miR155 DOWNREGULATES EXPRESION of HGAL and INCREASES LYMPHOMA CELL MOTILITY

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 464-464 ◽  
Author(s):  
Liat Nadav Dagan, ◽  
Xiaoyu Jiang ◽  
Izidore S Lossos

Abstract Abstract 464 HGAL is a germinal center (GC)-specific gene that inhibits lymphocyte and lymphoma cell motility and whose expression predicts improved survival of patients with diffuse large B-cell lymphoma (DLBCL) and classical Hodgkin lymphoma (cHL). Its specific expression only in the GC B-cells and GC-derived lymphomas suggest the existence of a tight regulatory process. We have previously reported that IL-4 and IL-13 can induce HGAL RNA and protein expression (Lossos et al, Blood. 2003; Natkunam et al, Blood. 2007) and at this meeting we also report that HGAL transcription is regulated by BLIMP1 protein (Cubedo et al). However, recent observations suggest that the fine-tuned control of gene expression, necessary for the immune cell differentiation-specific gene expression, is frequently accomplished by miRNAs. Therefore we have searched three prediction algorithms, PicTar (http://pictar.mdc-berlin.de/), miRanda (http://cbio.mskcc.org/ mirnaviewer/), and TargetScan (http://www.targetscan.org/) to identify miRNAs potentially regulating HGAL expression. We have focused on miR155, predicted to target HGAL in the TargetScan algorithm, since miR155 is overexpressed in aggressive activated B-cell like (ABC) type of DLBCL, characterized by low expression of HGAL. Furthermore, miR155 plays an important role in the regulation of GC reaction (Thai et al, Science. 2007) and its overexpression in mice B-lymphocytes leads to preleukemic B cell proliferation followed by full blown B-cell malignancy (Costinean et al, Proc Natl Acad Sci USA. 2006). To test HGAL regulation by the miR155, precursor of hsa-miR-155 was transfected into VAL and Raji lymphoma cells that express endogenous HGAL protein. Western blotting of whole-cell lysates showed a decrease of native HGAL in both cell lines compared with control miRNA transfection. Transfection of hsa-miR155 precursor into 3 lymphoma cell lines did not result in uniform decreases in HGAL mRNA expression levels, suggesting main regulation at the protein translation level. Transfection efficacy in each experiment was confirmed by measurements of miR155 by TaqMan MicroRNA Assay. To confirm direct effect on HGAL expression, we fused 2614 bp 3'-UTR sequences of HGAL containing two putative binding sites (M1 positions 2285–2291 and M2 positions 1844–1849) to a luciferase reporter gene. Cotransfection of the hsa-miR155 precursor with the luciferase reporter significantly repressed luciferase activity compared to a nontargeting control. To identify the binding site and to further demonstrate the specificity of the interaction, we generated luciferase reporter constructs with mutations in the M1 and M2 binding sites. Mutagenesis of M2 but not M1 site reversed the inhibitory effect of miR155, thus establishing M2 as the binding site. Since HGAL inhibits motility and chemotaxis of B lymphocytes and B cell lymphoma cells, we next examined effect of mir155 on SDF1 and IL-6-induced chemotaxis and spontaneous motility of VAL and Raji cells. Decrease in HGAL protein levels by hsa-miR155 precursor led to increased cell chemotaxis, cell motility, and cell velocity and was associated with decreased actin polymerization (F-actin content). The-miR155 effect on chemotaxis was rescued by transfection of HGAL-encoding vector. Since HGAL exerts its motility inhibitory effects by activation of RhoA, we next evaluated effect of miR155 on levels of activated GTP-bound RhoA. Overexpression of miR155 resulted in decreased levels of GTP-bound RhoA in both Raji and Val cell lines. Our findings demonstrate that miR155 may not only lead to oncogenic transformation of B lymphocytes, but also increases lymphoma cell motility by down regulation of HGAL expression. This effect may contribute to lymphoma cell dissemination and aggressiveness, characteristic of ABC-like DLBCL typically expressing high levels of miR155 and lacking HGAL expression. Disclosures: No relevant conflicts of interest to declare.

