βig-h3 Regulates Differentiation and Survival of Human Hematopoietic Stem/Progenitor Cells.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2591-2591
Author(s):  
Sofieke Klamer ◽  
Paula van Hennik ◽  
Daphne C Thijssen-Timmer ◽  
Ellen van der Schoot ◽  
Carlijn Voermans

Abstract Abstract 2591 Adult hematopoietic stem cells (HSC) reside in dedicated niches in the bone marrow (BM). Within this specialized microenvironment, the various interactions of HSC with adhesion molecules on neighbouring cells and extracellular matrix (ECM) components are critical for the maintenance of the HSC population and the concomitant development of the distinct blood cell lineages. Comparative gene-expression profiling of purified HSC identified ECM proteins that are differentially expressed in homeostatic and regenerative conditions. The ECM protein βig-h3 was one of the proteins upregulated in regenerative conditions. Therefore, we characterized the role of βig-h3 in the regulation of HSC self-renewal and differentiation. A comparison between human CD34+ hematopoietic stem/progenitor cells (HSPC) isolated from BM, mobilized peripheral blood (MPB) and umbilical cord blood (UCB), revealed the highest βig-h3 expression in BM-HSPC (3.9-fold increased compared to MPB, 1.7-fold increased compared to CB), which may implie a role for βig-h3 in retaining HSC in the BM. To examine the functional relevance of βig-h3 in HSC, we first increased βig-h3 expression by transducing human HSPC with a lentiviral βig-h3-SIN-GFP expression vector or a control SIN-GFP vector. Over-expression of βig-h3 (80-fold) in HSPC decreased colony-forming-unit-granulocyte-monocyte (CFU-GM) formation from 130 (SEM=47) to 73 (SEM=19, n=3) CFU-GM per 500 plated CD34+ cells, while megakaryopoiesis was accelerated and the number of mature megakaryocytic cells increased from 16% (SEM=6%) to 30% (SEM=7%, n=4) at day 14 of culture. Ectopic expression of βig-h3 did not affect differentiation along the erythroid or granulopoietic lineage. The development of megakaryocytes at the cost of pluripotent CFU-GM suggests that βig-h3 drives differentiation. In addition, βig-h3 expression in HSPC was reduced by two different short-hairpin-RNAs (shRNA) expressed from lentiviral vectors, which resulted in decreased proliferation (from 19.6- to 5.8-fold per input cell at day 13) and increased apoptosis (from 13.5% to 25.3% at day 13) in liquid HSPC cultures, as analyzed by Annexin V staining. Similarly, knock-down of βig-h3 in various cell lines also resulted in a decreased proliferation and increased apoptosis. Knock-down of βig-h3 in primary HSPC dramatically reduced CFU-GM from 73 (SEM=8.7) to 31 (SEM=14.4, n=6) CFU-GM per 500 CD34+ cells plated, and reduced colony-forming-unit-erythrocyte (CFU-E) formation from 30 (SEM=6.5) to 9 (SEM=1.6, n=4) CFU-E per 500 CD34+ cells plated. This can be explained by increased apoptosis of βig-h3 knock-down cells. Notably, co-culture of βig-h3 knock-down HSPC with stromal feeder cells, known to express high levels of βig-h3, showed no difference compared to control HSPC in cobblestone area formation within two weeks, indicating that stromal cells can counteract apoptosis in βig-h3 knock-down cells. Remarkably, long-term-culture CFU-GM (LTC-CFU) formation of HSPC that were co-cultured with stromal cells during two weeks, was even significantly increased (1.9-fold, n=2) in βig-h3 knock-down cells, indicating that decreased endogenous levels of βig-h3 stimulates the maintenance or expansion of HSPC on stroma. In conclusion, ectopic expression of βig-h3 decreased CFU-GM in HSPC and accelerated differentiation towards megakaryocytes, suggesting that βig-h3 might drive lineage commitment of HSC. Conversely, knock-down of βig-h3 in HSPC stimulated LTC-CFU formation, indicating that decreased βig-h3 levels in HSPC maintain their undifferentiated state. In absence of stroma, however, knock-down of βig-h3 induces apoptosis, indicating βig-h3 as an essential survival factor, which expression levels regulate differentiation and maintenance of HSC. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4378-4378
Author(s):  
Yasuyuki Saito ◽  
Jana M. Ellegast ◽  
Rouven Müller ◽  
Richard A. Flavell ◽  
Markus G. Manz

