Leukemia Inhibitory Factor (LIF) Is Secreted by Marrow-Derived Human Mesenchymal Stem Cells (huMSC) and Inhibits Umbilical Cord Blood (UCB) Hematopoietic Stem Cell (HSC) Proliferation at Early Time Points During In Vitro Expansion.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3843-3843
Author(s):  
Phil Paul ◽  
Margaret Forster ◽  
Graham Chapman ◽  
Mathew Lesniewski ◽  
Mary J. Laughlin

Abstract Abstract 3843 Background. The defining characteristic of stem cells is their ability for asymmetric division to provide progenitors for specific tissue generation, while maintaining renewal of the stem cell population. LIF protein has been shown to be critical for maintaining embryonic stem cells in an undifferentiated state. UCB HSC in vitro expansion using cytokines has been pursued to augment hematopoietic recovery following UCB transplantation. Our previous studies have shown that a feeder layer of huMSC inhibits UCB HSC proliferation and differentiation during short-term cytokine-driven expansion. We sought to determine whether LIF is secreted by huMSC and if so, at what concentrations, and to elicit its role, if any, in inhibiting cytokine-driven UCB HSC proliferation. Methods. Third passage huMSC were cultured at density 2×10e6/ml in DMEM supplemented with 10% FBS. Supernatant was collected at 24, 36, 48, and 72h and analyzed for LIF secretion by ELISA. UCB was obtained, and MNC were separated on a Histopaque-1077 density gradient. UCB CD133+ cells were isolated using AutoMACS magnetic cell sorter (Miltenyi Biotec) and surface stained for LIF receptor (LIF-R) using anti hLIF-Rα antibody (R&D Systems). LIF-R expression by isolated UCB CD133+ HSC was confirmed by Western blot (n=3). Isolated UCB CD133+ HSCs were plated in 24 well plates at density 3.3×10e3/ml and cultured in StemPro™ media supplemented with 10% FBS, L-glutamine, penicillin, streptomycin and amphotericin B. UCB CD133+ HSCs were culture-expanded for 96h with or without recombinant human LIF (10ng/ml) in a combination of cytokines including: IL-3, IL-6, Flt-3L, SCF, G-CSF, and EPO. At 0, 48, and 96h cell counts were obtained. Given variability of LIF & LIF-R expression by primary human CD133 HSC, we compared the expression of key factors in the LIF signaling pathway between the TF-1 cell line (CD34+/CD38+) and the tumorigenic sub-clone, TF-1a cell line which displays a more primitive HSC phenotype (CD34+/CD38−), using quantitative PCR (qPCR). TF-1 and TF-1a cells (ATCC) were propagated as defined by ATCC. TF-1 cultures were supplemented with human GM-CSF (required for growth of these factor-dependent cells). Cell cultures were maintained at density range 0.3–5×10e5/ml for TF-1 cells and 0.3–3×10e6/ml for TF-1a per ATCC guidelines. Culture aliquots containing equivalent numbers of suspended cells from TF-1 and TF-1a cultures were collected by centrifugation and total RNA prepared (Trizol). RNA was quantified by spectrophotometry and equivalent amounts were used to prepare cDNA by reverse transcription. qPCR was performed in 96-well plates using commercially available Taq-Man primers, with GAPDH used as endogenous control. The assays were run on an ABI 7500 Fast system and SDS software. Comparisons to the control transcript were performed using the 2-(ddCt) method, after verifying baseline, threshold, and completion of reactions as indicated by the plateau phase of the amplification curve. Results. huMSC secreted LIF at all 4 time points, with peak secretion at 48h (mean 52.1(±3.3) pg/ml) (n=3). Surface expression of LIF-R on gated CD133+ cells was 2.61%. At 48h in vitro expansion, higher UCB CD133+ cell counts in cultures without LIF were noted [6.3×10e4 (±0.9)/ml], versus cultures with LIF [4.4×10e4 (±0.8)/ml] suggesting LIF inhibits UCB HSC proliferation. We observed little difference in LIF transcript secreted by TF-1 and TF-1a cells, but a significant down-regulation of LIF-R in TF-1a (RQ=-6.37) compared to TF-1 cells. Similarly, there was a reduction of SOCS3 transcript in TF-1a cells (RQ=-5.23) compared to TF-1 cells. However, expression of Myc, a primary downstream target of LIF-JAK/STAT signaling, did not differ between TF-1 and TF-1a. Conclusions. LIF secretion by huMSC peaks at 48h at a concentration 3 logs lower than that previously used to inhibit embryonic stem cell differentiation (10ng/ml). LIF exerted inhibitory effects on UCB HSC proliferation at early time points (48h) in cytokine-driven in vitro expansion studies. We observed a down-regulation of the LIF-R and the SOCS3 transcript as might be expected. These data are the first to demonstrate and characterize LIF secretion by huMSC. Further studies are ongoing to further clarify cellular pathways involved in the regulation of LIF signaling on UCB CD133+ HSC differentiation during short-term in vitro cytokine expansion. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4262-4262
Author(s):  
G. Chapman ◽  
J.J. Banks ◽  
L.R. Fanning ◽  
M. Kozik ◽  
M.R. Finney ◽  
...  

