CDR3-Independent Expansion of Vδ1 γδ T Lymphocytes and Depletion of Vδ2 T Cells Are Unique Features in Acquired Chronic Pure Red Cell Aplasia,

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3429-3429
Author(s):  
Michishita Yoshihiro ◽  
Makoto Hirokawa ◽  
Naohito Fujishima ◽  
Yukiko Abe ◽  
Masumi Fujishima ◽  
...  

Abstract Abstract 3429 Background: Idiopathic PRCA and secondary PRCA associated with thymoma and large granular lymphocyte leukemia are major subtypes of adult-onset chronic PRCA. We have previously shown that these types of PRCA are responsive to immunosuppressive therapy but most patients require long-term maintenance immunosuppressive treatment. These results suggest that acquired chronic PRCA is an autoimmune disorder mediated by T lymphocytes and pathogenic T cell clones may be persistently present during remission. We have previously made an interesting observation that a thymoma-associated PRCA patient had an increase of Vd1 gd T cells in blood. We have also reported that recipients of allogeneic hematopoietic stem cell grafts had an oligoclonal expansion of Vd1 gd T cells and that Vd1 gd T clones had cytotoxicity against autologous EBV-transformed B cell line. Thus, gd T cell repertoires may be altered in PRCA patients in response to certain antigens. Objective: In order to clarify the role for gd T cells in the pathogenesis of chronic acquired PRCA, we have examined the gd T cell receptor repertoire in acquired chronic PRCA patients. Materials and Methods: Nineteen PRCA (8 idiopathic, 6 thymoma, 3 LGL-leukemia and 2 SLE) and 107 healthy volunteer donors were included in the study. This study was approved by the Institutional Review Board at Akita University and conducted in accordance with the Declaration of Helsinki. Blood lymphocyte subsets were analyzed by flow cytometry. Clonality of T cells was determined by complementarity-determining region 3 (CDR3) size distribution analysis and junctional sequence was determined by subcloning of PCR products and DNA sequencing. In some experiments, purified gd T cells from PRCA patients were co-cultured with allogeneic erythroid progenitor cells derived from CD34-positive cells in vitro in order to learn whether patient's gd T cells would exert cytotoxic or growth-inhibitory effect on erythroid progenitor cells. Results: The absolute numbers of ab T cells and gd T cells were normal in patients with PRCA, but there were an increase of Vd1 gd T cells and a decrease of Vd2 T cells (Table 1). More than 50% of Vd1 T cells from PRCA patients expressed HLA-DR, while 20 to 30% of those from healthy individuals expressed HLA-DR (Fig. 1). CDR3 size spectratyping revealed that CDR3 size distribution patterns were skewed in 9 out of 13 PRCA patients examined, although skewed CDR3 size distribution patterns were also observed in 7 out of 10 healthy individuals. In order to determine whether a particular Vd1-Jd rearrangement size was selected in PRCA patients, we performed statistical analysis comparing the CDR3 size distribution of 115 Vd1 TCR clones obtained by subcloning of PCR products in 7 PRCA patients versus 7 controls. No significant difference was found between the two groups (p=0.795 by Mann-Whitney test). Moreover, no apparent consensus amino acid motifs were identified in PRCA patients. Although the T cell clone carrying the -YWGIR- sequence in the CDR3d region was detected in 3 PRCA patients, the T cell clone carrying the -YWGIR- sequence was also detected in one healthy donor. Purified gdT lymphocytes from idiopathic PRCA neither showed an inhibitory effect on proliferation nor cytotoxicity against erythroid progenitor cells in vitro. Adjusted p value was calculated by Kruskal-Wallis ANOVA test. Conclusions: Expansion of Vd1 T cells and depletion of Vd2 T cells are unique features for chronic acquired PRCA. Expansion of Vd1 T cells does not seem to be the consequence of CDR3-dependent selection. Depletion of Vd2 T cells may be the result of chronic stimulation, because our previous study has revealed that the numbers of Vd2 T cells show an age-dependent decrease and Vd2 T cells are susceptible to activation-induced cell death (Int J Hematol, in press). Failure to demonstrate the cytotoxicity of gd T cells from a PRCA patient against erythroid progenitor cells suggests that expanded gd T cells are not effector T cells. Disclosures: No relevant conflicts of interest to declare.

2020 ◽  
Vol 11 ◽  
Author(s):  
Marie-Line Puiffe ◽  
Aurélie Dupont ◽  
Nouhoum Sako ◽  
Jérôme Gatineau ◽  
José L. Cohen ◽  
...  

