Monocytes Modulate Megakaryocyte-Mediated Fibrosis of Bone Marrow Stromal Cells in Vitro

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1759-1759
Author(s):  
Emil Tom Kuriakose ◽  
Jason Shieh ◽  
Jae Hung Shieh ◽  
Richard T. Silver ◽  
Malcolm A.S. Moore

Abstract Abstract 1759 Myelofibrosis (MF) is a terminal feature of the chronic myeloproliferative neoplasms (MPNs), primary myelofibrosis (PMF), polycythemia vera (PV) and essential thrombocythemia (ET).We and others have shown, using both in vitro and in vivo models, that proliferation of megakaryocytes (MK) and their pathologic interaction with marrow stroma plays a central role in MF. However, the marrows of patients with MPNs remain free of fibrosis for a substantial part of their clinical course, despite increased MK proliferation and turnover in the marrow, suggesting that additional factors may modulate the fibrotic effects of the MK on marrow stroma. Since monocytosis is often seen in patients with MF, we examined whether monocytes may play such a role in MF. Human hematopoietic stem cells (HSC), MK progenitors, and circulating monocytes were obtained from peripheral blood of 13 patients with MF (3 post PV MF, 10 PMF), G-CSF mobilized peripheral blood from normal adults (MPB), and cord blood (CB) using MACS column separation by positive selection of cells expressing CD34, CD41, and CD14 respectively. HSCs were cultured in serum free medium (SFM) on the murine bone marrow stromal cell line OP9 transduced with an adenoviral vector expressing the human thrombopoietin gene (OP9-adenoTPO). After 10–12 days in culture, mature MKs were harvested using MACS column by positive selection of cells expressing human CD41. Purity of cell fractions was more than 90% by flow cytometry. Isolated MKs and monocytes were seeded with trypsinized OP9 in SFM at various ratios on 96 well or 384 well tissue culture treated plates and incubated at 37° C. MKs formed focal aggregates on adherent OP9 cells within 24 hours, which by 48 hours, became round dark fibrotic nodules when seen using phase contrast microscopy. Formation of these focal fibrosis (FF) areas was more pronounced with higher MK:OP9 ratios, and was equally induced by MKs from MF patients, normal adult MKs, and CB MKs. FF was not observed with CD41 negative cells, nor in control OP9 wells. Time lapse photography revealed that FF formation involved migration of both MKs and OP9 cells, and that FF was enhanced by inhibition of CXCR4 using AMD3100. Peripheral blood monocytes from normal adult controls and CB did not induce formation of FF. Circulating monocytes from most MF patients induced FF, but to a lesser degree than MKs. Addition of monocytes to MK-OP9 FF showed that normal adult monoctyes inhibited FF formation in a dose dependent manner, whereas monocytes of MF patients had variable effects, with some inhibiting FF, and others not. To determine whether differential conditioning of monocytes can induce variable stromal changes, normal adult circulating monocytes were cultured in SFM with TGF- ß1, interferon alfa (IFNα), and TNFα in tissue culture flasks. Monocytes cultured in TNFα (MoTNF) became adherent and spindle shaped within 72 hours. Conditioned medium (CM) from MoTNF suppressed OP9 differentiation into adipocytes in a dose dependent manner. CM from monocytes cultured in IFNα (MoIFN) enhanced OP9 differentiation into adipocytes in a dose dependent manner. MoTGF caused proliferation of OP9 and suppressed adipocyte differentiation, but was not significantly different from control with TGFβ alone. CM from MoIFN decreased FF formation by MKs on OP9 and increased adipocyte number, but IFNα by itself had no such effect on FF formation. Both CM from MoTNF and TNFα increased FF formation by MKs in a dose dependent manner. Together, these results demonstrate that monocytes can enhance or hinder MK induced fibrosis depending on their conditioning by specific cytokines, with IFNα hindering and TNFα enhancing the fibrotic effect. Our data suggest that the known anti-megakaryocytic and anti-fibrotic activities of IFNα may be due to its conditioning of monocytes into an anti-fibrotic phenotype. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
1990 ◽  
Vol 75 (3) ◽  
pp. 596-602 ◽  
Author(s):  
JR Keller ◽  
IK Mcniece ◽  
KT Sill ◽  
LR Ellingsworth ◽  
PJ Quesenberry ◽  
...  

