Filamins Regulate Differentiation of Megakaryocytes and Platelets From Cultured Embryonic Stem (ES) Cells.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1618-1618 ◽  
Author(s):  
Taisuke Kanaji ◽  
Takashi Okamura ◽  
Peter J. Newman

Abstract Abstract 1618 Filamins (Flns) A and B are major non-muscle actin binding proteins that play important roles in cross-linking cortical actin filaments into three-dimensional networks. In addition to their role as cytoskeletal scaffolding molecules, filamins are also known to bind more than 30 other proteins, regulating their subcellular location and coordinating their ability to signal. The role of filamins in hematopoietic stem cell differentiation, however, remains unclear, in part because gene-targeted mice lacking filamins die early on in embryonic development. To investigate the role of filamins A and B in the differentiation of embryonic stem cells (ESCs) along the megakaryocyte/platelet axis, we designed shRNA-containing vectors that targeted both FlnA and B under the control of either the CMV immediate-early promoter (CMV-FlnABLow), or an endogenous Rosa26 promoter (Rosa26-FlnABLow). Compared with wild-type ESCs, FlnABLow ESCs formed small, tightly packed undifferentiated colonies that expressed high levels of the ESC transcription factor, Nanog, and low levels of ERK activity – all indicators of an undifferentiated state. Embryoid prepared from FlnABLow ESCs, were allowed to differentiate, and examined for markers of mesoderm differentiation (Flk-1) and megakaryocyte differentiation (CD41). Whereas Day 6 EB-derived FlnABnormal wild-type cells were 8% Flk-1 positive and 13% CD41 positive, Day 6 FlnABLow cells were 9% Flk-1 positive and only 4% CD41 positive, consistent with the notion that loss of Fln A and B results in a delay of mesoderm to hematopoietic differentiation. To evaluate the effect of Fln knockdown on the ability of the CD41-positive cells to further differentiate into megakaryocytes, form proplatelet extensions, and produce platelets, CD41 positive cells isolated from day 8 EBs were cultured in the presence of a thrombopoietin (TPO)-producing TERT stromal cell line. We found that FlnABLow CD41-positive cells formed far fewer and smaller megakaryocytes compared with their FlnABnormal wild-type counterparts. Proplatelets derived from FlnABLow cells exhibited an abnormal, enlarged morphology with swellings and thick shafts that released platelets prematurely, yielding platelets that were nearly twice the size of those derived from FlnABnormal cells. Taken together, we conclude that not only do filamins function prominently in hematopoietic cell differentiation, they also play an important role in platelet production, likely via their ability to by recruit and organize the necessary signaling molecules near the inner face of the plasma membrane. Disclosures: Newman: New York Blood Center: Membership on an entity's Board of Directors or advisory committees; Children's Hospital of Boston: Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4599-4599
Author(s):  
Taisuke Kanaji ◽  
Takashi Okamura ◽  
Peter J. Newman

Abstract Abstract 4599 Filamin A is a major non-muscle actin binding protein that plays an important role in cross-linking cortical actin filaments into three-dimensional networks. In addition to its role as a cytoskeletal scaffolding molecule, Filamin A is also known to bind more than 30 other proteins, regulating their subcellular location and coordinating their ability to signal. To analyze the role of filamin A in mouse embryonic stem (ES) cell maturation, we generated filamin ALow ES cells by introducing a micro-RNA that specifically downregulates filamin A expression under the control of a cytomegalovirus promoter. Filamin ALow ES cells exhibited a more rounded morphology than did their wild-type filamin ANormal counterparts, and expressed increased levels of the ES cell transcription factor Nanog. In contrast, non-transfected cells in the same culture dish retained normal expression of filamin A, expressed low levels of Nanog, and exhibited a more elongated and spread phenotype characteristic of differentiating cells. Further evidence for a role for filamin A in ES cell differentiation was provided by the observation that withdrawing leukemia inhibitory factor (LIF) to induce ES cell differentiation was accompanied by increased expression of filamin A, a concomitant loss of Nanog expression, and acquisition of a differentiated morphology. Filamin ALow ES cells were able to retain their undifferentiated phenotype, as evaluated by alkaline phosphatase (Alp) activity, in the presence of a 10-fold lower concentration of LIF than was permissive for filamin ANormal ES cells, or following exposure to the differentiating agent, bone morphogenic protein 4 (BMP4). LIF-induced phosphorylation of ERK was decreased in filamin ALow relative to filamin ANormal ES cells, as was BMP-induced phosphorylation of Smad1/5 - two signaling pathways that initiate ES cell differentiation. Finally, embryoid bodies comprised of filamin ALow ES cells were unable to differentiate into CD41+ hematopoietic progenitor cells. Taken together, these data demonstrate that filamin A plays a previously unrecognized, but critical, scaffolding function that support both the LIF - ERK and BMP4 - Smad1/5 signaling pathways leading to ES and hematopoietic cell differentiation. Manipulation of filamin levels might be useful in the future to modulate the differentiation requirements for a variety of clinically-and therapeutically-useful stem cells. Disclosures: Newman: Novo Nordisk: Consultancy; New York Blood Center: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4202-4202
Author(s):  
Zheng Wang ◽  
Pramono Andri ◽  
Skokowa Julia ◽  
Welte Karl