Abstract In vitro expansion of UCB using cytokines has been pursued to overcome the limited stem cell content of a single UCB graft. We have previously demonstrated that a feeder layer of huMSC inhibits UCB HSC differentiation during short-term cytokine-driven expansion in vitro. The protein LIF has been shown to inhibit the differentiation of neurosphere stem cells during 3 week culture over a monolayer of murine stromal cells (C. Shih, et al., 2001). We sought to investigate the hypothesis that LIF secreted by bone marrow (BM) derived huMSCs is involved in inhibition of UCB HSC differentiation during short-term cytokine-driven expansion in vitro. BM derived huMSCs (third passage) were cultured at 2x10^6/ml in DMEM supplemented with 10% FBS. Supernatant was collected at 24, 36, 48, and 72 hours and analyzed for LIF secretion levels by ELISA (Quantikine). LIF secreted by huMSC was noted at all four time points, with peak secretion at 48 h (mean 52.1±3.3 pg/ml) (n=3). UCB was obtained according to institutional guidelines after normal full-term deliveries, collected into bags with citrate dextrose (Allegiance), and MNC were separated on a Histopaque-1077 (Sigma) density gradient. UCB CD133+ cells were isolated using AutoMACS magnetic cell sorter (Miltenyi) and surface stained for LIF receptor (LIF-R). Surface expression of LIF-R on gated CD133+ cells was 2.61%. Total LIF-R expression in isolated CD133+ cells was further confirmed by Western blot (n=3) using anti-LIF-R antibody (Chemicon). Isolated UCB CD133+ were plated in 24 well plates at 3.3x10^3/ml and cultured in StemPro™ media supplemented with 10% FBS, L-glutamine, penicillin, streptomycin and amphotericin B (Gibco). UCB CD133+ were culture-expanded for 96h with or without the addition of recombinant human LIF (Chemicon) (10ng/ml) in a combination of cytokines including: IL-3 (20 ng/mL), IL-6 (20 ng/mL), Flt-3L (100 ng/mL) (R&D), SCF (100 ng/mL), G-CSF (20 ng/mL), and EPO (0.1 U/mL) (Amgen Inc.). At 0, 48, and 96 h cell counts were obtained and flow analysis was performed including surface staining for: CD133, CD34, CD38, HLA-DR, CD33, CD71, and CD41B (Becton Dickinson). At 48 hours, higher cell counts in cultures without LIF were noted 6.3x10^4 ± 0.9/ml, compared with cultures with LIF 4.4x10^4 ± 0.8/ml. However, at 96 h cell counts equalized when comparing cultures with or without LIF at 7.510x10^4 ± 0.9/ml, and 7.8x10^4±0.9/ml respectively (n=6). Surface expression of differentiation markers on gated CD133+ cells did not differ when comparing cultures (n=3). In summary, we observed LIF secretion by MSC peaks at 48 h at a concentration 3 logs lower than that previously used to inhibit stem cell differentiation (10 ng/ml). Although LIF-R is expressed on CD133+ HSC, no difference in cell expansion nor surface phenotype of UCB 133+ cells was observed at early time points (96h) during expansion in cytokines with or without the addition of LIF. Taken together, huMSC mediated inhibition of cytokine-driven UCB HSC differentiation is not attributable to LIF secretion alone and may require direct cell contact between UCB CD133 HSC and huMSC. Studies are ongoing to determine whether LIF may augment huMSC-based UCB CD133 expansion.


2021 ◽  
Vol 11 (4) ◽  
pp. 1941
Author(s):  
Seungmin Yeom ◽  
Myung Chul Lee ◽  
Shambhavi Pandey ◽  
Jaewoon Lim ◽  
Sangbae Park ◽  
...  

Induced pluripotent stem cells (iPSCs) are a good medicine source because of their potential to differentiate into various tissues or cells. However, traditionally, iPSCs made by specific transgenes and virus vectors are not appropriate for clinical use because of safety concerns and risk of tumor development. The goal of this research was to develop an alternative method for reprogramming, using small molecules and external stimuli. Two groups were established: short-term shear stress (STSS) under suspension culture and a combination of short-term shear stress and vitamin C (SSVC) under suspension culture. For STSS, the pipetting was carried out for cells twice per day for 2 min for 14 days in the embryonic stem cell (ES) medium. In the case of SSVC, the procedure was the same as for STSS however, its ES medium included 10 µM of vitamin C. After 14 days, all spheroids were picked and checked for pluripotency by ALP (alkaline phosphatase) assay and immunocytochemistry. Both groups partially showed the characteristics of stem cells but data demonstrated that the spheroids under shear stress and vitamin C had improved stem cell-like properties. This research showed the possibility of external stimuli and small molecules to reprogram the somatic cells without the use of transgenes.


