of patients eligible for analysis was 17 (one patient was lost on follow-up). With a median follow up of 11 years, the overall survival (OS) was of 8.06 years [IC 95% 4,33-11,78] (figure 1.) and the estimated progression free survival (PFS) was of 25.83 months [IC 95% 8.87-42.79](figure 2). A total of 5 (29,4%) patients are still alive and 2 (11,7%) of them are in complete remission, of these 1 patient did not have a previous autoHSCT with a follow up of almost 15 years. Conclusions: Our results are similar to those reflected on the literature1-2. However we have to point out that our population is homogenous with advanced MM with more than 3 previous lines of treatment including in most cases auto-HSCT. In spite of this, morbility and mortality in our cohort was acceptable with the limitation of a high rate of cGVHD. There is a need of more studies including more patients to evaluate the role of alloHSCT in the era of new drugs for MM. References 1. Rosi-ol L et al. Allogeneic hematopoietic SCT in multiple myeloma: long-term results from a single institution. Bone Marrow Transplant. 2015. 2. Beaussant Y et al. Hematopoietic Stem Cell Transplantation in Multiple Myeloma: A Retrospective Study of the Société Française de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC). Biol Blood Marrow Transplant. 2015 Disclosures Alegre: Celgene Corporation: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 686-686
Author(s):  
Onyee Chan ◽  
Najla Al Ali ◽  
Hammad Tashkandi ◽  
Austin Ellis ◽  
Somedeb Ball ◽  
...  

Abstract Background: NPM1 is commonly mutated in acute myeloid leukemia (AML) and represents a distinct entity under the WHO 2016 classification. It is one of the few mutations that can potentially support favorable risk by European LeukemiaNet (ELN) 2017 criteria. Mutations that are highly specific for secondary AML including SRSF2, SF3B1, U2AF1, ZRSR2, ASXL1, EZH2, BCOR, and STAG2 (sMut) (Lindsley et al.) have been shown to confer poor prognosis. The impact of these mutations on NPM1-mutated AML warrants further investigation. Objective: In this study, we explore the outcomes in patients with NPM1-mutated AML. Methods: This was a retrospective study of NPM1-mutated AML patients who were diagnosed and treated at the Moffitt Cancer Center from 2013 to March 2021. Inclusion was restricted to NPM1-mutated patients with mutation analysis (NGS) performed at diagnosis (n=159). Kaplan-Meier, univariate, and multivariate analyses were performed. Results: Among 159 patients (78M/81F, median age 63 years at diagnosis), 80.5% had de novo AML. By ELN 2017 criteria, 63.5% (101/159) had favorable risk, 27.7% (44/159) had intermediate risk, and 8.2% (13/159) had adverse risk disease. Almost 90% had intermediate risk cytogenetics at the time of diagnosis. Common co-mutations included DNMT3A (47.2%), FLT3-ITD (35.8%), TET2 (26.4%), IDH1 (17.6%), FLT3-TKD (15.1%), and IDH2 (13.8%). sMut comprised 19.5% (31/159) of patients and 20.8% (21/101) of those with ELN favorable risk. In patients with treatment response data, those with sMut never achieved CR/CRi in 35.7% (10/28) compared to 17.2% (22/128) of patients without sMut (p=0.038). The overall survival (OS) was 43.7 months with a median follow up of 35.5 months. Patients with sMut had worse OS compared to those without sMut (14.7 months vs 57.6 months, p=0.011). Among patients with favorable risk disease, OS was 11.6 months compared to not reached for those with sMut and without sMut, respectively (p&lt;0.0001). Univariate analysis showed sMut and allogeneic hematopoietic cell transplant (HCT) significantly impacted OS (sMut: HR 3.48, 95% CI: 1.80-6.72, p&lt;0.001; HCT: HR 0.17, 95% CI: 0.07-0.44, p&lt;0.001). Multivariate regression using covariates including age, AML type, sMut, and HCT confirmed their prognostic significance on survival (sMut: HR 2.40, 95% CI: 1.17-4.93, p=0.017; HCT: HR 0.26, 95% CI: 0.08-0.56, p=0.002). Conclusions: Our findings suggest NPM1-mutated AML patients with sMut have significantly worse prognosis despite being classified primarily as favorable risk by ELN 2017 at diagnosis. This may have treatment implications altering the need for and/or timing of HCT. These findings should be assessed prospectively and validated in independent datasets. Figure 1 Figure 1. Disclosures Hussaini: Adaptive: