Adeno-Associated Viral Vector Mediated Gene Transfer for Hemophilia B

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 5-5 ◽  
Author(s):  
Amit C Nathwani ◽  
Edward GD Tuddenham ◽  
Savita Rangarajan ◽  
Cecilia Rosales ◽  
Jenny H McIntosh ◽  
...  

Abstract Abstract 5 Background: Hemophilia B (HB), an X-linked bleeding disorder, is ideally suited for gene therapy. We investigated a novel approach using peripheral vein infusion of a single dose of a serotype-8 pseudotyped self-complementary adeno-associated virus (AAV) vector expressing a codon-optimized coagulation factor IX (FIX) transgene (scAAV2/8-LP1-hFIXco). Methods: Six severe HB subjects (FIX ≤1%) were enrolled sequentially into one of three dose cohorts with two subjects in each group. Vector was administered without immunosuppression. The subjects were followed for 6–16 months post treatment. Results: AAV-mediated expression of FIX at 2–11% of normal was observed in all subjects. Four of the six have discontinued prophylaxis and remain free of spontaneous hemorrhage. The other two have increased the interval between FIX prophylaxes. A high-dose subject developed asymptomatic, transient elevation of serum transaminases associated with detection of AAV8 capsid specific T cells in peripheral blood. The second high-dose subject experienced a slight increase of liver enzymes, of less clear etiology. Treatment of each with a short course of steroids led to rapid normalization of the transaminases and maintenance of FIX levels in the 3–11% range. Conclusion: Peripheral vein administration of scAAV2/8-LP1-hFIXco was well tolerated and resulted in FIX transgene expression at levels sufficient to improve the bleeding phenotype. Immune-mediated clearance of AAV-transduced hepatocytes remains a concern but our data suggest that this process may be controlled with a short course of steroids without loss of transgene expression. Hence, our novel approach shows promise for gene therapy of HB and other protein deficiencies. (ClinicalTrials.gov number, NCT00979238) Disclosures: Nathwani: Amsterdam Molecular Therapeutics: Patents & Royalties. Gray:Amsterdam Molecular Therapeutics: Patents & Royalties. Davidoff:Amsterdam Molecular Therapeutics: Patents & Royalties.

Bioimpacts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 135-146
Author(s):  
Mohammad A Rafi ◽  
Paola Luzi ◽  
David A Wenger

Introduction: Krabbe disease (KD) is an autosomal recessive disorder caused by mutations in the galactocerebrosidase (GALC) gene resulting in neuro-inflammation and defective myelination in the central and peripheral nervous systems. Most infantile patients present with clinical features before six months of age and die before two years of age. The only treatment available for pre-symptomatic or mildly affected individuals is hematopoietic stem cell transplantation (HSCT). In the animal models, combining bone marrow transplantation (BMT) with gene therapy has shown the best results in disease outcome. In this study, we examine the outcome of gene therapy alone. Methods: Twitcher (twi) mice used in the study, have a W339X mutation in the GALC gene. Genotype identification of the mice was performed shortly after birth or post-natal day 1 (PND1), using polymerase chain reaction on the toe clips followed by restriction enzyme digestion and electrophoresis. Eight or nine-day-old affected mice were used for gene therapy treatment alone or combined with BMT. While iv injection of 4 × 1013 gc/kg of body weight of viral vector was used originally, different viral titers were also used without BMT to evaluate their outcomes. Results: When the standard viral dose was increased four- and ten-fold (4X and 10X) without BMT, the lifespans were increased significantly. Without BMT the affected mice were fertile, had the same weight and appearance as wild type mice and had normal strength and gait. The brains showed no staining for CD68, a marker for activated microglia/macrophages, and less astrogliosis than untreated twi mice. Conclusion: Our results demonstrate that, it may be possible to treat human KD patients with high dose AAVrh10 without blood stem cell transplantation which would eliminate the side effects of HSCT.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3287-3287
Author(s):  
Ellen F. Cohn ◽  
Meagan E. Kelly ◽  
Jiacai Zhuo ◽  
Hengjun Chao