Abstract We previously reported that transforming growth factor beta (TGF-beta) selectively inhibits colony-stimulating factor-driven hematopoietic progenitor cell growth. We report here that TGF-beta 1 can act directly on hematopoietic progenitors to inhibit the growth of the most primitive progenitors measurable in vitro. Highly enriched populations of hematopoietic progenitor cells were obtained by isolating lineage negative (Lin-), Thy-1-positive (Thy-1+) fresh bone marrow cells, or by isolating cells from interleukin-3 (IL-3) supplemented bone marrow cultures expressing Thy-1 antigen with the fluorescent activated cell sorter. TGF-beta 1 inhibited IL-3-induced Thy-1 expression on Thy-1- negative (Thy-1-) bone marrow cells in a dose-dependent manner with an ED50 of 5 to 10 pmol/L. In addition, TGF-beta 1 inhibited the formation of multipotent and mixed colonies by isolated Thy-1+ cells, while single lineage granulocyte and macrophage colonies were not affected. The growth of Thy-1+ Lin- cells incubated as single cells in Terasaki plates in medium supplemented with IL-3 were inhibited by TGF-beta, demonstrating a direct inhibitory effect. Hematopoietic stem cells, which have a high proliferative potential (HPP) when responding to combinations of growth factors in vitro, have been detected in the bone marrow of normal mice and mice surviving a single injection of 5- fluorouracil. TGF-beta 1 inhibited the growth of all subpopulations of HPP colony forming cells (CFC) in a dose-dependent manner with an ED50 of 5 to 10 pmol/L. Thus, TGF-beta directly inhibits the growth of the most immature hematopoietic cells measurable in vitro.


1995 ◽  
Vol 182 (6) ◽  
pp. 1785-1792 ◽  
Author(s):  
P Jeannin ◽  
Y Delneste ◽  
S Lecoanet-Henchoz ◽  
J F Gauchat ◽  
P Life ◽  
...  

N-Acetyl-L-cysteine (NAC) is an antioxidant precursor of intracellular glutathione (GSH), usually given in human as a mucolytic agent. In vitro, NAC and GSH have been shown to act on T cells by increasing interleukin (IL) 2 production, synthesis and turnover of IL-2 receptors, proliferation, cytotoxic properties, and resistance to apoptosis. We report here that NAC and GSH decrease in a dose-dependent manner human IL-4 production by stimulated peripheral blood T cells and by T helper (Th) 0- and Th2-like T cell clones. This effect was associated with a decrease in IL-4 messenger RNA transcription. In contrast, NAC and GSH had no effect on interferon gamma and increased IL-2 production and T cell proliferation. A functional consequence was the capacity of NAC and GSH to selectively decrease in a dose-dependent manner IL-4-induced immunoglobulin (Ig) E and IgG4 production by human peripheral blood mononuclear cells. Interestingly, NAC and GSH also acted directly on purified tonsillar B cells by decreasing the mature epsilon messenger RNA, hence decreasing IgE production. In contrast, IgA and IgM production were not affected. At the same time, B cell proliferation was increased in a dose-dependent manner. Not all antioxidants tested but only SH-bearing molecules mimicked these properties. Finally, when given orally to mice, NAC decreased both IgE and IgG1 antibody responses to ovalbumin. These results demonstrate that NAC, GSH, and other thiols may control the production of both the Th2-derived cytokine IL-4 and IL-4-induced Ig in vitro and in vivo.


2021 ◽  
Vol 21 ◽  
Author(s):  
Qiu-Yun Li ◽  
Juan Chen ◽  
Yong-Heng Luo ◽  
Wei Zhang ◽  
En-Hua Xiao

Objective: The treatment of liver failure by stem cell transplantation has attracted growing interest. Herein, we aim to explore the role of sodium butyrate (NaB) in the hepatic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) under liver-specific factors induction in vitro and vivo. Materials & Methods: We isolated BM-MSCs from the mononuclear cell fraction of rabbit bone marrow samples, and identified the cells by Immunophenotypic analysis. We investigated the effects of different concentrations and induction conditions. The histone deacetylase inhibitor NaB induced hepatic differentiation of BM-MSCs under liver-specific factors induction in vitro. Morphological features, liver-specific gene and protein expression, and functional analyses in vitro and vivo were performed to evaluate the hepatic differentiation of BM-MSCs. Results: Our results showed that pre-treated NaB inhibited the expression of liver-specific protein in a dose-dependent manner. The induction efficiency of NaB with 24h pre-treatment was higher than that of NaB continuous intervention. 0.5 mM 24h NaB pre-treated cells can improve liver tissue damage in vivo. And the liver ALB, AAT and the serum TP were significantly increased, while the serum ALT was significantly reduced. Conclusion: Continuous NaB treatment can inhibit BM-MSCs proliferation in a dose-dependent manner at a certain concentration range. 0.5 mM 24h pre-treatment of NaB enhanced differentiation of BM-MSCs into hepatocytes and improves liver injury in vitro and vivo.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2528-2528
Author(s):  
Sherine F. Elsawa ◽  
Anne J. Novak ◽  
Marina Konopleva ◽  
Michael Andreeff ◽  
Thomas E. Witzig ◽  
...  