Consultancy, Honoraria, Speakers Bureau; Stemline: Consultancy; Amgen: Consultancy; Seattle Genetics: Consultancy; Celegene: Consultancy; Decibio: Consultancy; Guidepoint: Consultancy; Bluprint Medicine: Consultancy. Talati: AbbVie: Honoraria; Pfizer: Honoraria; Astellas: Speakers Bureau; BMS: Honoraria; Jazz: Speakers Bureau. Kuykendall: Incyte: Consultancy; Novartis: Honoraria, Speakers Bureau; Protagonist: Consultancy, Research Funding; Celgene/BMS: Honoraria; Abbvie: Honoraria; Blueprint: Honoraria; Pharmaessentia: Honoraria. Padron: Blueprint: Honoraria; Incyte: Research Funding; Kura: Research Funding; Stemline: Honoraria; Taiho: Honoraria; BMS: Research Funding. Sallman: Shattuck Labs: Membership on an entity's Board of Directors or advisory committees; Syndax: Membership on an entity's Board of Directors or advisory committees; Magenta: Consultancy; Takeda: Consultancy; Kite: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Incyte: Speakers Bureau; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Intellia: Membership on an entity's Board of Directors or advisory committees; AbbVie: Membership on an entity's Board of Directors or advisory committees; Agios: Membership on an entity's Board of Directors or advisory committees; Aprea: Membership on an entity's Board of Directors or advisory committees, Research Funding. Sweet: Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; Astellas: Consultancy, Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Bristol Meyers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees; AROG: Membership on an entity's Board of Directors or advisory committees. Komrokji: Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Geron: Consultancy; BMSCelgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Acceleron: Consultancy; AbbVie: Consultancy; Jazz: Consultancy, Speakers Bureau; Taiho Oncology: Membership on an entity's Board of Directors or advisory committees; PharmaEssentia: Membership on an entity's Board of Directors or advisory committees. Lancet: AbbVie: Consultancy; Celgene/BMS: Consultancy; Daiichi Sankyo: Consultancy; ElevateBio Management: Consultancy; Millenium Pharma/Takeda: Consultancy; BerGenBio: Consultancy; Jazz: Consultancy; Agios: Consultancy; Astellas: Consultancy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4833-4833
Author(s):  
Mateo Mejia Saldarriaga ◽  
Yassine Tahri ◽  
Sangmin Lee ◽  
Zhengming Chen ◽  
Tsiporah B. Shore ◽  
...  

Abstract Introduction: Acute myeloid leukemia (AML) is heterogenous disease with a range of cytogenetic and molecular changes. Several molecular mutations identified in AML patients at diagnosis have prognostic implications and play important roles in guiding induction and consolidative treatment decisions. The prognostic impact of mutations peri allogeneic stem cell transplant are less well characterized. In this study, we examine the significance of pre and by D100 Post-transplant mutation status in AML patients underwent Fludarabine/Melphalan conditioned reduced intensity allogeneic stem cell transplant (SCT). Methods: AML patients who are in morphologic complete remission (CR1 or greater) with available molecular mutation at diagnosis, within 6 weeks prior to allogeneic SCT, and by 100 days post-transplant were included. Variables analyzed included baseline demographics, clinical variables (CIBMTR disease risk index (DRI), type of transplant, ELN risk, performance status) and 23 recurring molecular mutations. Analysis was also performed by grouping mutations into six pre-defined gene groups based on gene function (Table 2). Multivariable cox regression analysis was adjusted for age, gender, DRI and molecular mutation. Backward selection method was used to select the best combination of genes that is associated with overall survival (OS) and relapse-free survival (RFS). Results : A total of 142 AML patients with molecular genetic data available from 2014 to June, 2020 at Weill Cornell Medicine/New York Presbyterian Hospital were analyzed. Clinical characteristics of the patients are summarized in Table 1. The median age was 58 years (range 20 -78). Total of 261 mutations were detectable at diagnosis (Table 3). Prior to allo SCT and by D100, the detectable mutations were 87 and 40 respectively, which represent 56 and 26 patients. High-dose chemotherapy was less effective on clearing