2018 ◽  
Vol 60 (4) ◽  
pp. 1043-1052
Author(s):  
Marie-Sophie Dheur ◽  
Hélène A. Poirel ◽  
Geneviève Ameye ◽  
Gaëlle Tilman ◽  
Pascale Saussoy ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
pp. e2020073
Author(s):  
Xiaoqiang Zheng ◽  
Hongbing Rui ◽  
Ying Liu ◽  
Jinfeng Dong

This study aimed to explore the proliferation and apoptosis of B-cell lymphoma cells under targeted regulation of FOXO3 by miR-155. We analyzed the differences between B-cell lymphoma cells and B lymphocytes in expressions of miR-155 and FOXO3, explored the effects of miR-155 on proliferation and apoptosis of B-cell lymphoma cells, and relevant mechanisms, and also analyzed the relationship between expressions of miR-155 and FOXO3 in 42 patients with diffuse large B-cell lymphoma (DLBCL) and clinical characteristics of them. B-cell lymphoma cells showed a higher expression of miR-155 and a low expression of FOXO3 than B lymphocytes (both P<0.05). B-cell lymphoma cells transfected with miR-155-inhibitor showed significantly decreased expression of miR-155, significantly weakened cell proliferation ability and increased cell apoptosis rate (all P<0.05), and they also showed up-regulated expression of FOXO3 (P<0.05). Dual luciferase reporter assay revealed that there were targeted binding sites between miR-155 and FOXO3. Compared with B-cell lymphoma cells transfected with miR-155-inhibitor alone, those with co-transfection showed lower expression of FOXO3, higher proliferation and lower cell apoptosis rate (all P<0.05). The expression of miR-155 in DLBCL tissues was higher than that in tumor-adjacent tissues (P<0.05), and the expressions of miR-155 and FOXO3 were closely related to the international prognostic index (IPI) and the 5-year prognosis and survival of the patients (P<0.05). miR-155 can promote the proliferation of B-cell lymphoma cells and suppress apoptosis of them by targeted inhibiting FOXO3, and both over-expression of miR-155 and low expression of FOXO3 are related to poor prognosis of DLBCL patients.


2017 ◽  
Vol 59 (7) ◽  
pp. 1710-1716 ◽  
Author(s):  
Darius Juskevicius ◽  
Anne Müller ◽  
Hind Hashwah ◽  
Pontus Lundberg ◽  
Alexandar Tzankov ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4637-4637
Author(s):  
Gerald G. Wulf ◽  
Anita Boehnke ◽  
Bertram Glass ◽  
Lorenz Truemper

Abstract Anti-CD45 mediated cytoreduction is an effective means for T-cell depletion in rodents and humans. In man, the CD45-specific rat monoclonal antibodies YTH24 and YTH54 are IgG2b subclass, exert a predominantly complement-dependent cytolytic activity against normal T-lymphocytes, and have been safely given to patients as part of conditioning therapies for allogeneic stem cell transplantation. The efficacy of such antibodies against human lymphoma is unknown. Therefore, we evaluated the cytolytic activity of YTH24 and YTH54 by complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), as well as by direct apoptotic and antiproliferative effects, against a panel of Hodgkin disease (HD) and non-Hodgkin lymphoma (NHL) cell lines, and against primary specimens. Significant CDC activity (&gt;50% cytolysis) of the antibodies YTH54 and YTH24 was observed against three of five T-cell lymphoma lines, but against only one of nine B-cell lymphoma lines and none of four HD cell lines. The combination of YTH54 and YTH24 induced ADCC in all T-cell lymphoma cell lines and three primary leukemic T-cell lymphoma specimens, but were ineffective in B-cell lymphoma and HD cell lines.There were only minor effects of either antibody or the combination on lymphoma cell apoptosis or cell cycle arrest. In summary, anti-CD45 mediated CDC and ADCC via the antibodies YTH24 and YTH54 are primarily effective against lymphoma cells with T-cell phenotype, and may be an immunotherapeutic tool for the treatment of human T-cell lymphoma.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 786-786
Author(s):  
Bjoern Schneider ◽  
Stefan Nagel ◽  
Maren Kaufmann ◽  
Hans G. Drexler ◽  
Roderick A.F. MacLeod