Waldenström macroglobulinemia (WM) is a B cell disorder with a highly variable clinical outcome, where some patients remain asymptomatic, while others have significant symptoms and require therapeutic intervention. Clinical symptoms include infiltration of lymphoplasmacytic cells into the bone marrow, production of a monoclonal IgM protein, anemia, lymphadenopathy, and serum hyperviscosity. Despite the introduction of multiple chemotherapeutic regimens over the past several decades, WM remains an incurable disease. 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) and its methyl ester derivative (CDDO-Me) and imidazolide derivative (CDDO-Im) are synthetic triterpenoids derived from oleanolic acid. These compounds have been shown to induce apoptosis of several tumor cell types including breast cancer, lung cancer, ovarian cancer, melanoma, osteosarcoma, leukemia, and multiple myeloma cells. The goal of this study was to evaluate the potential role of synthetic triterpenoids in WM. Preliminary studies on malignant B cells indicated that CDDO-Im induced the greatest amount of cell death and we therefore used this derivative of CDDO for our studies. CD19+ CD138+ cells from bone marrow biopsy specimens obtained from WM patients were isolated by positive selection and were treated with varying concentrations of CDDO-Im (62.5 nM to 750 nM ) and cell viability was determined after 24 hours (n=3). Compared to the nil control 47% of the malignant cells remained viable at a CDDO-Im concentration of 62.5 nM and only 11% remained viable at 125 nM CDDO-Im. To determine if CDDO-Im had specific toxic effects on non-malignant cells, we cultured CD19- CD138- cells from WM patient bone marrows with CDDO-Im and found that non-malignant cells were less sensitive to the drug, 80% being viable at 62.5 nM and 65% being viable at 125 nM. Similarly, we found that normal peripheral blood B cells and CD19+ CD138+ bone marrow B cells from healthy donors were less sensitive to CDDO-Im. Compared to the nil control 93% of the CD19+ CD138+ bone marrow B cells and 70% of the peripheral blood B cells remained viable at a CDDO-Im concentration of 62.5 nM and 95% and 68% remained viable at 125 nM CDDO-Im respectively. We next examined the effect of CDDO-Im on WM cell proliferation and found that CDDO-Im inhibited cell proliferation in a dose-dependent manner. Similar to the viability assays, there was a differential effect of CDDO-Im on malignant and non-malignant cells. Compared to the nil control, at 125 nM, there was a complete inhibition of malignant cell growth, while approximately 40% of the non-malignant cells remained proliferative. To determine the mechanism of cell death, CD19+ CD138+ cells were cultured in the presence or absence of various doses of CDDO-Im for 6 hours and cell lysates were examined for cleavage of PARP. There was evidence of PARP cleavage in a dose-dependent manner, suggesting that CDDO-Im induced malignant cell death occurs through a caspase-dependent mechanism. In summary, the synthetic triterpenoid CDDO-Im decreased the viability of WM B cells in a dose-dependent manner, and CDDO-Im had a greater effect on the viability of the malignant cells compared to non-malignant cells from the same WM patients. CDDO-Im also inhibited malignant cell growth in a dose-dependent manner and the mechanism of CDDO-Im mediated cell death appears to be a caspase-mediated event. Overall, our data indicate that CDDO-Im may have potential efficacy in WM patients.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2833-2833
Author(s):  
Amanda Przespolewski ◽  
Scott Portwood ◽  
Jason Den Haese ◽  
Demi Lewis ◽  
Eunice S. Wang