Abstract Transplantation of human CD34+ hematopoietic stem and progenitor cells into severe immunocompromised newborn mice allows the development of a human hemato-lymphoid system (HHLS) in vivo (Rongvaux et al. Ann. Rev. Immunol. 2013). While fetal liver- or cord blood- derived CD34+ cells lead to high levels of engraftment, adult donor-derived CD34+ cell transplantation usually led to low levels of engraftment in existing humanized mice models. We recently generated novel mouse strains called 3rd generation humanized mice (3rd gen. huMice) in which human versions of cytokines (M-CSF and TPO with or without IL-3/GM-CSF) are knocked into Balb/c Rag2-/-γC-/- strains (MISTRG or MSTRG, respectively). In addition, human Sirpα, which is a critical factor to prevent donor cell to be eliminated by host macrophages, is expressed as transgene in both strains (Rongvaux et al., Nat. Biotechnol. 2014). To evaluate human adult CD34+ cell engraftment in 3rd gen. huMice, CD34+ cells obtained from peripheral blood after G-CSF administration (3.0 – 5.5 x105 cells) were i.h. injected into sub-lethally irradiated newborn MISTRG or MSTRG and NOD/scid/γC-/- (NSG) mice or Rag2-/-γC-/-hSirpαTg (RGS) mice as controls. Seventeen of 18 (94%) MISTRG/MSTRG mice showed human CD45+ cell engraftment (>1% of total CD45+ cells in BM) 10-16 weeks after injection, whereas 4 of 11 (36%) NSG/RGS mice supported human cell engraftment. Percentages of human cells in the BM of the engrafted MISTRG/MSTRG were 7- to 8 fold higher than in the BM of engrafted NSG/RGS mice (30.2% ± 6.9 vs 4.1% ± 0.9, respectively). MISTRG/MSTRG mice supported significantly increased numbers of non-classical monocytes and NKp46+ cells in BM compared with NSG/RGS mice. Moreover, we observed significantly increased numbers of CD34+ and CD34+CD38- cells, a population enriched for human early progenitor cells and HSCs, in the BM of MISTRG/MSTRG mice. In addition, MISTRG/MSTRG mice supported higher level of human thymocyte development compared to NSG/RGS mice. Besides lymphoid organs, we further observed increased human CD45+ cells, mostly myeloid lineage cells, in the liver and lung of MISTRG/MSTRG mice compared to NSG/RGS mice. Taken together, this study demonstrates that our 3rd gen. huMice models support adult donor-derived HSC engraftment and development of myeloid as well as lymphoid lineage cells at high levels in primary lymphoid and non-lymphoid organs. These models thus have the potential for personalized studies of healthy hematopoiesis as well as hemato-immune system diseases from adult individuals. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1219-1219
Author(s):  
Hiroto Horiguchi ◽  
Masayoshi Kobune ◽  
Shohei Kikuchi ◽  
Satoshi Iyama ◽  
Kohichi Takada ◽  
...  

Abstract Introduction The failure of normal hematopoiesis in myeloid neoplasm could be induced by a variety of mechanism. Regarding myelodysplastic syndrome (MDS)/acute leukemia (AML), aberrant hematopoietic stem/progenitor cells with exhibiting ineffective hematopoiesis and impaired differentiation ability gradually substitute it for normal hematopoietic stem/progenitor cells during a long term as a consequent of replacement of stem cell niche. However, it has not yet been clarified precise mechanism how MDS stem/progenitor cells could replace normal hematopoietic stem/progenitor cells. Methods In an attempt to analyze the supporting activity of bone marrow (BM) stromal cells, we first established the MDS/AML-derived stromal cells and healthy volunteer (HV)-derived-stromal cells. Next, MDS/AML-derived CD34+ cells or normal CD34+ cells were cocultured with established stromal cells using cytokines including stem cell factor, thrombopoietin, flt3-ligand in the presence of notch ligand (for normal CD34+ cells) or IL-3 (for AML/MDS derived cells). Subsequently, we analyzed clonogenic cells after 2 weeks coculture, 5 week cobblestone area-forming cells (CAFC) and repopulating cells in immunedeficient mice (NSG mice). Results The support of clonogenic cells after 2 weeks coculture and 5 weeks CAFCs was observed after coculture with normal CD34+ cells and HV-derived stromal cells. Furthermore, these cocultured cells engrafted into immunedeficient mice. Interestingly, the number of colony-forming units (CFU) mixed cells (MIXs) and CAFC derived from CD34+ cells was drastically reduced after coculture with MDS/AML-derived stromal cells. Nevertheless, MDS/AML-derived stromal cells support the proliferation of leukemia-initiating cells (L-ICs) and L-ICs were detected after third replating. These results indicate that MDS/AML-derived stromal cells preferentially support leukemia stem/progenitor cells, but not normal CD34+ cells. We compared the mRNA expression between (HV)-derived-stromal cells, MDS/AML-derived stromal cells and 5-aza-dC-treated stromal cells. The expression of several factors including hedgehog-interacting protein (HHIP) was reduced in MDS/AML-derived stromal cells. 5-aza-dC treatment restored the expression in some of genes and the stromal supporting activity for normal CD34+ cells partially recovered. Conclusion These results suggest that reduction of several gene expressions was detected in MDS/AML stromal cells by changes of methylation status. The epigenetic alteration of stromal genome may be involved in the progression of myeloid disorders. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2411-2411