Abstract Micro-RNA (miR) genes posttranscriptionally modulate target gene expression via imperfect 3′-UTR matching sequences and play key roles in development, homeostasis and cancer. Little is known how miR genes are themselves regulated, or deregulated in cancer. Chief paradigm for neoplastic miR deregulation concerns miR-17/92 cluster members subject to genomic amplification in B-cell lymphoma. While the repeated occurrence of oncogenic miR genes at or near chromosomal breakpoints in cancer links chromosome fragility to oncogenic miR deregulation, direct evidence of a causal connection remains tenuous. We found that t(3;7)(q27;q32) in a B-cell lymphoma cell line joins 5′-BCL6 to a noncoding region of chromosome 7 inside a common chromosomal fragile site (FRA7H). In these cells hybrid mRNA was absent, unlike canonical BCL6 translocations which involve promoter exchange yielding hybrid mRNA. Affected cells instead showed downregulation of miR-29b-1, the only gene located within FRA7H - a recurrent transcriptional feature of B-cell lymphoma subsets. In another BCL6 translocation, t(3;13)(q27;q31)t(13;12)(q31;p11), which 5′-RACE also showed to be non-fusogenic, long distance inverse (LDI)-PCR revealed junction of 5′-BCL6 to chromosome 13 sequences inside the miR-17/92 host gene MIRH1 (alias c13orf25). FISH using a sensitive tyramide amplification protocol with c13orf25 clones confirmed the presence of a cryptic BCL6-MIRH1 rearrangement. Surprisingly, reverse transcriptase quantitative (q) PCR assay revealed weak MIRH1 expression using 3′-primers. In contrast, repeating the assay using more central primers covering the miR-17/92 coding region showed massive upregulation. 3′-RACE confirmed a novel high level MIRH1 transcript truncated by 3.1 kbp. Quantitative genomic PCR and FISH excluded miR-17/92 genomic copy number alteration, while LDI-PCR analysis showed that formation of truncated MIRH1 involved multiple DNA cuts at 3q27 (x1), 12p11 (x1), and 13q31 (x5) – the last including a complex excision/inversion/insertion rearrangement. Stress induced DNA duplex destabilization (SIDD) analysis revealed that 6 of 7 breaks precisely coincided with fragility peaks. Taken together, these data suggest a novel role for BCL6 translocations in the deregulation of miR genes near sites of chromosome or DNA instability. BCL6 has been shown to suppress p53 in germinal center B-cells thus protecting B-cells from apoptosis induced by DNA damage, offering a possible explanation for chromosome rearrangements associated with genomic fragility therein. Chromosomal MIRH1 dysregulation is not limited to BCL6 expressing lymphomas, however: cytogenetic investigations performed on diverse leukemia-lymphoma cell lines, including those derived from multiple myeloma and plasma cell leukemia, showed 11/50 with cytogenetic rearrangements at or near MIRH1. In sister cell lines sequentially established at diagnosis and relapse of multiple myeloma, only the latter showed miR-17/92 chromosomal rearrangement and upregulation. Interestingly miR overexpression was limited to miR-92, while miR-17/18 were barely expressed. FISH analysis and qPCR showed that discrepant expression was associated with rearrangement upstream of MIRH1. In brief, our data show that like other cancer genes, oncogenic miRs are subject to dysregulation mediated by structural chromosome rearrangements.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 417-417
Author(s):  
Goldi A. Kozloski ◽  
Xiaoyu Jiang ◽  
Karen L. Bunting ◽  
Ari M. Melnick ◽  
Izidore S Lossos

