In Vivo Treatment of AML Patients with High-Dose Simvastatin Inhibits Geranylgeranylation In AML Cells

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3280-3280
Author(s):  
Karen van der Weide ◽  
Susan D.P.W.M. de Jonge-Peeters ◽  
Gerwin A. Huls ◽  
Rudolf S.N. Fehrmann ◽  
Jan J. Schuringa ◽  
...  

Abstract Abstract 3280 Statins, like simvastatin, inhibit 3-hydroxy-3-methylglutaryl CoA reductase (HMG-CoAR), the rate-limiting enzyme of the mevalonate pathway. This leads to inhibition of cholesterol synthesis and to decreased expression of the cholesterol efflux transporters ABCA1 and ABCG1 in various cell types. In addition, the production of the isoprenoids farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) is suppressed by statins. Isoprenylation is required for the binding to the plasma membrane of small GTP-ases, like Ras and Rho, and their subsequent participation in signal transduction. The cytotoxic effects of statins in acute myeloid leukemia (AML) have been attributed to their cholesterol-lowering properties. Yet, recent in vitro experiments have demonstrated a key role for isoprenylation in this respect. However, direct effects of in vivo applied statins on AML cells have not been demonstrated. The aim of this study was to verify whether effects of simvastatin on AML cells in vitro also translate to the in vivo situation. AML patients (n=12) were treated for 7 days with high dose simvastatin (7.5-15 mg/kg/day) before initiating chemotherapy. Before and at the end of simvastatin-treatment serum lipid levels were determined and AML mononuclear cells (MNCs) from bone marrow or peripheral blood were collected. Despite a decrease in serum cholesterol (from 4.0 to 2.3 mmol/L, p=0.002), lathosterol (indicator of cholesterol synthesis, from 3.4 to 0.6 μmol/L, p=0.02), and low density lipoprotein (LDL, from 2.5 to 1.1 mmol/L, p=0.004) after simvastatin-treatment, the expected changes in mRNA expression of cholesterol metabolism genes (HMG-CoAR, LDLR, ABCA1 and ABCG1) were not observed in AML MNCs. Gene set enrichment analysis on paired samples of AML patient MNCs before and at the end of simvastatin treatment revealed that mainly pathways involved in cell signaling (e.g., MAPK, GPCR, and RHO pathways) and immune responses were affected by simvastatin, suggesting that indeed inhibition of isoprenylation could play a role. These data prompted us to employ a mouse model that allowed comparison of the effects in bone marrow MNCs versus liver cells, the major target organ of statins. Mice were treated for 7 days with a dose equivalent to 150 mg/kg/day, after which bone marrow MNCs and liver cells were analyzed. Again, no changes in HMG-CoAR and LDLR mRNA expression were found in bone marrow MNCs upon simvastatin treatment, while ABCA1 and ABCG1 were decreased 1.6-fold (p=0.004) and 2.1-fold (p=0.005), respectively. In contrast, in liver cells HMG-CoAR (12-fold, p<0.001) and LDLR (2-fold, p=0.02) were upregulated, whereas ABCA1 and ABCG1 mRNA expression remained unchanged. Simvastatin treatment reduced geranylgeranylation of Rap1, a protein that is exclusively geranylgeranylated, in bone marrow MNCs (1.6-fold, p=0.004) but not in liver cells. No differences in the degree of farnesylation of DnaJ (exclusively farnesylated) before and after statin treatment were observed in either bone marrow MNCs or liver cells. In vitro experiments on primary mouse and human bone marrow MNCs indicated that inhibition of geranylgeranylation occurs at a much lower, physiologically achievable concentration (<1 μM) of simvastatin, than inhibition of farnesylation or changes in cholesterol metabolism gene expression (>25 μM). In conclusion, we demonstrated an inhibition of especially geranylgeranylation in bone marrow MNCs, not liver cells, upon in vivo treatment with a high dose of simvastatin, which may be involved in the cytotoxic effects on AML cells. Supported by a grant of the Dutch Cancer Society. Disclosures: No relevant conflicts of interest to declare.