IL4I1 is an immunoregulatory enzyme that inhibits CD8 T-cell proliferation in vitro and in the tumoral context. Here, we dissected the effect of IL4I1 on CD8 T-cell priming by studying the differentiation of a transgenic CD8 T-cell clone and the endogenous repertoire in a mouse model of acute lymphocytic choriomeningitis virus (LCMV) infection. Unexpectedly, we show that IL4I1 accelerates the expansion of functional effector CD8 T cells during the first several days after infection and increases the average affinity of the elicited repertoire, supporting more efficient LCMV clearance in WT mice than IL4I1-deficient mice. Conversely, IL4I1 restrains the differentiation of CD8 T-cells into long-lived memory precursors and favors the memory response to the most immunodominant peptides. IL4I1 expression does not affect the phenotype or antigen-presenting functions of dendritic cells (DCs), but directly reduces the stability of T-DC immune synapses in vitro, thus dampening T-cell activation. Overall, our results support a model in which IL4I1 increases the threshold of T-cell activation, indirectly promoting the priming of high-affinity clones while limiting memory T-cell differentiation.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3553-3553
Author(s):  
Attilio Bondanza ◽  
Lothar Hambach ◽  
Zohara Aghai ◽  
Monica Casucci ◽  
Bart Nijmeijer ◽  
...  

Abstract Abstract 3553 Poster Board III-490 Introduction Minor histocompatibility antigens (mHag) play a major role in the graft-versus-leukemia (GvL) effect following HLA-matched allogeneic hemopoietic cell transplantation (allo-HCT). Clinically, the GvL effect coincides with the emergence of mHag-specific CD8+ cytotoxic T lymphocytes (CTL). Experimentally, targeting a single mHag with human CD8+ CTL has a major anti-leukemia effect in NOD/scid mice. Altogether, these observations suggest that mHag-specific cytotoxicity by CD8+ T cells is an important component of the GvL effect. In contrast, little is known on the contribution of mHag-specific CD4+ T cells. Female-to-male allo-HCT is characterized by a low rate of leukemia relapse, indicating that H-Y-encoded mHag are potent leukemia-regression antigens. Earlier, we described a DRB3*0301-restricted H-Y mHag epitope inducing CD4+ helper T-cell responses in H-Y-mismatched HLA-matched allo-HCT. Aim: The aim of this study is to elucidate the role of mHag-specific human CD4+ T lymphocytes on the GvL effect. Methods The ALL-CM leukemia cell line, derived from a male (i.e. H-Y+) HLA-A0201+, DRB30301+ patient, reproducibly engrafts in NOD/scid mice after administration of 10×106 cells. Both an HLA-A0201-restricted H-Y-specific CD8+ CTL clone and the DRB30301-restricted H-Y-specific CD4+ helper T-cell clone that we earlier described were used to investigate the anti-leukemia efficacy of CD8+ and CD4+ T cells in NOD/scid mice. Results In vitro, the CD8+ H-Y specific CTL clone was highly cytotoxic against the ALL-CM leukemia. The H-Y specific CD4+ helper T-cell clone did not lyse the leukemia, but produced IFN-γ upon recognition. Infusion of the H-Y-specific CD8+ CTL clone (25×106 cells/mouse) 3 days after ALL-CM leukemia challenge significantly delayed leukemia progression by 3 weeks compared to a CMV-specific CD8+ CTL control clone (p<0,001). Despite no measurable in vitro cytotoxicity, the H-Y-specific CD4+ helper T-cell clone (25×106 cells/mouse) delayed leukemia progression by 2 weeks compared to a leukemia non-reactive HLA-DR1-specific CD4+ helper T-cell control clone (p<0,001). In vitro co-incubation of the H-Y-specific CD4+ helper T-cell clone did not influence leukemia proliferation but induced up-regulation of MHC-class I and II, CD80, CD86 and CD40. In vitro, pre-incubation of leukemia cells with the H-Y-specific CD4+ helper T-cell clone irradiated did not improve the in vivo anti-leukemia efficacy of the H-Y-specific CD8+ CTL clone. Co-infusion of the H-Y specific CD4+ helper T-cell clone did not augment the in vivo persistence of the H-Y-specific CD8+ CTL T-cell clone. Nevertheless, the co-infusion resulted in a delay in leukemia progression of approximately 5 weeks, suggesting an additive, non overlapping anti-leukemia mechanism. Conclusions Minor Hag-specific human CD4+ T lymphocytes may contribute to the GvL effect through a direct, non cytotoxic mechanism, which could be additive to that of CD8+ CTL. The nature of this non cytotoxic GvL effect is currently under investigation. A.B. and L.H. equally contributed to this study. Disclosures: No relevant conflicts of interest to declare.