Abstract Hemophilia B is an X-linked recessive genetic disease resulting from deficiency in coagulation factor IX (FIX). The current therapy for hemophilia B is life-long replacement of FIX through recombinant FIX or purified blood products in response to bleeding events. However, this replacement therapy is non-prophylactic, costly, and can be complicated by formation of inhibitory anti-FIX antibodies in up to 5% of patients. While somatic gene therapy is expected to provide a final cure for hemophilia B, it may also cause high incidence of FIX antibodies formation and other adverse immune responses following gene delivery. Direct intramuscular injection of adeno-associated virus (AAV) is a safe and promising procedure for hemophilia B gene therapy. This treatment, however, elicits anti-FIX antibodies in immune competent animal models. We have previously reported that intramuscular injection of AAV1 expressed high levels of canine FIX and induced FIX tolerance in a mouse model of hemophilia B, but AAV2 elicited anti-FIX antibodies. Here, we report efficient induction of human FIX (hFIX) tolerance in naive as well as FIX-pre-immunized animals by direct intramuscular injection of AAV1 vectors. Following injection of 1×1011 of AAV1 expressing hFIX per mouse in hemostatically-normal and FIX knock out mice, we detected close to 1000ng/ml of hFIX antigen by ELISA 8 weeks post AAV injection (n=5). No significant level of anti-FIX antibodies could be detected in these mice, by either ELISA or modified Bethesda inhibitor assay. In addition, subsequent challenge with recombinant hFIX in complete Freund’s adjuvant did not cause anti-FIX antibodies to be produced and the level of hFIX in the blood remained constant. However, anti-FIX antibodies, but not hFIX antigen, were measured in the mice injected with the same dose of AAV2 (n=7). Subsequent injection of AAV1 vector into the skeletal muscle of these AAV2-injected mice resulted in the disappearance of anti-FIX antibodies and emergence of FIX antigen at similar levels to AAV1-injected naive mice in the circulation of these mice. In addition, direct intramuscular injection of AAV1 also induced FIX tolerance in mice that developed anti-FIX antibodies after exposure to recombinant FIX proteins (n=6). Similar experiments in mice with different genetic and MHC backgrounds have also demonstrated efficient induction of tolerance to FIX, implying that AAV1-hFIX can induce tolerance regardless of MHC haplotype. We hypothesize that the immediate expression of high levels of FIX from the non-pathogenic AAV1 induces FIX tolerance. To elucidate the mechanism of different immune responses to FIX following intramuscular injection of AAV1 and AAV2, we are examining variations in antigen presentation, interaction between antigen presenting cells and antigen-specific T cells, and fate of antigen-specific T cells following intramuscular injection of AAV1 and AAV2 vectors. In summary, our results demonstrate efficient induction of FIX following direct intramuscular injection of AAV1 vectors. Investigations to elucidate the underlying mechanism are ongoing in our lab.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 752-752
Author(s):  
Andrew Davidoff ◽  
Edward GD Tuddenham ◽  
Savita Rangarajan ◽  
Cecilia Rosales ◽  
Jenny McIntosh ◽  
...  