Author(s):  
Hein Schepers ◽  
Patrick M. Korthuis ◽  
Jan Jacob Schuringa ◽  
Edo Vellenga

Abstract The transcriptional co-activator CITED2 has a conserved role in the maintenance of normal adult hematopoiesis. We have shown before that CD34+ cells from a subset of acute myeloid leukemia (AML) patients display enhanced CITED2 expression and that interfering with this expression is detrimental for leukemia maintenance. Ectopic expression of CITED2 in normal CD34+ stem and progenitor cells (HSPCs) resulted in increased proliferation and skewed myelo-erythroid differentiation in vitro. Long-Term Culture-Initiating Cell assays (LTC-IC) revealed a 5-fold increase in the number of Cobblestone Area Forming Cells (CAFCs), as a result of an increase in the number of phenotypically defined CD34+CD38- HSCs. CFC frequencies were also enhanced 5-fold upon CITED2 overexpression. To further substantiate these observations in vivo, we transplanted CITED2-transduced CD34+ cells into NSG mice. CD34+ cells with increased CITED2 expression displayed a >10x higher engraftment at week 12, as compared to control cells, confirming the higher frequency of CD34+CD38- HSCs, while myelo-lymphoid differentiation of these cells was comparable to control transplanted cells. Till date we have not observed leukemia development in these transplanted mice, suggesting that CITED2 as a single hit is not sufficient to transform human CB CD34+ cells. We recently identified the myeloid transcription factor PU.1 as a strong negative regulator of CITED2 and enhanced CITED2 expression in AML samples correlates with low PU.1 expression. We therefore investigated whether high CITED2 and low PU.1 expression would collaborate in maintaining self-renewal of HSCs. We combined lentiviral downregulation of PU.1 with overexpression of CITED2 (PU.1Low-CITED2High) and performed LTC-IC cultures on MS5 stroma. These experiments revealed that combined loss of PU.1 and enhanced CITED2 expression was sufficient to induce a strong proliferative advantage compared to control cells. Furthermore, a 3-fold increase of progenitor numbers was observed in CFC assays. While overexpression of CITED2 alone was not sufficient to allow 2nd CFC formation, additional downregulation of PU.1 now led to colony formation upon serial replating. This replating capacity of PU.1Low-CITED2High cells was limited to CD34+CD38- HSCs, as replating of CD34+CD38+ progenitor cells did not yield CFCs. This suggests that the combined loss of PU.1 and enhanced CITED2 expression is sufficient to maintain self-renewal properties of HSC, but this combination is not sufficient to reinforce self-renewal in committed progenitor cells. To more stringently assess self-renewal, cells were first cultured for 4 weeks on MS5 under myeloid differentiating conditions (G-CSF, IL3 and TPO) and subsequently plated into CFC assays, followed by secondary and tertiary replating experiments. Only PU.1Low-CITED2High cells were able to form CFCs after 10 weeks of culture, indicating that this combination indeed preserves self-renewal. Current experiments focus on the in vivo engraftment and self-renewal properties of these PU.1Low-CITED2High cells. Preliminary data indicate that these PU.1Low-CITED2High cells contribute ∼3-fold more to the myeloid lineage at week 12, compared to control and CITED2 only cells, and AML development is currently being investigated in these mice. Together, these data suggest that CITED2 is sufficient to increase LTC-IC and CFC frequencies, to skew myeloid differentiation, and to enhance engraftment of CB CD34+ cells in xenograft mice. Furthermore, CITED2 overexpression together with reduced PU.1 levels is necessary to maintain stem cell self-renewal. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5048-5048
Author(s):  
Kam Tong Leung ◽  
Yorky Tsin Sik Wong ◽  
Karen Li ◽  
Kathy Yuen Yee Chan ◽  
Xiao-Bing Zhang ◽  
...  