DNMT3A, ASXL1, TET2 (DAT) or IDH mutations, resulting in over-representation of DAT and IDH mutations prior to transplant. With a median follow-up time of 25 months, the median overall survival for the group was 40.8 months. The presence of mutations in TP53 at diagnosis was associated with worse OS by both univariate (HR 3.67, p=0.0030, CI 1.56-8.68) and multivariate analysis (HR 4.75, p=0.0014, CI 1.82-12.39) with median OS reduced from 49.3 to 19.3 months (p=0.002). High CIBMTR DRI (HR 0.17, p=0.0018, CI 0.05-0.51) predicted reduced OS and RFS, and Age &gt;60 at diagnosis was associated with worse OS (HR 1.7 CI 1.04-3, p 0.03). Presence of any molecular mutation prior to transplant did not impact OS or RFS. For patients with any persistent mutations by D100 post-transplant, both OS ( HR 2.04, p 0.027, CI 1.08-3.8) and RFS (HR 1.99, p 0.025, CI 1.09-3.6,) were reduced in the univariate analysis, but not on multivariate analysis (HR 1.88, p 0.5, CI 0.99-3.49). Analysis based on six mutational groups (table 2) did not show any difference in their OS or RFS. However, worse RFS was independently associated with persistent IDH1 (HR 3.8, p 0.004, CI 1.07-56,), TET2 (HR 3.9, P 0.04, CI 1.04-14.1), and FLT3-ITD (HR 4.5, p 0.01, CI 1.7-52). Worse OS was independently associated with persistent TET2 (HR 3.9, p 0.013, CI 1.04-14.1), with a trend towards worse OS for IDH1, FLT3-ITD, with a trend towards worsening OS and RFS for ASXL1 (OS HR 7.4, p 0.06, CI 0.86 -63; RFS HR 4.9, p 0.06, CI 0.9-26) and DNMT3A (OS HR 2.3, p 0.12, CI 0.86-6.9; RFS 2.9, p 0.08, CI 0.98-8). Association with worse clinical outcomes remained significant after multivariate analysis for TET2 (both OS HR 3.98 p 0.041, CI1.07- 32 and RFS HR 5.8, p 0.032, CI 1.1- 29), IDH1 (RFS HR 8.02, p 0.049, CI 1.02 - 65) and FLT3-ITD (RFS HR 11.4, p0.010, CI 2.2- 80). Conclusions: Presence of TP53 mutations was associated with worse OS. Presence of pre-transplant mutation did not impact RFS or OS. Persistent presence of mutations in TET2, IDH1 and FLT3-ITD after Fludarabine/melphalan conditioning regimen allogeneic SCT were associated with shorter RFS and OS (in the case of TET2) independent of CIBMTR DRI. This analysis supports association of adverse outcomes in AML patients with selected persistent mutations by D100 post-transplant in reduced intensity transplant setting. Post-transplant strategies that can further eliminate persistent mutations should be investigated in prospective studies. Figure 1 Figure 1. Disclosures Lee: Pin Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees; Innate: Consultancy, Membership on an entity's Board of Directors or advisory committees; BMS: Consultancy, Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Consultancy, Membership on an entity's Board of Directors or advisory committees. Desai: Kura Oncology: Consultancy; Bristol Myers Squibb: Consultancy; Agios: Consultancy; Takeda: Consultancy; Janssen R&D: Research Funding; Astex: Research Funding. Ritchie: Protaganist: Consultancy, Honoraria; Incyte: Consultancy, Honoraria, Speakers Bureau; Celgene/BMS: Consultancy, Other: travel support, Speakers Bureau; Bristol Myers Squibb: Consultancy, Research Funding; ARIAD Pharmaceuticals: Ended employment in the past 24 months, Speakers Bureau; Novartis: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; Takeda: Consultancy, Honoraria; Astellas: Consultancy, Research Funding; NS Pharma: Research Funding; Abbvie: Consultancy, Honoraria; Jazz: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding. Roboz: MEI Pharma - IDMC Chair: Consultancy; Daiichi Sankyo: Consultancy; Helsinn: Consultancy; Jazz: Consultancy; Bristol Myers Squibb: Consultancy; Glaxo SmithKline: Consultancy; Novartis: Consultancy; Janssen: Consultancy; Otsuka: Consultancy; Celgene: Consultancy; Mesoblast: Consultancy; Blueprint Medicines: Consultancy; Jasper Therapeutics: Consultancy; AbbVie: Consultancy; Actinium: Consultancy; Agios: Consultancy; Amgen: Consultancy; Astex: Consultancy; Astellas: Consultancy; AstraZeneca: Consultancy; Bayer: Consultancy; Janssen: Research Funding; Pfizer: Consultancy; Roche/Genentech: Consultancy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1791-1791 ◽  
Author(s):  
Lilian Varricchio ◽  
John Mascarenhas ◽  
Anna Rita Migliaccio ◽  
Maureen O'Connor-McCourt ◽  
Gilles Tremblay ◽  
...  