Abstract Abstract 752 Introduction: We are conducting a phase I/II clinical trial of factor IX gene transfer for severe hemophilia B. In the trial we are using a serotype-8 pseudotyped self-complementary adeno-associated virus (scAAV) vector expressing a codon-optimized coagulation factor IX (FIX) transgene (scAAV2/8-LP1-hFIXco). We have previously reported the early safety and efficacy of our novel gene transfer approach in six patients with severe hemophilia B following a single peripheral vein infusion of one of three vector doses (low [2×1011 vector particles (vp)/kilogram weight (kg)], intermediate [6×1011 vp/kg], or high dose [2×1012 vp/kg]) (Nathwani et al, NEJM 365:2357–65, 2011). AAV-mediated expression of FIX at 1–6% of normal was established in all six participants with an initial follow-up of between 6–14 months following gene transfer. We now report longer follow-up of these participants, as well as data from two additional participants recently enrolled at the high dose level. Methods: We have now infused scAAV2/8-LP1-hFIXco in eight subjects with severe hemophilia B (FIX activity, <1% of normal values). Vector was administered without immunosuppressive therapy, and participants have now been followed for 3 months to 2½ years. FIX activity, serum transaminases, vector genomes in secretions/excretions, antibodies to FIX and AAV8, and AAV8 capsid-specific T-cells were monitored during the follow-up. Results: Each of the participants currently has AAV-mediated activity of FIX at 1 to 6% of normal levels. These levels have been stable in each during the follow-up period which is now greater than 1½ years for the first six participants. Five of the eight participants have discontinued FIX prophylaxis and remain free of spontaneous hemorrhage; in the other three, the interval between prophylactic injections has increased. None of the participants in the low or intermediate dose cohorts had evidence of transaminitis; each currently has FIX activity of 1–3% for over 1½ years. Of the four participants who received the high dose of vector, one had a transient, asymptomatic elevation of serum aminotransferase levels, which was associated with the detection of AAV8-capsid-specific T cells in the peripheral blood; two others had a slight increase in liver-enzyme levels, the cause of which was less clear. Each of these three participants received a short course of glucocorticoid therapy, which rapidly normalized their aminotransferase levels and maintained FIX levels in the range of 4 to 6% of normal values. The fourth participant has not had transaminitis three months after vector administration. Conclusions: This represents the first successful, long-term, gene therapy-mediated expression of a therapeutic protein from an AAV vector delivered to human liver. Although immune-mediated clearance of AAV-transduced hepatocytes remains a concern, this process may be controlled with a short course of glucocorticoids without loss of transgene expression. Larger numbers of patients followed for longer periods of time are necessary to fully define the benefits and risks and to optimize dosing. However, this gene therapy approach, even with its risk of mild, transient transaminitis, has the potential to convert the bleeding phenotype of patients with severe hemophilia B into a mild form of the disease or to reverse it entirely for a prolonged period of time following vector administration. (ClinicalTrials.gov number, NCT00979238). Disclosures: Chowdary: Novo Nordisk: Consultancy. High:Amsterdam Molecular Therapeutics: ; Baxter Healthcare: Consultancy; Biogen Idec: Consultancy; bluebird bio, Inc.: Membership on an entity's Board of Directors or advisory committees; Genzyme, Inc.: Membership on an entity's Board of Directors or advisory committees; Novo Nordisk: ; Sangamo Biosciences: ; Shire Pharmaceuticals: Consultancy.


Blood ◽  
2002 ◽  
Vol 99 (8) ◽  
pp. 2670-2676 ◽  
Author(s):  
Jane D. Mount ◽  
Roland W. Herzog ◽  
D. Michael Tillson ◽  
Susan A. Goodman ◽  
Nancy Robinson ◽  
...  

Abstract Hemophilia B is an X-linked coagulopathy caused by absence of functional coagulation factor IX (FIX). Using adeno-associated virus (AAV)–mediated, liver-directed gene therapy, we achieved long-term (&gt; 17 months) substantial correction of canine hemophilia B in 3 of 4 animals, including 2 dogs with an FIX null mutation. This was accomplished with a comparatively low dose of 1 × 1012 vector genomes/kg. Canine FIX (cFIX) levels rose to 5% to 12% of normal, high enough to result in nearly complete phenotypic correction of the disease. Activated clotting times and whole blood clotting times were normalized, activated partial thromboplastin times were substantially reduced, and anti-cFIX was not detected. The fourth animal, also a null mutation dog, showed transient expression (4 weeks), but subsequently developed neutralizing anti-cFIX (inhibitor). Previous work in the canine null mutation model has invariably resulted in inhibitor formation following treatment by either gene or protein replacement therapies. This study demonstrates that hepatic AAV gene transfer can result in sustained therapeutic expression in a large animal model characterized by increased risk of a neutralizing anti-FIX response.


Blood ◽  
2006 ◽  
Vol 108 (2) ◽  
pp. 480-486 ◽  
Author(s):  
Ou Cao ◽  
Elina Armstrong ◽  
Alexander Schlachterman ◽  
Lixin Wang ◽  
David K. Okita ◽  
...  