Abstract RGS family proteins are known to negatively regulate G-protein-coupled receptor signaling through their GTPase-accelerating activity. In several types of hematopoietic cells (e.g., B lymphocytes and megakaryocytes), responses to stromal cell-derived factor-1 (SDF-1) are subjected to regulation by R4 subfamily RGS proteins. However, their expression patterns and functional roles in hematopoietic stem and progenitor cells (HSC) are poorly characterized. Here, we showed that human CD34+ HSC derived from cord blood (CB, n = 10) expressed 7 out of 10 R4 RGS proteins at mRNA level (RGS1-3, 5, 13, 16 and 18), whereas expressions of RGS4, 8 and 21 were undetectable. Exposure of CB CD34+ cells to SDF-1 significantly increased RGS1, 2, 13 and 16 expressions and decreased RGS3 and 18 expressions (P ≤ 0.0402, n = 5). Expressions of RGS1, 13 and 16 were significantly higher in bone marrow (BM, n = 10) CD34+ cells when compared to mobilized peripheral blood (MPB, n = 5) CD34+ cells (P ≤ 0.0160), while RGS3 and 18 expressions were lower in BM CD34+ cells (P ≤ 0.0471), suggesting a SDF-1- and niche-dependent regulation of RGS expressions. To investigate the potential involvement of RGS proteins in SDF-1-mediated homing-related functions, we introduced RGS overexpression constructs into CB CD34+ cells by lentiviral transduction. With >80% transduction efficiency, we showed that overexpression of RGS1, 13 and 16 but not RGS2 significantly inhibited migration of CD34+ cells to a SDF-1 gradient (P ≤ 0.0391, n = 4-5). Similarly, RGS1, 13 and 16 overexpression suppressed SDF-1-induced Akt phosphorylation (n = 2), but none of them affected SDF-1-mediated actin polymerization (n = 3). In the NOD/SCID mouse xenotransplantation model, preliminary results showed that bone marrow homing was impaired in RGS1- (16.3% reduction), RGS13- (12.7% reduction) or RGS16-overexpressing CD34+ cells (33.7% reduction). Taken together, we provided the first evidence that expressions of R4 RGS proteins are regulated by the SDF-1/CXCR4 axis in human CD34+ HSC. We also presented evidence that specific R4 RGS proteins (RGS1, 13 and 16) negatively regulate in vitro SDF-1-mediated responses and in vivo homing of CD34+ cells, suggesting that RGS proteins may serve as a feedback mechanism to regulate SDF-1/CXCR4 signaling. Strategies to inhibit RGS signaling could thus be a potential method for enhancing efficiency of HSC homing and long-term engraftment, which is particularly important in the setting of CB transplantation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4040-4040
Author(s):  
Szabolcs Fatrai ◽  
Simon M.G.J. Daenen ◽  
Edo Vellenga ◽  
Jan J. Schuringa

Abstract Mucin1 (Muc1) is a membrane glycoprotein which is expressed on most of the normal secretory epithelial cells as well as on hematopoietic cells. It is involved in migration, adhesion and intracellular signalling. Muc1 can be cleaved close to the membrane-proximal region, resulting in an intracellular Muc1 that can associate with or activate various signalling pathway components such as b-catenin, p53 and HIF1a. Based on these properties, Muc1 expression was analysed in human hematopoietic stem/progenitor cells. Muc1 mRNA expression was highest in the immature CD34+/CD38− cells and was reduced upon maturation towards the progenitor stage. Cord blood (CB) CD34+ cells were sorted into Muc1+ and Muc1− populations followed by CFC and LTC-IC assays and these experiments revealed that the stem and progenitor cells reside predominantly in the CD34+/Muc1+ fraction. Importantly, we observed strongly increased Muc1 expression in the CD34+ subfraction of AML mononuclear cells. These results tempted us to further study the role of Muc1 overexpression in human CD34+ stem/progenitor cells. Full-length Muc1 (Muc1F) and a Muc1 isoform with a deleted extracellular domain (DTR) were stably expressed in CB CD34+ cells using a retroviral approach. Upon coculture with MS5 bone marrow stromal cells, a two-fold increase in expansion of suspension cells was observed in both Muc1F and DTR cultures. In line with these results, we observed an increase in progenitor counts in the Muc1F and DTR group as determined by CFC assays in methylcellulose. Upon replating of CFC cultures, Muc1F and DTR were giving rise to secondary colonies in contrast to empty vector control groups, indicating