Abstract Abstract 417 MicroRNAs (miRNAs) exhibit differential expression in cancer and can be used as prognostic biomarkers. MiR-181a expression is reported to be associated with survival and outcome in acute myeloid and chronic lymphocytic leukemia patients. We demonstrated that miR-181a levels are independently associated with improved survival of diffuse large B cell lymphoma (DLBCL) patients treated with R-CHOP (Rituximab, Cyclophosphamide, Adriamycin, Oncovin, Prednisolone). However, the mechanism underlying this observation and the function of miR-181a in DLBCL pathogenesis are unknown. MiR-181a was expressed at higher levels in centroblasts compared to naïve and memory B cells, and at significantly higher levels in GCB-like compared to ABC-like DLBCL cell lines (p=0.017). These observations suggested that miR-181a may differentially target critical signaling pathways in GCB and ABC DLBCL. NF-kB serves a critical role in ABC DLBCL survival. Utilizing 3 miRNA target prediction algorithms, multiple NF-κB signaling pathway transcripts harbored putative miR-181a binding sites. Consequently, we tested the effect of miR-181a on CARD11, IBKα, p105/p50, and C-Rel expression in DLBCL cell lines (HBL1, VAL). Compared with a scrambled miRNA control, miR-181a expression decreased protein and mRNA levels of these targets. To confirm the effect was direct, we fused the 3′-UTR sequences of CARD11, IBKα, p105 and C-Rel, each containing miR-181a putative binding sites, to a luciferase reporter gene. Co-transfecting miR-181a with the corresponding constructs, we demonstrated that all the constructs had significantly repressed luciferase activity compared with a non-targeting control. The effect was specific, since miR-181a did not affect luciferase activity of CARD11, IBKα, p105 and C-Rel reporter constructs with mutated binding sites. Using an NF-κB luciferase reporter assay, we next demonstrated that compared to a scrambled control, miR-181a significantly decreased NF-κB reporter activity in DLBCL cell lines (VAL, SUDHL6, OCILY7, OCILY19, HBL1, RCK8). MiR-181a also decreased NF-κB reporter activity induced by anti-IgM and TNFα stimulation. Concordantly, anti-miR-181a increased endogenous p105/p50 and C-Rel protein levels. Because ubiquitinated-IKKγ drives NF-κB signaling, we tested the effect of miR-181a in TNFα-stimulated 293T cells on ubiquitinated-IKKγ. MiR-181a decreased levels of ubiquitinated-IKKγ, corroborating the observed inhibitory effects on NF-κB signaling. We reasoned that NF-κB signaling repression should coincide with a decrease in endogenous transcription activity from NF-κB promoters. Indeed, miR-181a decreased mRNA expression levels of NF-κB target genes (BCL2, IRF4, IL-6, IKBa, FN1, PIM1, BLR1, CCL3, CFLAR, FCER2, TP53) as measured by qRT-PCR in miR-181a-transfected HBL1 cells. Because miR-181a directly targets p105/p50 and REL proteins, we postulated that this may be one of the main mechanisms of NF-κB signaling repression. Indeed, an electrophoresis mobility shift assay along with super-shifts analyses showed a decrease in the p105/p50 protein in HeLa nuclear extracts. To examine the biological significance of differential miR-181a expression between GCB- and ABC-like DLBCL and elucidate its potential role in DLBCL pathogenesis, we next assessed cell death (Annexin V, 7AAD) and cell proliferation (BrdU, 7AAD) in GCB (SUDHL4, OCILY7, OCILY19, VAL) and ABC (HBL1, OCILY10, RCK8, U2932) DLBCL cell lines transfected with GFP labeled precursor miR-181a. MiR-181a expression significantly increased cell death and apoptosis of ABC versus GCB DLBCL (p=0.006). This was associated with a more pronounced G1 phase growth arrest in the ABC DLBCL cells. Our studies demonstrate that miR-181a is a master regulator of canonical NF-kB signaling by regulating the expression of multiple components of this pathway, an effect that may underlie the distinct prognosis of DLBCL with different miR-181a expression levels. Furthermore, miR-181a down regulation may contribute to the pathogenesis of ABC DLBCL. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document