Formation of inhibitory antibodies is a serious complication of protein or gene replacement therapy for hemophilias, congenital X-linked bleeding disorders. In hemophilia B (coagulation factor IX [F.IX] deficiency), lack of endogenous F.IX antigen expression and other genetic factors may increase the risk of antibody formation to functional F.IX. Here, we developed a protocol for reducing inhibitor formation in gene therapy by prior mucosal (intranasal) administration of a peptide representing a human F.IX-specific CD4+ T-cell epitope in hemophilia B mice. C3H/HeJ mice with a F.IX gene deletion produced inhibitory IgG to human F.IX after hepatic gene transfer with an adeno-associated viral vector. These animals subsequently lost systemic F.IX expression. In contrast, repeated intranasal administration of the specific peptide resulted in reduced inhibitor formation, sustained circulating F.IX levels, and sustained partial correction of coagulation following hepatic gene transfer. This was achieved through immune deviation to a T-helper–cell response with increased IL-10 and TGF-β production and activation of regulatory CD4+CD25+ T cells.


2021 ◽  
Vol 13 (600) ◽  
pp. eabd6892
Author(s):  
Shijie Liu ◽  
Ke Li ◽  
Leonardo Wagner Florencio ◽  
Li Tang ◽  
Todd R. Heallen ◽  
...  

Human heart failure, a leading cause of death worldwide, is a prominent example of a chronic disease that may result from poor cell renewal. The Hippo signaling pathway is an inhibitory kinase cascade that represses adult heart muscle cell (cardiomyocyte) proliferation and renewal after myocardial infarction in genetically modified mice. Here, we investigated an adeno-associated virus 9 (AAV9)–based gene therapy to locally knock down the Hippo pathway gene Salvador (Sav) in border zone cardiomyocytes in a pig model of ischemia/reperfusion-induced myocardial infarction. Two weeks after myocardial infarction, when pigs had left ventricular systolic dysfunction, we administered AAV9-Sav–short hairpin RNA (shRNA) or a control AAV9 viral vector carrying green fluorescent protein (GFP) directly into border zone cardiomyocytes via catheter-mediated subendocardial injection. Three months after injection, pig hearts treated with a high dose of AAV9-Sav-shRNA exhibited a 14.3% improvement in ejection fraction (a measure of left ventricular systolic function), evidence of cardiomyocyte division, and reduced scar sizes compared to pigs receiving AAV9-GFP. AAV9-Sav-shRNA–treated pig hearts also displayed increased capillary density and reduced cardiomyocyte ploidy. AAV9-Sav-shRNA gene therapy was well tolerated and did not induce mortality. In addition, liver and lung pathology revealed no tumor formation. Local delivery of AAV9-Sav-shRNA gene therapy to border zone cardiomyocytes in pig hearts after myocardial infarction resulted in tissue renewal and improved function and may have utility in treating heart failure.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 669-669 ◽  
Author(s):  
David Markusic ◽  
Roland W Herzog