Blood ◽  
1993 ◽  
Vol 81 (2) ◽  
pp. 365-372 ◽  
Author(s):  
JP Wineman ◽  
S Nishikawa ◽  
CE Muller-Sieburg

We show here that mouse pluripotent hematopoietic stem cells can be maintained in vitro on stroma for at least 3 weeks at levels close to those found in bone marrow. The extent of stem cell maintenance is affected by the nature of the stromal cells. The stromal cell line S17 supported stem cells significantly better than heterogeneous, primary stromal layers or the stromal cell line Strofl-1. Stem cells cultured on S17 repopulated all hematopoietic lineages in marrow-ablated hosts for at least 10 months, indicating that this culture system maintained primitive stem cells with extensive proliferative capacity. Furthermore, we demonstrate that, while pluripotent stem cells express c-kit, this receptor appears to play only a minor role in stem cell maintenance in vitro. The addition of an antibody that blocks the interaction of c-kit with its ligand essentially abrogated myelopoiesis in cultures. However, the level of stem cells in antibody-treated cultures was similar to that found in untreated cultures. Thus, it seems likely that the maintenance of primitive stem cells in vitro depends on yet unidentified stromal cell-derived factor(s).


Zygote ◽  
2021 ◽  
pp. 1-6
Author(s):  
Gerelchimeg Bou ◽  
Shimeng Guo ◽  
Jia Guo ◽  
Zhuang Chai ◽  
Jianchao Zhao ◽  
...  

Summary The efficiency of establishing pig pluripotent embryonic stem cell clones from blastocysts is still low. The transcription factor Nanog plays an important role in maintaining the pluripotency of mouse and human embryonic stem cells. Adequate activation of Nanog has been reported to increase the efficiency of establishing mouse embryonic stem cells from 3.5 day embryos. In mouse, Nanog starts to be strongly expressed as early as the morula stage, whereas in porcine NANOG starts to be strongly expressed by the late blastocyst stage. Therefore, here we investigated both the effect of expressing NANOG on porcine embryos early from the morula stage and the efficiency of porcine pluripotent embryonic stem cell clone formation. Compared with intact porcine embryos, NANOG overexpression induced a lower blastocyst rate, and did not show any advantages for embryo development and pluripotent embryonic stem cell line formation. These results indicated that, although NANOG is important pluripotent factor, NANOG overexpression is unnecessary for the initial formation of porcine pluripotent embryonic stem cell clones in vitro.


2020 ◽  
pp. 019262332091824
Author(s):  
Richard Haworth ◽  
Michaela Sharpe

In 2011, Goldring and colleagues published a review article describing the potential safety issues of novel stem cell-derived treatments. Immunogenicity and immunotoxicity of the administered cell product were considered risks in the light of clinical experience of transplantation. The relative immunogenicity of mesenchymal stem cells, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs) was being addressed through in vitro and in vivo models. But the question arose as to whether the implanted cells needed to be identical to the recipient in every respect, including epigenetically, to evade immune recognition? If so, this set a high bar which may preclude use of many cells derived from iPSCs which have vestiges of a fetal phenotype and epigenetic memory of their cell of origin. However, for autologous iPSCs, the immunogenicity reduces once the surface antigen expression profile becomes close to that of the parent somatic cells. Therefore, a cell product containing incompletely differentiated cells could be more immunogenic. The properties of the administered cells, the immune privilege of the administration site, and the host immune status influence graft success or failure. In addition, the various approaches available to characterize potential immunogenicity of a cell therapy will be discussed.


2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Quyen A. Tran ◽  
Visar Ajeti ◽  
Brian T. Freeman ◽  
Paul J. Campagnola ◽  
Brenda M. Ogle

Developmental studies and 3D in vitro model systems show that the production and engagement of extracellular matrix (ECM) often precede stem cell differentiation. Yet, unclear is how the ECM triggers signaling events in sequence to accommodate multistep process characteristic of differentiation. Here, we employ transcriptome profiling and advanced imaging to delineate the specificity of ECM engagement to particular differentiation pathways and to determine whether specificity in this context is a function of long-term ECM remodeling. To this end, human mesenchymal stem cells (hMSCs) were cultured in 3D bioprinted prisms created from ECM proteins and associated controls. We found that exogenous ECM provided in 3D microenvironments at early time points impacts on the composition of microenvironments at later time points and that each evolving 3D microenvironment is uniquely poised to promote stem cell differentiation. Moreover, 2D cultures undergo minimal ECM remodeling and are ill-equipped to stimulate pathways associated with development.