1991 ◽  
Vol 174 (3) ◽  
pp. 499-505 ◽  
Author(s):  
L E Smith ◽  
M Rodrigues ◽  
D G Russell

Leishmania is resident within the macrophages of its vertebrate host. In any intramacrophage infection, where the pathogen is present in a form capable of mediating cell to cell transmission, the contribution of a cytotoxic T cell response to protective immunity is questionable. This study presents data from an in vitro model designed to elucidate the outcome of an interaction between CD8+, cytotoxic T cells and infected macrophages. Experiments were conducted with an H-2d-restricted, cytotoxic CD8+ T cell clone and Leishmania parasites present in mixed macrophage cultures, with the parasites confined to either histocompatible BALB/c macrophages, or incompatible CBA macrophages. Initial experiments indicated that the viability of Leishmania was unaffected by the lysis of its host macrophage by cytotoxic T cells. However, extended experiments showed that the parasites were killed between 24 and 72 h. The same results were obtained regardless of whether the parasites were resident in the target, BALB/c, macrophages or the bystander, CBA, macrophages. Addition of neutralizing, anti-IFN-g antibody to the cultures ablated most of the leishmanicidal behavior, indicating that parasite death was attributable to macrophage activation, resulting from cytokine secretion from the T cells following the initial recognition event.


Blood ◽  
1997 ◽  
Vol 89 (10) ◽  
pp. 3691-3699 ◽  
Author(s):  
Shinji Nakao ◽  
Akiyoshi Takami ◽  
Hideyuki Takamatsu ◽  
Weihua Zeng ◽  
Naomi Sugimori ◽  
...  

Abstract The existence of T cells capable of inhibiting in vitro hematopoiesis has been shown in aplastic anemia (AA), although whether such inhibition is mediated by a specific immune reaction involving an HLA allele remained unknown. We isolated a CD4+ Vβ21+ T-cell clone that was most dominant among Vβ21+ T cells in the bone marrow (BM) of an AA patient whose HLA-DRB1 alleles included 1501 and 0405. The T-cell clone named NT4.2 lysed an autologous Epstein-Barr virus-transformed lymphoblastoid cell line (LCL) and phytohemagglutinin-stimulated lymphocytes (PHA-blasts) as well as allogeneic LCLs sharing HLA-DRB1*0405. Cytotoxicity against LCL cells and PHA-blasts by NT4.2 was blocked by anti–HLA-DR monoclonal antibody (MoAb) or anti-CD3 MoAb. NT4.2 also lysed autologous BM mononuclear cells enriched with CD34+ cells that had been cultured for one week in the presence of colony-stimulating factors as well as allogeneic CD34+ cells of a normal individual carrying HLA-DRB1*0405, cultured in the same way. Moreover, NT4.2 strongly inhibited colony formation by hematopoietic progenitor cells derived from cultured CD34+ cells sharing HLA-DRB1*0405. These results indicate that the AA patient has T cells capable of killing hematopoietic cells in an HLA-DRB1*0405-restricted manner and that such cytotoxic T cells may contribute to the pathogenesis of AA.


Author(s):  
Tomasz M. Grzywa ◽  
Anna Sosnowska ◽  
Zuzanna Rydzynska ◽  
Michal Lazniewski ◽  
Dariusz Plewczynski ◽  
...  

AbstractErythroid progenitor cells (EPCs) have been recently recognized as potent immunoregulatory cells with defined roles in fetomaternal tolerance and immune response to infectious agents in neonates and cancer patients. Here, we show that early-stage EPCs are enriched in anemia, have high levels of arginase 2 (ARG2) and reactive oxygen species (ROS). EPCs expansion in anemic mice leads to the L-arginine depletion in the spleen microenvironment resulting in the suppression of T-cell responses. In humans with anemia, EPCs expand and express both ARG1 and ARG2 that participate in suppressing the proliferation and production of IFN-γ from T-cells. EPCs differentiated from peripheral blood mononuclear cells potently suppress T-cell proliferation and this effect is the most prominent for CD49dhi CD71hiEPCs. The suppressive properties disappear during erythroid differentiation as more differentiated EPCs as well as mature erythrocytes lack significant immunoregulatory properties. Our studies provide a novel insight into the role of EPCs in the regulation of immune response.Abstract Figure


2014 ◽  
Vol 20 (9) ◽  
pp. 1171-1181 ◽  
Author(s):  
JM Frischer ◽  
M Reindl ◽  
B Künz ◽  
T Berger ◽  
S Schmidt ◽  
...  