Abstract Abstract 669 Hemophilia B is a X-linked bleeding disorder caused by loss of coagulation factor IX (F.IX) function. Under current treatment protocols, approximately 2–4% of hemophilia B patients develop inhibitory antibodies to F.IX protein, and those with F.IX gene deletions are at risk for anaphylaxis. We work with a murine model for this pathogenic antibody response, namely C3H/HeJ hemophilia B (HB) mice with a F9 gene deletion. Anaphylactic reactions to intravenously administered F.IX protein are the result of a strong Th2-driven antibody response, comprised of IgG1 and IgE. Interestingly, we find that IgE levels correlate with the dose of recombinant F.IX protein. HB mice treated with weekly intravenous doses of 0.1 or 0.3 IU F.IX were free from allergic/anaphylactic reactions during the course of treatment (1 IP and 5 weekly IV injections of F.IX protein) and had very low to undetectable IgE against F.IX. In contrast, a dose of 1 IU induced IgE formation and caused fatal anaphylactic reactions after repeated administration. These results suggest that prophylaxis with lower F.IX doses may be recommended in individuals with F.IX gene deletion (Mice with missense or nonsense F.IX mutations did not show inhibitor formation or anaphylaxis at the high dose). In an attempt to reverse the response and desensitize the gene deletion HB animals, F.IX-treated mice with inhibitors, including those with detectable circulating IgE, received hepatic AAV8-F.IX gene transfer (1e11 vg/mouse). Within one month, these mice lost detectable IgG and IgE against F.IX and showed a level of correction of coagulation comparable to gene transfer in naive mice. Subsequent intravenous injections of 1 IU F.IX (weekly for 1 month) did not cause anaphylaxis, demonstrating successful desensitization. Control mice (no gene transfer) maintained their IgE levels during the course of the experiment. We are currently investigating if a lower AAV8 F.IX vector dose (1e10 vg) is similarly capable of reversing existing F.IX inhibitors/anaphylaxis. In order to determine the fate of F.IX antibody-secreting cells (ASC), we performed a B cell ELISPOT assay on bone marrow cells and splenocytes in F.IX immunized HB mice left untreated or treated with AAV8 F.IX vector. Control immunized mice showed predominantly ASC in the spleen with a few detected cells from bone marrow. ASC were nearly undetectable in vector-treated mice. These results suggest that AAV8 liver gene transfer not only suppresses F.IX-specific ASC, but may also prevent the re-activation of memory B cells. Experiments are ongoing to explore the role of induced regulatory T cells in modulating ASC. To characterize T cell responses against F.IX, we isolated splenocytes isolated from control immunized and vector treated mice, stimulated these cells in vitro with F.IX protein, and collected RNA for analysis with RT-PCR array. Control mice showed an upregulation of Th2 cytokines IL-4 and IL-13, which are known to induce B cell class switching to IgG1 and to IgE, corresponding to the observed antibody formation. Vector treated immunized mice did not show up regulation of any cytokines representative of Th1 or Th2 responses, indicating down-regulation of T help required for the antibody response. In summary, our data show that liver directed AAV8 F.IX gene transfer may not only induce tolerance to those at risk of developing inhibitors, but may offer an alternative treatment approach to expensive and long-term immune tolerance induction (ITI) protocols in those with existing pathogenic antibody responses. This concept may also apply to other genetic diseases, in which antibodies complicate protein replacement therapy. Disclosures: Herzog: Genzyme Corporation: Patents & Royalties.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2050-2050 ◽  
Author(s):  
Federico Mingozzi ◽  
Xavier M Anguela ◽  
Giulia Pavani ◽  
Yifeng Chen ◽  
Robert J Davidson ◽  
...  