that self-renewal was imposed on progenitors by expression of Muc1. A 3-fold and 2-fold increase in stem cell frequencies was observed in the DTR and Muc1F groups, respectively, as determined by LTC-IC assays. To determine whether the above mentioned phenotypes in MS5 co-cultures were stroma-dependent, we expanded Muc1F and DTR-transduced cells in cytokine-driven liquid cultures. However, no proliferative advantage or increase in CFC frequencies was observed suggesting that Muc1 requires bone marrow stromal cells. In conclusion, our data indicate that HSCs as well as AML cells are enriched for Muc1 expression, and that overexpression of Muc1 in CB cells is sufficient to increase both progenitor and stem cell frequencies.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3640-3640
Author(s):  
Sofieke E Klamer ◽  
Paula B van Hennik ◽  
Daphne C Thijssen-Timmer ◽  
C. Ellen Van der Schoot ◽  
Carlijn Voermans

Abstract Abstract 3640 Poster Board III-576 Adult hematopoietic stem cells (HSC) reside in the bone marrow (BM) in so-called niches. Within this specialized microenvironment, the interactions of HSC with adhesion molecules on neighbouring cells and extracellular matrix (ECM) components are thought to be critical for the maintenance of the HSC population. Comparative gene-expression profiling of purified HSC in homeostatic and regenerative conditions allowed the identification of a set of differentially expressed ECM proteins. One of these proteins was the novel ECM protein βg-h3, which plays a role in cell-ECM interactions, by binding to type I, II and IV collagens and cellular integrins. We postulated that βig-h3 could have a role in HSC biology by being both a homeostatic and regenerative regulator of HSC self-renewal and differentiation. First we analyzed the mRNA expression in human CD34+ hematopoietic stem/progenitor cells (HSPC) isolated from BM, mobilized peripheral blood (MPB) and umbilical cord blood (UCB). The expression of βig-h3 was found to be significantly higher in BM-CD34+ cells as compared to MPB-CD34+ cells, suggesting a role for this ECM protein in retaining HSC in the BM. To determine expression of βig-h3 on the various subsets within the heterogeneous CD34+ population, the expression was compared between sorted sub-populations of BM-CD34+ cells: megakaryocyte-erythrocyte-progenitors (MEP: CD38+/CD110+/CD45RA−), common myeloid progenitors (CMP: CD38+/CD110−/CD45RA−), granulocyte-monocyte-progenitors (GMP: CD38+/CD110−/CD45RA+) and more immature CD34+/CD38− HSC. The purity of the sub-populations was analyzed by colony forming assays. These data indicate that at least the mRNA expression of βig-h3 was highest in GMPs. Analysis of different human cell types revealed that the highest βig-h3 mRNA expression is measured in monocytes, dendritic cells and mesenchymal stromal cells (MSC), while its expression in megakaryocytes and HUVEC is comparable to that in HSPC. In addition, cell surface expression of the βig-h3 protein was determined by flowcytometry. βig-h3 was found to be expressed on the cell surface of only a subpopulation of BM derived CD34+ cells (0.5%), monocytes (5%), MSCs (11%) and megakaryocytes (30%). Intracellular flowcytometry staining revealed that βig-h3 is expressed inside CD34+ cells derived from all sources. Since there is evidence in several other cell types that βig-h3 plays a role in enhancing cell adhesion and migration, adhesion experiments using CD34+ cells were performed. These experiments show a significant (p<0.01) two-fold increased adhesion of MPB-CD34+ cells to βig-h3 compared to a BSA coating (mean 40% (SEM ± 9.8%) and 23% (SEM ± 5.0%), respectively, (n=3)). Further experiments showed that adhesion of CD34+ cells to βig-h3 is mediated by both β1- and β2- integrins. The functional relevance of the target proteins in HSC differentiation and self-renewal was studied by lentiviral mediated overexpression. We used a βig-h3-SIN-GFP vector or a control SIN-GFP vector to transduce CD34+ cells isolated from MPB or UCB and cultured them towards a megakaryocytic lineage using TPO, SCF, Flt3 and IL6. Overexpression of βig-h3 in MPB and UCB-CD34+ cells resulted in an acceleration of the megakaryopoiesis and in an increased percentage of mature megakaryocytic cells (i.e. CD41+) two weeks after transduction. In conclusion, βig-h3 is an adhesive protein for HSPCs and GMP's express significantly more βig-h3 as compared to other CD34+ subsets. Moreover, ectopic expression of βig-h3 in CD34+ cells accelerates differentiation towards megakaryocytes. These data suggest that upregulation of βig-h3 in HSCs may be a vital element driving lineage commitment of HSCs in homeostatic or regenerative conditions. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2581-2581