Abstract Thrombopoetin (TPO) is a primary regulator of megakaryocyte and platelet production. However, studies in c-mpl-deficient mice and in congenital amegakaryocytic thrombocytopenia-patients with non-sense c-mpl mutation who develop pancytopenia during the first years of life suggest that TPO also play an important role on early hematopoesis. We demonstrated that TPO enhances FLK-1 (VEGF-receptor) expression on hemangioblasts during murine embryonic stem cell differentiation in embryoid body-liquid cultures (up to 73%). To extend our studies, we investigated the TPO signaling in FLK-1 positive cells. ES cells at different time point of differentiation showed that TPO enhances c-mpl-, BMP4-, Notch-, HOXB4-, HOXB9-, HOXA10-, Runx1-and CD133- mRNA expression. To investigate mesoderm formation, we also analyzed GATA-4 and T-brachyury mRNA level expression. Interestingly, we found that TPO alone did not increase GATA-4- and T-brachyury- mRNA expression, suggesting that TPO requires other cytokines to form the mesoderm. We also found that TPO could maintain VEGF-A mRNA expression level during differentiation of ES-cells. We hypothesize that VEGF expression together with c-mpl expression is required in hematopoetic differentiation of ES cell. This activity of Tpo was also observed during Rhesus monkey embryonic stem cell differentiation into hematopoetic cell. Only combinations of TPO and VEGF were capable of increasing CD34 positive hematopoietic progenitor cells (up to 8%), but TPO alone failed to induce high levels of CD34+ cell. In addition, analysis of gene expression during hemangioblast development demonstrated that TPO was capable of increasing the expression of VEGF receptors (FLK-1) and TPO receptors (c-mpl) in mice and primates. The in-vitro differentiation of mouse and rhesus monkey ES cells provides an opportunity to better understand the role of TPO in the early stage of hematopoietic development from ES cells to mature hematopoietic cells.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Jie Liu ◽  
Yanmei Qi ◽  
Shu-Chan Hsu ◽  
Siavash Saadat ◽  
Saum Rahimi ◽  
...  

Cellular repressor of E1A-stimulated genes 1 (CREG1) is a 24 kD glycoprotein essential for early embryonic development. Our immunofluorescence studies revealed that CREG1 is highly expressed at myocyte junctions in both embryonic and adult hearts. To explore it role in cardiomyogenesis, we employed gain- and loss-of-function analyses demonstrating that CREG1 is required for the differentiation of mouse embryonic stem (ES) cell into cohesive myocardium-like structures. Chimeric cultures of wild-type and CREG1 knockout ES cells expressing cardiac-specific reporters showed that the cardiomyogenic effect of CREG1 is cell autonomous. Furthermore, we identified a novel interaction between CREG1 and Sec8 of the exocyst complex, which tethers vesicles to the plasma membrane. Mutations of the amino acid residues D141 and P142 to alanine in CREG1 abolished its binding to Sec8. To address the role of the CREG1-Sec8 interaction in cardiomyogenesis, we rescued CREG1 knockout ES cells with wild-type and Sec8-binding mutant CREG1 and showed that CREG1 binding to Sec8 promotes cardiomyocyte differentiation and cohesion. Mechanistically, CREG1, Sec8 and N-cadherin all localize at cell-cell adhesion sites. CREG1 overexpression enhances the assembly of adherens and gap junctions. By contrast, its knockout inhibits the Sec8-N-cadherin interaction and induces their degradation. Finally, shRNA-mediated knockdown of Sec8 leads to cardiomyogenic defects similar to CREG1 knockout. These results suggest that the CREG1 binding to Sec8 enhances the assembly of intercellular junctions and promotes cardiomyogenesis.