Abstract Abstract 2050 Adeno-associated viral (AAV) vector-mediated gene transfer has shown great potential as a therapeutic platform for inherited and metabolic diseases. Systemic delivery of AAV vectors through the bloodstream is a safe, non-invasive, and potentially effective strategy to target a variety of organs, including liver, muscle, and brain. However, neutralizing antibodies (NAb) to AAV, highly prevalent in humans, constitute a major obstacle to successful gene transfer, particularly when a vector is delivered through the vasculature. Thus far, the liver was targeted to express the coagulation factor IX (F.IX) transgene in two clinical studies. In one study, a single-stranded AAV2 vector expressing the F.IX transgene was delivered through the hepatic artery to severe hemophilia B subjects at doses of 8×1010, 4×1011, and 2×1012 vector genomes (vg)/kg. Efficacy was observed in one subject from the high-dose cohort, who achieved peak F.IX transgene plasma levels of ∼10% of normal. The subjects infused at lower doses did not show any evidence of transgene expression, despite the fact that they did not have detectable NAb to AAV. In a second study, a self-complementary AAV8 vector expressing the F.IX transgene was delivered through peripheral vein infusion to severe hemophilia B subjects at doses similar to those administered in the AAV2 study, 2×1011, 6×1011, and 2×1012 vg/kg. All subjects enrolled in the AAV8 trial had evidence of transgene expression above baseline levels, despite the fact that some of the subjects had low-but-detectable anti-AAV8 NAb. Peak F.IX plasma levels at the high vector dose were 8–12% of normal, similar to the high dose of the AAV2 trial, suggesting that the vectors used in the two studies had comparable potency. Importantly, the vectors used in the two studies differed in empty capsid content, as the AAV2 vector preparation was essentially empty capsid-free and the AAV8 vector contained a 5–10 fold excess of empty capsids. The current study was undertaken to explore the role of empty capsids as a factor in the difference in outcome in the low- and mid- dose cohorts of the two trials. Our underlying hypothesis was that the presence of an excess of empty capsids effectively absorbs low-level neutralizing and non-neutralizing antibodies, and permits transduction even in their presence. Using a newly developed AAV antibody dot-blot assay, we demonstrate that adult human subjects with a low to undetectable NAb titer (1:1) as assessed by a commonly used assay do, in fact, carry significant amounts of anti-AAV antibodies. Conversely, children aged one year appear to be truly naïve for anti-AAV humoral immunity. Using C57BL/6 mice passively immunized with purified human IgG injected intraperitoneally 24 hours before vector administration, we further demonstrate that the same low levels of anti-AAV antibodies found in humans (NAb titer of 1:1–1:3) can block >90% of liver transduction after peripheral vein delivery of AAV8 vectors expressing F.IX at doses of 1×1012 vg/kg, comparable to those tested in the clinic. We next demonstrated that the inhibitory effect of low titer (1:1–1:3) anti-AAV antibodies can be overcome by adding a 5 to 10-fold excess of empty capsids to the final formulation of AAV8 vector, and that empty capsid content can be carefully titrated as a function of the animal's anti-AAV NAb in order to achieve efficient target organ transduction, even at titers >1:100. However, the beneficial effect of empty capsids on liver transduction is lost when a 1000-fold excess of AAV8 empty capsids are added to the formulation of AAV8 vectors, due to receptor binding competition. This inhibitory effect could be avoided by using AAV2 empty capsids, which efficiently protect AAV8 vectors from NAb without inhibiting transduction. These results were confirmed in non-human primates, a natural host for AAV8, in which a 5 to 6-fold increase in liver transduction was achieved by formulating vector in 5–10 fold excess AAV8 empty capsids, reaching levels of F.IX expression of 10 to 20% of normal. Application of these findings to the development of personalized formulations of vector product for intravascular delivery will facilitate safe, effective AAV-mediated gene transfer in settings in which vectors are delivered through the systemic circulation. Disclosures: Mingozzi: Children's Hospital of Philadelphia: Pending patent on technology described, Pending patent on technology described Patents & Royalties. Anguela:Children's Hospital of Philadelphia: Pending patent on technology described, Pending patent on technology described Patents & Royalties. Wright:Children's Hospital of Philadelphia: Pending patent on technology described, Pending patent on technology described Patents & Royalties. High:Children's Hospital of Philadelphia: Pending patent on technology described, Pending patent on technology described Patents & Royalties.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1106
Author(s):  
Altar M. Munis

Recent commercialization of lentiviral vector (LV)-based cell therapies and successful reports of clinical studies have demonstrated the untapped potential of LVs to treat diseases and benefit patients. LVs hold notable and inherent advantages over other gene transfer agents based on their ability to transduce non-dividing cells, permanently transform target cell genome, and allow stable, long-term transgene expression. LV systems based on non-human lentiviruses are attractive alternatives to conventional HIV-1-based LVs due to their lack of pathogenicity in humans. This article reviews non-human lentiviruses and highlights their unique characteristics regarding virology and molecular biology. The LV systems developed based on these lentiviruses, as well as their successes and shortcomings, are also discussed. As the field of gene therapy is advancing rapidly, the use of LVs uncovers further challenges and possibilities. Advances in virology and an improved understanding of lentiviral biology will aid in the creation of recombinant viral vector variants suitable for translational applications from a variety of lentiviruses.


Sign in / Sign up

Export Citation Format

Share Document