1983 ◽  
Vol 1 (4) ◽  
Author(s):  
RichardH. Wheeler ◽  
DanielJ. Clauw ◽  
RonaldB. Natale ◽  
RaymondW. Ruddon

1992 ◽  
Vol 3 (suppl b) ◽  
pp. 123-127 ◽  
Author(s):  
Hans-Georg Klingemann ◽  
Heather Deal ◽  
Dianne Reid ◽  
Connie J Eaves

Despite the use of high dose chemoradiotherapy for the treatment of acute leukemia. relapse continues to be a major cause of death in patients given an autologous bone marrow transplant. Further augmentation of pretransplant chemotherapy causes life threatening toxicity to nonhematopoietic tissues and the effectiveness of currently available ex vivo purging methods in reducing the relapse rate is unclear. Recently, data from experimental models have suggested that bone marrow-derived lymphokine (IL-2)-activated killer (BM-LAK) cells might be used to eliminate residual leukemic cells both in vivo and in vitro. To evaluate this possibility clinically, a procedure was developed for culturing whole marrow harvests with IL-2 prior to use as autografts, and a number of variables examined that might affect either the generation of BM-LAK cells or the recovery of the primitive hematopoietic cells. The use of Dexter long term culture (LTC) conditions, which expose the cells to horse serum and hydrocortisone. supported LAK cell generation as effectively as fetal calf serum (FCS) -containing medium in seven-day cultures. Maintenance of BM-LAK cell activity after a further seven days of culture in the presence of IL-2 was also tested. As in the clinical setting. patients would receive IL-2 in vivo for an additional week immediately following infusion of the cultured marrow autograft. Generation ofBM-LAK activity was dependent on the presence of IL-2 and could be sustained by further incubation in medium containing IL-2. Primitive hematopoietic cells were quantitated by measuring the number of in vitro colony-forming progenitors produced after five weeks in secondary Dexter-type LTC. Maintenance of these 'LTC-initiating cells' was unaffected by lL-2 in the culture medium. These results suggest that LAK cells can be generated efficien tly in seven-day marrow autograft cultures containing IL-2 under conditions that allow the most primitive human hematopoietic cells currently detectable to be maintained.


2021 ◽  
Author(s):  
meng li ◽  
ning yang ◽  
li hao ◽  
wei zhou ◽  
lei li ◽  
...  

Abstract ObjectivesSteroid-induced osteoporosis (SIOP) is a secondary osteoporosis, which is a systemic bone disease characterized by low bone mass, bone microstructure damage, increased bone fragility, and easy fracture. However, the specific mechanism remains unclear. Glucocorticoid-induced death of osteoblasts and bone marrow mesenchymal stem cells (BMSCs) is an important factor in SIOP. Ferroptosis is an iron-dependent programmed cell death that differs from apoptosis, cell necrosis, and autophagy, which can be induced by many factors. Herein, we aimed to explore whether glucocorticoids (GCs) cause ferroptosis in BMSCs and determine possible treatment pathways and mechanisms of action. Melatonin (MT), a hormone secreted by the pineal gland, displays strong antioxidant abilities to scavenge free radicals and alleviates ferroptosis in many tissues and organs. MethodsIn this study, we used high-dose dexamethasone (DEX) to observe whether glucocorticoids induced ferroptosis in BMSCs. We then assessed whether MT can inhibit the ferroptotic pathway, thereby providing early protection against GC-induced SIOP, and investigated the signaling pathways involved.ResultsIn vitro experiments showed that MT intervention significantly improved GC-induced ferroptosis in BMSCs and significantly improved SIOP in vivo. Pathway analysis showed that MT improves ferroptosis by activating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) axis. MT upregulates expression of PI3K, which is an important regulator of ferroptosis resistance. PI3K activators mimic the anti-ferroptosis effect of MT, but after blocking the PI3K pathway, the effect of MT is weakened. Obviously, MT can protect against SIOP induced by GC. Notably, even after GC-induced ferroptosis begins, MT can confer protection against SIOP. ConclusionOur research confirms that GC-induced ferroptosis is closely related to SIOP. Melatonin can inhibit ferroptosis by activating the PI3K-AKT-mTOR signaling pathway, thereby reducing the occurrence of steroid-induced osteoporosis. Therefore, MT may provide a novel strategy for preventing and treating SIOP.


2009 ◽  
Vol 56 (2) ◽  
Author(s):  
Leszek Sliwiński ◽  
Joanna Folwarczna ◽  
Barbara Nowińska ◽  
Urszula Cegieła ◽  
Maria Pytlik ◽  
...  