Background and objective: Interactions between TIRC7 (a novel seven-transmembrane receptor on activated lymphocytes) and its ligand HLA-DR might be involved in the inflammatory process in multiple sclerosis (MS). Methods: Methods comprised immunohistochemistry and microscopy on archival MS autopsies, proliferation-, cytokine-, and surface-staining assays using peripheral blood lymphocytes (PBLs) from MS patients and an in vitro model. Results: TIRC7 was expressed in brain-infiltrating lymphocytes and strongly correlated with disease activity in MS. TIRC7 expression was reduced in T cells and induced in B cells in PBLs obtained from MS patients. After ex vivo activation, T cell expression of TIRC7 was restored in patients with active MS disease. The interaction of TIRC7+ T lymphocytes with cells expressing HLA-DR on their surface led to T cell proliferation and activation whereas an anti-TIRC7 mAb preventing interactions with its ligand inhibited proliferation and Th1 and Th17 cytokine expression in T cells obtained from MS patients and in myelin basic protein-specific T cell clone. Conclusion: Our findings suggest that TIRC7 is involved in inflammation in MS and anti-TIRC7 mAb can prevent immune activation via selective inhibition of Th1- and Th17-associated cytokine expression. This targeting approach may become a novel treatment option for MS.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2541-2541
Author(s):  
Zwi N. Berneman ◽  
Ann Van Driessche ◽  
Peter Ponsaerts ◽  
Liquan Gao ◽  
Hans J. Stauss ◽  
...  

Abstract The Wilms’ tumor antigen (WT1) is overexpressed in almost all leukemias and in several solid tumors. Overexpression of WT1 blocks the normal differentiation and enhances proliferation of hematopoietic progenitor cells. WT1 is also used in the detection of minimal residual disease. Using WT1-specific MHC class I tetramers, we were able to detect ex vivo low numbers of WT1-specific CD8+ T cells in the peripheral blood or bone marrow of leukemia patients, but not of healthy donors. In one particular donor we could detect up to 24% WT1 tetramer positive cells at the time of diagnosis. WT1 tetramer positive cells were present in all types of leukemia, except for CLL, and also in patients with MDS. Because WT1 plays an important role in leukemogenesis, it could serve as an antigenic target for dendritic cell-based immunotherapy. We used the mRNA electroporation strategy that allows presentation of multiple WT1 epitopes by MHC class I molecules, irrespective of the HLA haplotype. Monocyte-derived DC (Mo-DC) were electroporated with in vitro transcribed WT1 mRNA. RT-PCR and Western blot analysis showed that WT1 RNA and protein, respectively, was present for up to 5 days in WT1-electroporated DC, but not in mock- or EGFP mRNA-electroporated Mo-DC. Importantly, using a CD8+ T cell clone that secretes IFN-gamma upon recognizing the HLA-A2 immunodominant WT1126–134 epitope, we showed that WT1 mRNA-electroporated Mo-DC processed the WT1 protein via the MHC class I pathway and presented the WT1 epitope to the T cells in an HLA- and antigen-specific manner. Since Mo-DCs are a non-expandable source of antigen-presenting cells, we also used proliferating CD40-activated B (CD40-B) cells as inducers for WT1-specific T cell immunity. CD40-B cells were expanded to high numbers from a limited amount of peripheral blood and subsequently electroporated with WT1 mRNA. In T cell clone activation experiments, WT1 mRNA-electroporated CD40-B cells were as efficient as Mo-DC in presenting the WT1 epitope in a MHC class I-restricted manner. Based on these results, we are currently focusing on the in vitro (re)activation of autologous WT1-specific cytotoxic T cells of leukemia patients using WT1-loaded autologous Mo-DC or CD40-B cells and on the immunological parameters to break immune tolerance against the WT1 tumor self antigen.


1998 ◽  
Vol 330 (2) ◽  
pp. 659-666 ◽  
Author(s):  
Sylvie CASPAR-BAUGUIL ◽  
Majed SAADAWI ◽  
Anne NEGRE-SALVAYRE ◽  
Mogens THOMSEN ◽  
Robert SALVAYRE ◽  
...  