Author(s):  
Hong Qian ◽  
Mikael Sigvardsson

Abstract Abstract 2581 The bone marrow (BM) microenvironment consists of a heterogeneous population including mesenchymal stem cells and as well as more differentiated cells like osteoblast and adipocytes. These cells are believed to be crucial regulators of hematopoetic cell development, however, so far, their identity and specific functions has not been well defined. We have by using Ebf2 reporter transgenic Tg(Ebf2-Gfp) mice found that CD45−TER119−EBF2+ cells are selectively expressed in non-hematopoietic cells in mouse BM and highly enriched with MSCs whereas the EBF2− stromal cells are very heterogenous (Qian, et al., manuscript, 2010). In the present study, we have subfractionated the EBF2− stromal cells by fluorescent activated cell sorter (FACS) using CD44. On contrary to previous findings on cultured MSCs, we found that the freshly isolated CD45−TER119−EBF2+ MSCs were absent for CD44 whereas around 40% of the CD45−TER119−EBF2− cells express CD44. Colony forming unit-fibroblast (CFU-F) assay revealed that among the CD45−LIN−EBF2− cells, CD44− cells contained generated 20-fold more CFU-Fs (1/140) than the CD44+ cells. The EBF2−CD44− cells could be grown sustainably in vitro while the CD44+ cells could not, suggesting that Cd44− cells represents a more primitive cell population. In agreement with this, global gene expression analysis revealed that the CD44− cells, but not in the CD44+ cells expressed a set of genes including connective tissue growth factor (Ctgf), collagen type I (Col1a1), NOV and Runx2 and Necdin(Ndn) known to mark MSCs (Djouad et al., 2007) (Tanabe et al., 2008). Furthermore, microarray data and Q-PCR analysis from two independent experiments revealed a dramatic downregulation of cell cycle genes including Cdc6, Cdca7,-8 and Ki67, Cdk4-6) and up-regulation of Cdkis such as p57 and p21 in the EBF2−CD44− cells, compared to the CD44+ cells indicating a relatively quiescent state of the CD44− cells ex vivo. This was confirmed by FACS analysis of KI67 staining. Furthermore, our microarray analysis suggested high expression of a set of hematopoietic growth factors and cytokines genes including Angiopoietin like 1, Kit ligand, Cxcl12 and Jag-1 in the EBF2−CD44− stromal cells in comparison with that in the EBF2+ or EBF2−CD44+ cell fractions, indicating a potential role of the EBF2− cells in hematopoiesis. The hematopoiesis supporting activity of the different stromal cell fractions were tested by in vitro hematopoietic stem and progenitor assays- cobblestone area forming cells (CAFC) and colony forming unit in culture (CFU-C). We found an increased numbers of CAFCs and CFU-Cs from hematopoietic stem and progenitor cells (Lineage−SCA1+KIT+) in culture with feeder layer of the EBF2−CD44− cells, compared to that in culture with previously defined EBF2+ MSCs (Qian, et al., manuscript, 2010), confirming a high capacity of the EBF2−CD44− cells to support hematopoietic stem and progenitor cell activities. Since the EBF2+ cells display a much higher CFU-F cloning frequency (1/6) than the CD44−EBF2− cells, this would also indicate that MSCs might not be the most critical regulators of HSC activity. Taken together, we have identified three functionally and molecularly distinct cell populations by using CD44 and transgenic EBF2 expression and provided clear evidence of that primary mesenchymal stem and progenitor cells reside in the CD44− cell fraction in mouse BM. The findings provide new evidence for biological and molecular features of primary stromal cell subsets and important basis for future identification of stage-specific cellular and molecular interaction pathways between hematopoietic cells and their cellular niche components. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2393-2393
Author(s):  
Stefanie Geyh ◽  
Ron Patrick Cadeddu ◽  
Julia Fröbel ◽  
Ingmar Bruns ◽  
Fabian Zohren ◽  
...  