BMC Genomics ◽  
2020 ◽  
Vol 21 (S10) ◽  
Author(s):  
Ah-Jung Jeon ◽  
Greg Tucker-Kellogg

Abstract Background Bivalent promoters marked with both H3K27me3 and H3K4me3 histone modifications are characteristic of poised promoters in embryonic stem (ES) cells. The model of poised promoters postulates that bivalent chromatin in ES cells is resolved to monovalency upon differntiation. With the availability of single-cell RNA sequencing (scRNA-seq) data, subsequent switches in transcriptional state at bivalent promoters can be studied more closely. Results We develop an approach for capturing genes undergoing transcriptional switching by detecting ‘bimodal’ gene expression patterns from scRNA-seq data. We integrate the identification of bimodal genes in ES cell differentiation with analysis of chromatin state, and identify clear cell-state dependent patterns of bimodal, bivalent genes. We show that binarization of bimodal genes can be used to identify differentially expressed genes from fractional ON/OFF proportions. In time series data from differentiating cells, we build a pseudotime approximation and use a hidden Markov model to infer gene activity switching pseudotimes, which we use to infer a regulatory network. We identify pathways of switching during differentiation, novel details of those pathway, and transcription factor coordination with downstream targets. Conclusions Genes with expression levels too low to be informative in conventional scRNA analysis can be used to infer transcriptional switching networks that connect transcriptional activity to chromatin state. Since chromatin bivalency is a hallmark of gene promoters poised for activity, this approach provides an alternative that complements conventional scRNA-seq analysis while focusing on genes near the ON/OFF boundary of activity. This offers a novel and productive means of inferring regulatory networks from scRNA-seq data.


Epigenomes ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 5 ◽  
Author(s):  
Lior Lasman ◽  
Jacob H Hanna ◽  
Noa Novershtern

The rising field of RNA modifications is stimulating massive research nowadays. m6A, the most abundant mRNA modification is highly conserved during evolution. Through the last decade, the essential components of this dynamic mRNA modification machinery were found and classified into writer, eraser and reader proteins. m6A modification is now known to take part in diverse biological processes such as embryonic development, cell circadian rhythms and cancer stem cell proliferation. In addition, there is already firm evidence for the importance of m6A modification in stem cell differentiation and gametogenesis, both in males and females. This review attempts to summarize the important results of recent years studying the mechanism underlying stem cell differentiation and gametogenesis processes.


2011 ◽  
Vol 301 (5) ◽  
pp. H2038-H2049 ◽  
Author(s):  
Carley Glass ◽  
Dinender K. Singla

microRNAs (miRs) have emerged as critical modulators of various physiological processes including stem cell differentiation. Indeed, miR-1 has been reported to play an integral role in the regulation of cardiac muscle progenitor cell differentiation. However, whether overexpression of miR-1 in embryonic stem (ES) cells (miR-1-ES cells) will enhance cardiac myocyte differentiation following transplantation into the infarcted myocardium is unknown. In the present study, myocardial infarction (MI) was produced in C57BL/6 mice by left anterior descending artery ligation. miR-1-ES cells, ES cells, or culture medium (control) was transplanted into the border zone of the infarcted heart, and 2 wk post-MI, cardiac myocyte differentiation, adverse ventricular remodeling, and cardiac function were assessed. We provide evidence demonstrating enhanced cardiac myocyte commitment of transplanted miR-1-ES cells in the mouse infarcted heart as compared with ES cells. Assessment of apoptosis revealed that overexpression of miR-1 in transplanted ES cells protected host myocardium from MI-induced apoptosis through activation of p-AKT and inhibition of caspase-3, phosphatase and tensin homolog, and superoxide production. A significant reduction in interstitial and vascular fibrosis was quantified in miR-1-ES cell and ES cell transplanted groups compared with control MI. However, no statistical significance between miR-1-ES cell and ES cell groups was observed. Finally, mice receiving miR-1-ES cell transplantation post-MI had significantly improved heart function compared with respective controls ( P < 0.05). Our data suggest miR-1 drives cardiac myocyte differentiation from transplanted ES cells and inhibits apoptosis post-MI, ultimately giving rise to enhanced cardiac repair, regeneration, and function.