Activated T-lymphocytes are present in early atherosclerotic lesions where they may interact with oxidized low-density lipoproteins (oxLDLs). In this study the non-specific effect of oxLDLs on the activation of T-cells in vitro was investigated. LDLs were oxidized by UV irradiation and characterized by a low level of lipid peroxidation and only slight apolipoprotein B modification. Peripheral blood lymphocytes from normal individuals were stimulated in vitro with the polyclonal activator phytohaemagglutinin in the presence of various doses of LDLs and oxLDLs. LDLs enhanced the proliferation of peripheral blood lymphocytes at doses up to 100 μg/ml but were inhibitory at 200 μg/ml, whereas low doses of oxLDLs (over 10 μg/ml) inhibited the proliferation. OxLDLs also inhibited the proliferative responses of an alloreactive CD4+ T-cell line immortalized by Herpes virus saimiri and an influenza haemagglutinin-specific CD4+ T-cell clone. Viability tests using Trypan Blue exclusion or expression of Apo2.7, an apoptosis marker, did not indicate any significant cell death at doses up to 100 μg/ml oxLDL. At this concentration, cell-cycle analysis showed an accumulation of cells at the G1/S interface in the CD4+ cell clone, without significant DNA fragmentation. The expression of the activation antigen CD25 on T-lymphocytes (on phytohaemagglutinin-activated T-cells and on CD4+ T-cell clone), requisite to the commitment of activated T-cells from G1 phase to S phase, was also inhibited by oxLDLs whereas expression of other activation antigens such as CD69 and HLA-DR was unchanged. In conclusion, these data show that mildly oxidized LDLs inhibit the proliferation and CD25 expression of activated T-lymphocytes and suggest that oxLDLs may slow down the T-cell response in atherosclerotic lesions.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5390
Author(s):  
Dyantha I. van der Lee ◽  
Georgia Koutsoumpli ◽  
Rogier M. Reijmers ◽  
Willy Honders ◽  
Rob C. M. de Jong ◽  
...  

Acute myeloid leukemia (AML) is a hematological malignancy caused by clonal expansion of myeloid progenitor cells. Most patients with AML respond to chemotherapy, but relapses often occur and infer a very poor prognosis. Thirty to thirty-five percent of AMLs carry a four base pair insertion in the nucleophosmin 1 gene (NPM1) with a C-terminal alternative reading frame of 11 amino acids. We previously identified various neopeptides from the alternative reading frame of mutant NPM1 (dNPM1) on primary AML and isolated an HLA-A*02:01-restricted T-cell receptor (TCR) that enables human T-cells to kill AML cells upon retroviral gene transfer. Here, we isolated T-cells recognizing the dNPM1 peptide AVEEVSLRK presented in HLA-A*11:01. The TCR cloned from a T-cell clone recognizing HLA-A*11:01+ primary AML cells conferred in vitro recognition and lysis of AML upon transfer to CD8 cells, but failed to induce an anti-tumor effect in immunodeficient NSG mice engrafted with dNPM1 OCI-AML3 cells. In conclusion, our data show that AVEEVSLRK is a dNPM1 neoantigen on HLA-A*11:01+ primary AMLs. CD8 cells transduced with an HLA-A*11:01-restricted TCR for dNPM1 were reactive against AML in vitro. The absence of reactivity in a preclinical mouse model requires further preclinical testing to predict the potential efficacy of this TCR in clinical development.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Trudy Straetemans ◽  
Mandy van Brakel ◽  
Sabine van Steenbergen ◽  
Marieke Broertjes ◽  
Joost Drexhage ◽  
...  

Adoptive therapy with TCR gene-engineered T cells provides an attractive and feasible treatment option for cancer patients. Further development of TCR gene therapy requires the implementation of T-cell target epitopes that prevent “on-target” reactivity towards healthy tissues and at the same time direct a clinically effective response towards tumor tissues. Candidate epitopes that meet these criteria are MAGE-C2336-344/HLA-A2 (MC2/A2) and MAGE-A3243-258/HLA-DP4 (MA3/DP4). We molecularly characterized TCRαβgenes of an MC2/A2-specific CD8 and MA3/DP4-specific CD4 T-cell clone derived from melanoma patients who responded clinically to MAGE vaccination. We identified MC2/A2 and MA3/DP4-specific TCR-Vα3/Vβ28 and TCR-Vα38/Vβ2 chains and validated these TCRsin vitroupon gene transfer into primary human T cells. The MC2 and MA3 TCR were surface-expressed and mediated CD8 T-cell functions towards melanoma cell lines and CD4 T-cell functions towards dendritic cells, respectively. We intend to start testing these MAGE-specific TCRs in phase I clinical trial.


Sign in / Sign up

Export Citation Format

Share Document