2010 ◽  
Vol 22 (1) ◽  
pp. 354
Author(s):  
T. S. Rascado ◽  
J. F. Lima-Neto ◽  
S. E. R. S. Lorena ◽  
B. W. Minto ◽  
F. C. Landim-Alvarenga

The domestic cat can be used as a biological model for humans because of similarities in some disease and genetically transmitted conditions. Embryonic stem cells might complete nuclear reprogramming more efficiently than somatic cells and, therefore, are potentially useful for increasing interspecific cloning success. The objective of this study was to establish an effective culture system for inner cell mass (ICM)-derived cells in the domestic cat, testing the ability of the ICM to attach to the culture dish and to form embryonic stem cell colonies in the presence of fetal calf serum (FCS) and Knockout serum (KS). Moreover, knowing that the transcription factor Oct-4 is important for the maintenance of pluripotency in human and murine embryonic stem cells, the expression of this factor was evaluated in in vitro-produced blastocyst and in the attached ICM. Domestic cat oocytes were matured, fertilized, and cultured in vitro until the blastocyst stage. The ICM was mechanically isolated (n = 60) using a scalpel blade and transferred to a monolayer of chemically inactivated cat fibroblasts with 10 μg mL-1 mitomicin C. The base culture media (BM) was DMEM/F12 supplemented with nonessential amino acids, glutamine, leukemia inhibitory factor, fibroblast growth factor-2, 2-mercaptoethanol, and antibiotics. Three groups were tested: G1 = BM with 20% FCS (20); G2 = BM with 20% KS (20); G3 = BM with 15% FSC and 5% KS (20). Culture was performed in a 5% CO2 in air incubator at 38.5°C. No statistical difference was observed among groups in relation to ICM attachment (chi-square, P > 0.05). Ninety percent of the ICM presented good adhesion after 3 days of culture and started to grow in all media tested. However, until now, no good colonies were formed. Fifteen blastocysts and 10 attached ICM were fixed in 3% paraformaldehyde and permeabilized in 0.2% triton X-100 in PBS. Subsequently, to block nonspecific binding of the primary antibody, the preadsorption for 2 h at room temperature with OCT4 blocking peptide (sc-8628P, Santa Cruz Biotechnology, Santa Cruz, CA, USA) was used. Samples were incubated with Oct4 antibody (N-19 : sc 8628, Santa Cruz Biotechnology) and with the appropriate secondary antibody (A21431, Invitrogen) and examined by fluorescence microscopy. Oct4 protein was detected both in the ICM and trophoderm cells, and it was distributed in cytoplasm and nuclei. These embryos were also stained with Hoechst 33342. Although further standardization of the culture media is needed, it seems that the KS can be replaced by FCS in cat embryonic stem cell culture. Furthermore, the immunostain of the trophoderm with Oct-4 indicates a difference in the expression of this factor when compared with its expression on human and murine blastocysts. This could be related to in vitro production, or Oct 4 is not a good pluripotency marker for cat embryos and cat embryonic stem cell, consequently. This fact has been noted in goat, bovine, and porcine embryos. Acknowledgment is given to FAPESP.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
XiaoLin Sun ◽  
HongXiao Li ◽  
Ye Zhu ◽  
Pei Xu ◽  
QiSheng Zuo ◽  
...  

The use of stem cells in generating cell-based pacemaker therapies for bradyarrhythmia is currently being considered. Due to the propensity of stem cells to form tumors, as well as ethical issues surrounding their use, the seed cells used in cardiac biological pacemakers have limitations. Very small embryonic-like stem cells (VSELs) are a unique and rare adult stem cell population, which have the same structural, genetic, biochemical, and functional characteristics as embryonic stem cells without the ethical controversy. In this study, we investigated the ability of rat bone marrow- (BM-) derived VSELs to differentiate in vitro into cardiomyocytes by 5-Azacytidine (5-AzaC) treatment. The morphology of VSELs treated with 10 μM 5-AzaC increased in volume and gradually changed to cardiomyocyte-like morphology without massive cell death. Additionally, mRNA expression of the cardiomyocyte markers cardiac troponin-T (cTnT) and α-sarcomeric actin (α-actin) was significantly upregulated after 5-AzaC treatment. Conversely, stem cell markers such as Nanog, Oct-4, and Sox2 were continuously downregulated posttreatment. On day 14 post-5-AzaC treatment, the positive expression rates of cTnT and α-actin were 18.41±1.51% and 19.43±0.51%, respectively. Taken together, our results showed that rat BM-VSELs have the ability to differentiate into cardiomyocytes in vitro. These findings suggest that VSELs would be useful as seed cells in exploring the mechanism of biological pacemaker activity.


Sign in / Sign up

Export Citation Format

Share Document