2018 ◽  
Vol 115 (27) ◽  
pp. E6162-E6171 ◽  
Author(s):  
Yuan Gao ◽  
Haiyun Gan ◽  
Zhenkun Lou ◽  
Zhiguo Zhang

Bivalent chromatin domains containing repressive H3K27me3 and active H3K4me3 modifications are barriers for the expression of lineage-specific genes in ES cells and must be resolved for the transcription induction of these genes during differentiation, a process that remains largely unknown. Here, we show that Asf1a, a histone chaperone involved in nucleosome assembly and disassembly, regulates the resolution of bivalent domains and activation of lineage-specific genes during mouse ES cell differentiation. Deletion of Asf1a does not affect the silencing of pluripotent genes, but compromises the expression of lineage-specific genes during ES cell differentiation. Mechanistically, the Asf1a–histone interaction, but not the role of Asf1a in nucleosome assembly, is required for gene transcription. Asf1a is recruited to several bivalent promoters, partially through association with transcription factors, and mediates nucleosome disassembly during differentiation. We suggest that Asf1a-mediated nucleosome disassembly provides a means for resolution of bivalent domain barriers for induction of lineage-specific genes during differentiation.


2010 ◽  
Vol 30 (6) ◽  
pp. 1329-1340 ◽  
Author(s):  
Ping Xu ◽  
Roger J. Davis

ABSTRACT The c-Jun NH2-terminal kinase (JNK) is implicated in proliferation. Mice with a deficiency of either the Jnk1 or the Jnk2 genes are viable, but a compound deficiency of both Jnk1 and Jnk2 causes early embryonic lethality. Studies using conditional gene ablation and chemical genetic approaches demonstrate that the combined loss of JNK1 and JNK2 protein kinase function results in rapid senescence. To test whether this role of JNK was required for stem cell proliferation, we isolated embryonic stem (ES) cells from wild-type and JNK-deficient mice. We found that Jnk1 −/− Jnk2 −/− ES cells underwent self-renewal, but these cells proliferated more rapidly than wild-type ES cells and exhibited major defects in lineage-specific differentiation. Together, these data demonstrate that JNK is not required for proliferation or self-renewal of ES cells, but JNK plays a key role in the differentiation of ES cells.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3863-3863
Author(s):  
Ming Yu ◽  
Tali Mazor ◽  
Hui Huang ◽  
Emily Huang ◽  
Katie Kathrein ◽  
...  

Abstract Abstract 3863 The transcription factor Runx1 is required for the generation of all definitive hematopoietic stem cells (HSCs), and for normal megakaryocyte, lymphocyte and granulocyte terminal maturation. Runx1 and its cofactor CBF-β are also the most common targets of chromosomal translocations in human leukemias. Somatic and germline point mutations in Runx1 occur in myelodysplastic syndrome and undifferentiated leukemias, and are associated with a poor prognosis. Despite the key roles that Runx1 plays in normal and malignant hematopoiesis, its transcriptional mechanisms remain incompletely understood. In this study, we purified Runx1 containing multiprotein complexes from megakaryocytic cells and identified several associated chromatin-remodeling complexes, including Polycomb Repressive Complex 1 (PRC1), NuRD, SWI/SNF and MLL/TrxG. Interactions were validated by independent biochemical assays and demonstrate a direct interaction between Runx1 and the PRC1 component Bmi1. ChIP-seq studies identified a large overlap between Runx1/CBF-β and Ring1b (another PRC1 core component) occupied sites, with 45% of the peaks at these genes < 200 bp from each other. ShRNA mediated gene knockdown of CBF-β shows differential gene expression of many of the co-occupied genes. Among the direct CBF-β/Ring1b co-occupied targets are other key hematopoietic transcription factors including FOG-1, SCL and Lyl1, and a number of cell adhesion related genes. ShRNA knockdown of Ring1b impairs megakaryocyte endomitosis, partially phenocopying Runx1 deficient megakaryocytes. Morpholino mediated knockdown of Ring1b or Bmi1 in zebrafish embryos reduces the number of phenotypic definitive HSCs, also partially phenocopying Runx1 morphants. We also show that Runx1/CBF-β interact with Ring1b in the human T cell line Jurkat, and that Ring1b occupies Runx1/CBF-β bound sites of key direct target genes in primary murine thymocytes, including CD4, TCRβ, and Th-POK. Surprisingly, we did not find enrichment for histone 2A monoubiquitination at most of the megakaryocytic and T-lymphocyte co-occupied sites examined, suggesting that PRC1 acts through alternate mechanisms at these genes. Collectively, these data provide evidence for a broad role of PRC1 in Runx1 mediated gene regulation. Disclosures: Zon: FATE, Inc.: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties; Stemgent: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Cantor:Amgen, Inc: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document