Abstract Abstract 2393 Background: Myelodysplastic syndromes (MDS) represent a heterogeneous group of hematopoietic stem cell disorders and research in this field has mainly focused on hematopoietic stem and progenitor cells (HSPC). Still, recent data from mouse models indicate that the bone marrow (BM) microenvironment might be involved in the pathogenesis MDS (Raaijmakers et al., 2010). The role of mesenchymal stromal cells (MSC) in particular as a key component of the BM microenvironment remains elusive in human MDS and data so far are controversial. Design/Methods: We therefore investigated MSC and immunomagnetically enriched CD34+ HSPC from BM of 42 untreated patients (pts) with MDS (12 RCMD, 12 RAEB, 12 sAML, 3 del5q, 1 CMML-1, 1 MDS hypocellular, 1 MDS unclassifiable according to WHO) and age-matched healthy controls (HC, n=13). MSC were examined with regard to growth kinetics, morphology and differential potential after isolation and expansion according standard procedures in line with the international consensus criteria (Dominici et al., 2006). Furthermore corresponding receptor-ligand pairs on MSC and CD34+ cells (Kitlg/c-kit; CXCL12/CXCR4; Jagged1/Notch1; Angpt1-1/Tie-2; ICAM1/LFA-1) were investigated by RT-PCR. Results: In MDS, the colony forming activity (CFU-F) of MSC was significantly reduced in comparison to HC (median number of colonies per 1×107MNC in MDS: 8, range 2–74 vs. HC: 175, 10–646, p=0.003) and this was also true when looking at the different subtypes (RCMD median: 16, p=0.04; RAEB median: 8, p=0.31; sAML median: 26, p=0.02). According to this, MSC from pts with RCMD and del5q could only be maintained in culture for a lower number of passages (median number of passages: MDS 3 passages, range 1–15; HD 14 passages, range 8–15, p=0.01), had a lower number of cumulative population doublings (CPD) and needed a longer timer to reach equivalent CPD (MDS median: 18,16 CPD, HD median: 33,68 CPD, p=0,0059). All types of MDS-MSC showed an abnormal morphology, while an impaired osteogenic differentiation potential was exclusively observed in pts with RCMD. These findings of an altered morphology together with a diminished growth and differentiation potential prompted us to test, whether the interaction between MSC and CD34+ HSPC in BM of pts with MDS was also disturbed. On the MDS-MSC, we found a significant lower expression of Angpt1 in pts with RAEB (3.5-fold, p=0.01) and del5q (4.9-fold, p=0.009) compared to HD. The expression of CXCL12 (2.5-fold, p=0.057) and jagged1 was reduced in trend in MSC from pts with MDS, while no differences were observed with regard to the expression of kitlg and ICAM1. When looking on CD34+ cells, we found a significantly reduced expression of CXCR4 (RCMD 2.5-fold, p=0.02; RAEB 2.46-fold, p=0.02), notch1 (RCMD 6-fold, p=0.04) and Tie-2 (RAEB 5.91-fold, p=0.02) in pts with MDS, while LFA-1 was overexpressed in pts with RAEB (2.6-fold, p=0.036). Conclusion: Taken together, our data indicate that MSC from pts with MDS are structurally altered and that the crosstalk between CD34+ HSPC and MSC in the BM microenvironment of pts with MDS might be deregulated as a result of an abnormal expression of relevant receptor-ligand pairs. Ongoing research is required to corroborate these findings and to definitely address their functional relevance for the pathogenesis of MDS. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4316-4316
Author(s):  
Hendrik Folkerts ◽  
Maria Catalina Gomez Puerto ◽  
Albertus T.J. Wierenga ◽  
Koen Schepers ◽  
Jan Jacob Schuringa ◽  
...  

Abstract Macroautophagy is a catabolic process by which intracellular contents are delivered to lysosomes for degradation. ATG5 and ATG7 play an essential role in this process. Recent studies have shown that mouse hematopoietic stem cells (HSCs) lacking ATG7 were unable to survive in vivo, however, the role of macroautophagy in proliferation and survival of human HSCs has not yet been defined. Here, we demonstrate that autophagy is functional in human hematopoietic stem/progenitor cells. Robust accumulation of the autophagy markers LC3 and p62 were observed in cord blood (CB)-derived CD34+ cells treated with bafilomycin-A1 (BAF) or hydroxychloroquine (HCQ), as defined by Western blotting. When these cells were subsequently differentiated towards the myeloid or erythroid lineage, a decreased accumulation of LC3 was observed. In addition, CB CD34+CD38- cells showed enhanced accumulation of cyto-ID (a marker for autophagic vesicles) compared to CD34+CD38+ progenitor cells upon BAF or HCQ treatment. In line with these results, also more mature CB CD33+ and CD14+ myeloid cells or CD71+CD235+ erythroid cells showed reduced levels of cyto-ID accumulation upon BAF or HCQ treatment. These findings indicate that human hematopoietic stem and progenitor cells (HSPCs) have a higher basal autophagy flux compared to more differentiated cells. To study the functional consequences of autophagy in human HSCs and their progeny, ATG5 and ATG7 were downregulated in CB-derived CD34+ cells, using a lentiviral shRNA approach which resulted in 80% and 70% reduced expression, respectively. Downmodulation of ATG5 or ATG7 in CB CD34+ cells resulted in a significant reduction of erythroid progenitor frequencies, as assessed by colony forming cell (CFC) assays (shATG5 2.2 fold, p<0.05 or shATG7 1.4 fold p<0.05). Additionally, a strong reduction in expansion was observed when transduced cells were cultured under myeloid (shATG5 17.9 fold, p<0.05 or shATG7 12.3 fold, p<0.05) or erythroid permissive conditions (shATG5 6.7 fold, p<0.05 or shATG7 1.7 fold, p<0.05), whereby differentiation was not affected. The phenotype upon knockdown of ATG5 or ATG7 could not be reversed by culturing the cells on a MS5 stromal layer. In addition to progenitor cells, HSCs were also affected since long term culture-initiating cell (LTC-IC) assays in limiting dilution revealed a 3-fold reduction in stem cell frequency after ATG5 and ATG7 knockdown. The inhibitory effects of shATG5 and shATG7 in cultured CD34+ cells were at least in part due to a decline in the percentage of cells in S phase and (shATG5 1.4 fold, p<0.01 and shATG7 1.3 fold, p<0.01) and an increase of Annexin V positive cells. The changes in cell cycle and apoptosis coincided with a marked increase in expression of the cell cycle-dependent kinase inhibitor p21, an increase in p53 levels, and an increase in proapoptotic downstream target genes BAX, PUMA and PHLDA3. Additionally, ROS levels were increased after ATG5 and ATG7 knockdown. The increased apoptosis in shATG5 and shATG7 transduced cells might be triggered by elevated ROS levels. Taken together, our data demonstrate that autophagy is an important survival mechanism for human HSCs and their progeny. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1169-1169
Author(s):  
Kam Tong Leung ◽  
Karen Li ◽  
Yorky Tsin Sik Wong ◽  
Kathy Yuen Yee Chan ◽  
Xiao-Bing Zhang ◽  
...  