Genistein, a major phytoestrogen of soy, is considered a potential drug for prevention and treatment of postmenopausal osteoporosis. The aim of the present study was to compare the effects of genistein, estradiol and raloxifene on the skeletal system in vivo and in vitro. Genistein (5 mg/kg), estradiol (0.1 mg/kg) or raloxifene hydrochloride (5 mg/kg) were administered daily by a stomach tube to mature ovariectomized Wistar rats for 4 weeks. Bone mass, mineral and calcium content, macrometric parameters and mechanical properties were examined. Also the effects of genistein, estradiol and raloxifene (10(-9)-10(-7) M) on the formation of osteoclasts from neonatal mouse bone marrow cells and the activity of osteoblasts isolated from neonatal mouse calvariae were compared. In vivo, estrogen deficiency resulted in the impairment of bone mineralization and bone mechanical properties. Raloxifene but not estradiol or genistein improved bone mineralization. Estradiol fully normalized the bone mechanical properties, whereas genistein augmented the deleterious effect of estrogen-deficiency on bone strength. In vitro, genistein, estradiol and raloxifene inhibited osteoclast formation from mouse bone marrow cells, decreasing the ratio of RANKL mRNA to osteoprotegerin mRNA expression in osteoblasts. Genistein, but not estradiol or raloxifene, decreased the ratio of alkaline phosphatase mRNA to ectonucleotide pyrophosphatase phosphodiesterase 1 mRNA expression in osteoblasts. This difference may explain the lack of genistein effect on bone mineralization observed in ovariectomized rats in the in vivo study. Concluding, our experiments demonstrated profound differences between the activities of genistein, estradiol and raloxifene towards the osseous tissue in experimental conditions.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2-2
Author(s):  
Renata Grozovsky ◽  
Antonija Jurak Begonja ◽  
John H. Hartwig ◽  
Herve Falet ◽  
Karin M Hoffmeister

Abstract The human body produces and removes 1011 platelets daily to maintain a normal steady-state platelet count, and the level of production can be greatly increased under conditions of platelet destruction. Thrombopoietin (TPO) is the primary regulator of platelet production, supporting the survival, proliferation and differentiation of platelet precursors, bone marrow megakaryocytes. Hepatocytes are a major source of production and secretion of circulating TPO. However, mechanisms regulating circulating TPO levels have been debated for decades. Here, we provide experimental evidence that platelets lacking sialic acid (desialylated platelets) are removed by the hepatic Ashwell-Morell receptor (AMR or asialoglycoprotein receptor), thereby regulating platelet survival and hepatic TPO levels. These conclusions are based on the following evidence: 1) Mice lacking the AMR Asgr2 subunit had increased platelet survival, compared to wild type (WT) mice. Platelets from Asgr2-null mice showed increased loss of sialic acid, as evidenced by flow cytometry using the galactose specific lectins RCAI and ECL, showing that removal of desialylated platelets by the AMR regulates in vivo platelet survival. 2) Livers isolated from Asgr2-null mice had TPO mRNA levels decreased by 40%, compared to WT mice. In contrast, liver TPO mRNA levels were increased by 30% in St3gal4-null mice lacking the sialyltransferase ST3GalIV, where desialylated platelet clearance is increased and specifically mediated by the AMR. Both plasma TPO levels and platelet TPO contents were similarly altered in both mutant mice. Thus, desialylated platelet uptake by the AMR regulated liver TPO levels. 3) Desialylated platelets isolated from St3gal4-null or Asgr2-null mice infused into WT mice increased hepatic TPO mRNA levels as early as 12h post-infusion. Plasma TPO concentrations and bone marrow megakaryocyte numbers increased in parallel with TPO mRNA levels, peaking by day 2 post-infusion, followed by new platelet release at day 10 post-infusion. In contrast, desialylated platelets infused into Asgr2-null mice had no effect on TPO mRNA synthesis, TPO plasma levels and bone marrow megakaryocyte numbers. 4) Incubation of human hepatoma cell line, HepG2 cells, with human desialylated platelets by sialidase treatment resulted in TPO mRNA expression increase by 2.2 and 2.9-fold after 4 and 6h, respectively, followed by significant increase in TPO secretion. 5) The signaling pathways activated by uptake of desialylated platelets by the AMR to induce TPO mRNA transcription were investigated in vivo and in vitro. Major polypeptides of 60-70 and 125 kDa were highly tyrosine phosphorylated in WT liver cells, as evidenced by SDS-PAGE. Using a specific antibody directed against JAK2, we identified the 125-kDa phosphoprotein as the tyrosine kinase JAK2 in mouse liver cells and human HepG2 cells. Analysis of liver samples revealed a marked reduction in JAK2 phosphorylation in Asgr2-null mice and significant increase in St3gal4-null mice. 6) The JAK1/2 inhibitor AZD1480 significantly decreased phosphorylation of JAK2, phosphorylation and translocation to the nucleus of the acute phase response transcription factor STAT3, TPO mRNA expression and TPO secretion in HepG2 cells incubated with desialylated platelets. In vivo treatment of WT mice with AZD1480 blocked TPO mRNA increase promoted by injection of endogenously desialylated platelets. Therefore we conclude that platelets desialylate as they circulate, thereby becoming the primary AMR ligand and providing a novel physiological feedback mechanism to regulate plasma TPO levels and platelet production in vivo and in vitro. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 640-640
Author(s):  
Karin Vanderkerken ◽  
Eline Menu ◽  
Thomas Stromberg ◽  
Hendrik De Raeve ◽  
Kewal Asosingh ◽  
...  