Abstract Myelofibrosis (MF) is caused by driver mutations which upregulate JAK/STAT signaling. The only curative treatment for MF is hematopoietic stem cell transplant. Ruxolitinib alleviates many of the symptoms in MF but does not significantly alter survival. There is, therefore, an urgent need for additional rational therapies for MF. Bone marrow fibrosis and collagen deposition are hallmarks of MF which have been attributed to megakaryocyte (MK) derived TGFβ, which also plays a role in myelo-proliferation. There are three isoforms of TGFβ (TGFβ1, β2, and β3). AVID200, which was constructed by fusing TGFβR ectodomains to IgG Fc regions, is a potent TGFβ trap with pM potency against two of the three TGFβ ligands, TGFβ1 and β3 (IC50 values of ~ 3 pM ). AVID200's IC50 for TGFβ2 is ~4,000-fold higher indicating that it has minimal activity against TGFβ2, which is desirable since TGFβ2 is a positive regulator of hematopoiesis. We explored the therapeutic potential of AVID200 by culturing MF or normal donor (ND) mononuclear cells (MNCs) first in the presence of stem cell factor and thrombopoietin (TPO) and then TPO alone in order to generate MK-enriched populations. Although the percentage of mature MKs from ND and MF MNCs was similar, the absolute number of CD41+/CD42+ MKs generated from MF MNCs was two-fold greater than ND MNCs. To determine the levels of TGFβ secreted by the MKs we screened MF and ND MNC conditioned media (CM). We observed significantly higher levels of TGFβ1 but not TGFβ2 and TGFβ3 in MF MK CM. The effects of AVID200 on MKs were then evaluated by measuring the levels of phosphorylated SMAD2. Treatment with 0.001 - 0.1 nM AVID200 decreased phosphorylation of SMAD2, suggesting that AVID200 blocks autocrine MK TGFβ signaling. The increased levels of TGFβ in MF patients promote the proliferation and deposition of collagen by mesenchymal stem cells (MSCs). Cellular proliferation of MSCs was evaluated following treatment with either recombinant TGFβ1 or ND/MF CM in the presence or absence of AVID200. In the absence of AVID200, both recombinant TGFβ1 and MK-derived CM increased the proliferation of MSCs by 1.4- and 1.6-fold respectively, which returned to basal levels with the addition of increasing concentrations of AVID200. These data indicate that AVID200 directly blocks the effect of TGFβ1 on MSCs. MF stroma is characterized by an increase in Type I collagen. We therefore examined if treatment with AVID200 interferes with the ability of TGFβ1 to induce collagen expression by MSCs. MSCs were cultured in presence of recombinant TGFβ1 alone or in combination with varying concentrations of AVID200 for 72 hours. Recombinant TGFβ1 alone induced an increase in COL1A1 mRNA expression as compared to untreated controls (p<0.01). Addition of AVID200 eliminated the TGFβ-mediated increase in COL1A1 expression in a dose dependent manner. ND and MF MK-derived CM also increased COL1A1 expression by MSCs as compared to un-treated controls (p<0.01) and that effect was eliminated by AVID200 treatment (p<0.01). We next demonstrated that TGFβ1 activated pSMAD2 in MSCs without affecting total SMAD2/3 expression and that SMAD2 phosphorylation was reduced by adding AVID200. Furthermore, AVID200 treatment decreased pSTAT3 which is associated with the ability of TGFβ to induce fibrosis. We next investigated the effect of AVID200 on MF hematopoiesis. Briefly, MNCs (which produce TGFβ) from two JAK2V617F+ MF patients were incubated with or without 50 nM of AVID200 and plated in semi-solid media. Treatment with AVID200 did not affect the overall number of colonies generated, but reduced the numbers of JAKV617F+ colonies while increasing the numbers of WT colonies: for PT1, there were 32% JAKV617F+ CFUs in untreated cultures (11 JAKV617F+/34 total colonies) versus 16% JAKV617F+ CFUs (7 JAKV617F+/42 total CFUs) in AVID200 treated cultures; for PT2 there were 100% JAKV617F+ CFUs in untreated cultures (37 JAKV617F+/37 total CFUs) versus 94% JAKV617F+ CFUs (49 JAK2V617F+/52 total CFUs) in AVID200 treated cultures. The in vivo effects of AVID200 on the development of MF in GATA1 low mice will be presented at the meeting. These data indicate that AVID200 selectively suppresses TGFβ1 signaling associated with the proliferation of MSCs and type I collagen synthesis, and depletes MF MNCs of JAK2V617F+progenitor cells. We conclude that AVID200 is a promising agent for treating MF patients which will be evaluated in a phase 1 clinical trial. Disclosures Mascarenhas: Novartis: Research Funding; CTI Biopharma: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees; Roche: Research Funding; Janssen: Research Funding; Promedior: Research Funding; Merck: Research Funding; Incyte: Membership on an entity's Board of Directors or advisory committees, Research Funding. Iancu-Rubin:Incyte: Research Funding; Merck: Research Funding; Summer Road, LLC: Research Funding; Formation Biologics: Research Funding. Hoffman:Incyte: Research Funding; Summer Road: Research Funding; Merus: Research Funding; Janssen: Research Funding; Formation Biologics: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document