Abstract Migration, homing and engraftment of hematopoietic stem/progenitor cells depend critically on the SDF-1/CXCR4 axis. We previously identified the tetraspanin CD9 as a downstream signal of this axis, and it regulates short-term homing of cord blood (CB) CD34+ cells (Leung et al, Blood, 2011). However, its roles in stem cell engraftment, mobilization and the underlying mechanisms have not been described. Here, we provided evidence that CD9 blockade profoundly reduced long-term bone marrow (BM; 70.9% inhibition; P = .0089) and splenic engraftment (87.8% inhibition; P = .0179) of CB CD34+ cells (n = 6) in the NOD/SCID mouse xenotransplantation model, without biasing specific lineage commitment. Interestingly, significant increase in the CD34+CD9+ subsets were observed in the BM (9.6-fold; P < .0001) and spleens (9.8-fold; P = .0014) of engrafted animals (n = 3-4), indicating that CD9 expression on CD34+ cells is up-regulated during engraftment in the SDF-1-rich hematopoietic niches. Analysis of paired BM and peripheral blood (PB) samples from healthy donors revealed higher CD9 expressions in BM-resident CD34+ cells (46.0% CD9+ cells in BM vs 26.5% in PB; n = 13, P = .0035). Consistently, CD34+ cells in granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood (MPB) expressed lower levels of CD9 (32.3% CD9+ cells; n = 25), when compared with those in BM (47.7% CD9+ cells; n = 16, P = .0030). In vitro exposure of MPB CD34+ cells to SDF-1 significantly enhanced CD9 expression (1.5-fold increase; n = 4, P = .0060). Treatment of NOD/SCID chimeric mice with G-CSF decreased the CD34+CD9+ subsets in the BM from 79.2% to 62.4% (n = 8, P = .0179). These data indicate that CD9 expression is down-regulated during egress or mobilization of CD34+ cells. To investigate the possible mechanisms, we performed a VCAM-1 (counter receptor of the VLA-4 integrin) binding assay on BM CD34+ cells. Our results demonstrated that CD34+CD9+ cells preferentially bound to soluble VCAM-1 (17.2%-51.4% VCAM-1-bound cells in CD9+ cells vs 12.8%-25.9% in CD9- cells; n = 10, P ≤ .0003), suggesting that CD9+ cells possess higher VLA-4 activity. Concomitant with decreased CD9 expression, MPB CD34+ cells exhibited lower VCAM-1 binding ability (2.8%-4.0% VCAM-1-bound cells; n = 3), when compared to BM CD34+ cells (15.5%-37.7%; n = 10, P < .0130). In vivo treatment of NOD/SCID chimeric mice with G-CSF reduced VCAM-1 binding of CD34+ cells in the BM by 49.0% (n = 5, P = .0010). Importantly, overexpression of CD9 in CB CD34+ cells promoted VCAM-1 binding by 39.5% (n = 3, P = .0391), thus providing evidence that CD9 regulates VLA-4 activity. Preliminary results also indicated that enforcing CD9 expression in CB CD34+ cells could enhance their homing and engraftment in the NOD/SCID mouse model. Our findings collectively established that CD9 expression and associated integrin VLA-4 activity are dynamically regulated in the BM microenvironment, which may represent important events in governing stem cell engraftment and mobilization. Strategies to modify CD9 expression could be developed to enhance engraftment or mobilization of CD34+ cells. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document