Abstract Multiple myeloma (MM) represents a B-cell malignancy, characterized by monoclonal proliferation of plasma cells in the bone marrow (BM) and is associated with osteolysis and angiogenesis. Insulin-like growth factor-1 (IGF-1), produced by the BM stromal cells, has been described as an important factor in the survival, proliferation and migration of MM cells. The latter process is involved in the homing of the MM cells to the BM. IGF-1 also induces VEGF secretion by the MM cells, thus stimulating angiogenesis in the BM. As IGF-1 is a pleiotropic factor in MM, therapeutic strategies targeting the IGF-1R may be effective as anti-tumor treatments. In this work we investigated the effect of an IGF-1 receptor tyrosine kinase inhibitor (picropodophyllin or PPP1) in the murine, syngeneic 5T33MM model of multiple myeloma. This mouse model is representative for the human disease and can combine in vitro and in vivo studies. We first investigated the effects of PPP on the MM cells in vitro. We and others have previously demonstrated that IGF-1 induced ERK activation, involved in VEGF secretion and proliferation. When the 5T33MM cells were preincubated with 1microM PPP, Western blot analysis demonstrated the blocking of this activation. Furthermore, when the 5T33MM cells were preincubated with PPP for 30 min, IGF-1 induced VEGF secretion and proliferation of the 5T33MM cells were completely blocked. Next, we used the tyrosine kinase inhibitor PPP in vivo. 5T33MM cells were injected intravenously in C57BLKaLwRij mice and the development of the disease was monitored by measuring the serum paraprotein concentration. Mice were either treated with a low (17mM, IP, twice a day) or a high dose of PPP (50mM, IP, twice a day) or with the vehicle (DMSO/oil 9/1) from the day of injection with 5T33MM onward. At week 3, vehicle controls showed signs of morbidity and were sacrificed. The presence of tumor was measured by assessing serum paraprotein concentrations and determining the proportion of idiotype positive cells in the BM by flow cytometry. Angiogenesis was assessed by measuring the microvessel density on CD31 stained paraffin sections. The tumor burden in the bone marrow in the PPP treated mice was 77% lower than in vehicle treated animals (p< 0,0001) and the serum paraprotein concentration was 90% lower (p< 0,0001). The microvessel density in the BM of the PPP treated group was reduced by 60% (p< 0,02). In a separate survival experiment the mice were either treated with the vehicle or with the high dose (50mM) of PPP, from the time of tumor injection. Kaplan-Meier analysis demonstrated a significant increase in survival after treatment with PPP when compared with vehicle (28 vs. 18 days, p<0,001). These data demonstrate that the IGF-1RTK inhibitor PPP possesses strong anti-tumor activity, as demonstrated both in vitro and in vivo in a syngeneic model of multiple myeloma, and may therefore be an effective therapeutic candidate for MM treatment.


Blood ◽  
1976 ◽  
Vol 48 (2) ◽  
pp. 301-307 ◽  
Author(s):  
HM Pinedo ◽  
BA Chabner ◽  
DS Zaharko ◽  
JM Bull

Abstract The effects of constant exposure to high concentrations of methotrexate in vivo on the committed stem cell (CFU-C) were studied by in vitro culture of mouse bone marrow. Bone marrow samples were obstained from animals receiving a continuous infusion, and were cultured in a methotrexate-free semisolid gel system. The effects of methotrexate infusion on the pluripotent stem cell population (CFU-S) were studied as well. Constant exposure to 10(-5) M methotrexate produced a rapid decrease in total nucleated cells per femur, reaching 35% of control at 12 hr and remaining at approximately this level throughout 48 hr of drug infusion. A decrease in the number of both CFU-C and CFU-S per femur was observed, which paralleled the drop in nucleated cells during the first 24 hr. However, in contrast to an additional drop in the number of CFU-S, an increase of CFU-C number per femur was observed from 24 to 48 hr. These data indicated a self-limited cell kill of nucleated bone marrow cells, and suggested recruitment of CFU-C from the CFU-S pool between 24 and 48 hr of infusion despite continued methotrexate infusion.


1990 ◽  
Vol 18 (6) ◽  
pp. 454-458 ◽  
Author(s):  
Brian H. Kushner ◽  
Subhash C. Gulati ◽  
Richard J. O′Reilly ◽  
Glenn Heller ◽  
Nai-Kong V. Cheung
Keyword(s):  

2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Yongfeng Song ◽  
Xiujuan Zhang ◽  
Wenbin Chen ◽  
Ling Gao

Subclinical hypothyroidism (SCH) is defined as increased serum thyroid-stimulating hormone (TSH) concentrations and normal serum thyroid hormone (TH) levels as well as an increased serum cholesterol level, which is an important cause of secondary hypercholesterolemia and cardiovascular diseases. Some studies have demonstrated a direct effect of TSH on cholesterol metabolism via in vivo and in vitro experiments. However, because no suitable SCH model has been established until now, the changes in cholesterol synthesis that occur in SCH patients remain unknown. Here, we establish an SCH mouse model by using long-term low-dose MMI administered in drinking water. Compared with the control group, the MMI-treated mice had elevated circulating TSH levels, but the serum FT3 levels in these mice did not change. Additionally, the TC levels increased in both the serum and liver of the experimental mice. Both the protein expression and activity of hepatic HMGCR, the rate-limiting enzyme for cholesterol synthesis in the liver, increased in these mice. We also found that the SCH mice had decreased phospho-HMGCR and phospho-AMPK expression, while the expression of AMPK showed no change. In conclusion, we established a suitable SCH model in which cholesterol synthesis is increased.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tom Houben ◽  
Tulasi Yadati ◽  
Robbin de Kruijf ◽  
Marion J. J. Gijbels ◽  
Joost J. F. P. Luiken ◽  
...  

Lifestyle- and genetically induced disorders related to disturbances in cholesterol metabolism have shown the detrimental impact of excessive cholesterol levels on a plethora of pathological processes such as inflammation. In this context, two-hydroxypropyl-β-cyclodextrin (CD) is increasingly considered as a novel pharmacological compound to decrease cellular cholesterol levels due to its ability to increase cholesterol solubility. However, recent findings have reported contra-indicating events after the use of CD questioning the clinical applicability of this compound. Given its potential as a therapeutic compound in metabolic inflammatory diseases, in this study, we evaluated the inflammatory effects of CD administration in the context of cholesterol-induced metabolic inflammation in vivo and in vitro. The inflammatory and cholesterol-depleting effects of CD were first investigated in low-density lipoprotein receptor knockout (Ldlr-/) mice that were transplanted with Npc1nih or Npc1wt bone marrow and were fed either regular chow or a high-fat, high-cholesterol (HFC) diet for 12 weeks, thereby creating an extreme model of lysosomal cholesterol-induced metabolic inflammation. In the final three weeks, these mice received daily injections of either control (saline) or CD subcutaneously. Subsequently, the inflammatory properties of CD were investigated in vitro in two macrophage cell lines and in murine bone marrow-derived macrophages (BMDMs). While CD administration improved cholesterol mobilization outside lysosomes in BMDMs, an overall pro-inflammatory profile was observed after CD treatment, evidenced by increased hepatic inflammation in vivo and a strong increase in cytokine release and inflammatory gene expression in vitro in murine BMDMs and macrophages cell lines. Nevertheless, this CD-induced pro-inflammatory profile was time-dependent, as short term exposure to CD did not result in a pro-inflammatory response in BMDM. While CD exerts desired cholesterol-depleting effects, its inflammatory effect is dependent on the exposure time. As such, using CD in the clinic, especially in a metabolic inflammatory context, should be closely monitored as it may lead to undesired, pro-inflammatory side effects.


Sign in / Sign up

Export Citation Format

Share Document