Abstract Background: Successful immunotherapeutic approaches for acute myeloid leukemia (AML) have yet to be developed. We hypothesized that targeting both the innate and adaptive immune responses in leukemic hosts would elicit significant anti-tumor activity with lesser toxicities than chemotherapy. To test this, we evaluated the efficacy of immune checkpoint inhibition (murine anti-PD-1 antibody (ab)) alone and in combination with 5,6-dimethylxanthenone-4-acetic acid (DMXAA), an innate immune agonist and anti-vascular agent, in an immunocompetent model of murine AML. Methods: Expression of PD-L1 was assessed by flow cytometry on the murine AML cell line, C1498, alone and following treatment with vehicle, DMXAA or interferon-gamma (positive control). A LEGEND MAX mouse ELISA kit was utilized to measure IL-6 and IFN-β. C57BL/6 mice were inoculated with stably transfected C1498 murine AML cells expressing luciferase and the fluorescent protein DSRed2. Once disease was established, animals were treated with vehicle, DMXAA (20 mg/kg every four days x 7 weeks), anti-murine PD-1 antibody (10 mg/kg every 3 days x 4 doses) or DMXAA + anti-PD-1 antibody (same doses). Animals underwent weekly clinical assessments, weights, and bioluminescent imaging for disease burden. Overall study endpoints were time to morbidity and differences in leukemia disease burden as compared with vehicle-treated controls. Mice were euthanized on day 15 after injection of C1498 cells (8 days following treatment) for collection of plasma, bone marrow, liver and spleen samples for tumor burden, activated T-cells. Results: DMXAA doses (ranging from 1-100 μg/ml) inhibited C1498 in vitro cell growth at 48 hours (48h) in a dose dependent manner. Treatment of C1498 cells in culture with escalating doses of DMXAA (1-100μg/ml) or IFN-gamma (positive control) induced higher PD-L1 expression on these AML cells consistent with direct immunomodulatory effects. Furthermore, C1498 cells exposed to higher doses of DMXAA (10-100μg/ml) for 48h produced measurably higher levels of IL-6 and IFN-β expression in cell supernatants. We then examined the effects of DMXAA, anti-PD-1 ab, or the combination of DMXAA + anti-PD-1 ab treatment in vivo in C57BL/6 mice systemically engrafted with C1498-luciferase AML cells. Treatment overall was well tolerated and resulted in significantly decreased disease burden as measured by total body bioluminescence vs. vehicle controls (p<0.05). Median time to morbidity was significantly decreased in all treatment arms as compared with controls: vehicle = 28 days, DMXAA = 32 days, anti-PD-1 ab = 39 days, and combination DMXAA + anti-PD-1 ab = 53 days (p<0.05). Combination therapy resulted in significantly longer overall survival than single agent therapy (DMXAA vs. DMXAA+anti-PD-1 ab, p=0.032; anti-PD1 ab vs. DMXAA+antii-PD-1 ab p=0.038)(n=total 13-16 mice per group) (representative data shown in Figure 1). Therapy with DMXAA alone and in combination with anti-PD-1 ab was associated with markedly higher PD-1, PD-L1, and PD-L2 expression levels in bone marrow cells harvested from leukemic mice 48h after treatment. Significantly higher numbers of activated T cells were also identified in the bone marrow and spleen of leukemic mice following two weeks of DMXAA therapy alone or in combination with anti-PD-1 ab. Additional in vivo measurements of systemic cytokine levels following therapy are underway. Conclusions: Here we demonstrate that the combination of an innate immune agonist (DMXAA) with an immune checkpoint inhibitor (anti-PD-1 ab) improved anti-leukemic effects in a preclinical AML model. In vitro DMXAA therapy inhibited murine AML growth in a dose dependent manner, enhanced PD-L1 expression, and induced leukemic production of cytokines (IL-6, IFN-β). In vivo combination DMXAA and anti-PD-1 ab therapy in an immunocompetent murine AML model increased activated host T cell numbers and marrow PD-1/L1/L2 expression in conjunction with decreased tumor burden and prolonged overall survival. These studies may pave the way for future clinical trials evaluating this novel immunomodulatory strategy in AML patients. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2002 ◽  
Vol 76 (9) ◽  
pp. 4350-4356 ◽  
Author(s):  
Sabina Wünschmann ◽  
Britta Becker ◽  
Angelika Vallbracht

ABSTRACT To analyze the pathogenetic mechanism of hematopoietic dysregulation associated with hepatitis A virus (HAV) infections, we studied the influence of HAV on monocyte (MO)-to-macrophage (MAC) maturation in vitro. Exposure of peripheral blood-derived mononuclear cells (MNC) to HAV led to diminished adherence of MO to plastic. Furthermore, HAV inhibited the ability of peripheral blood MO to differentiate toward MAC. Freshly isolated and 14-day-old MO cultures demonstrated reduced differentiation and decreased phagocytic capacity after challenge with HAV. Viral replication in MO/MAC cultures was confirmed by titration of infectious virus. We also determined the influence of HAV on the MO/MAC population in human long-term bone marrow cultures (LTBMCs). Inoculation of bone marrow MNC with HAV suppressed the establishment of an adherent stromal layer containing a reduced number of MAC. Furthermore, increased MO numbers in the nonadherent fraction of HAV-challenged LTBMCs are indicative of the disturbance of MO adherence. These findings suggest that HAV infection leads to a disorder of the mononuclear phagocytic system which may contribute to functional abnormalities of the bone marrow stroma.


1996 ◽  
Vol 24 (01) ◽  
pp. 45-52 ◽  
Author(s):  
Jerming Tseng ◽  
Tsui-Li Li

Si-Jun-Zi-Tang is one of the widely used Chinese herbal medicines. In this study, human peripheral blood monocytes were treated in vitro with 50% hot ethanol extract of Si-Jun-Zi-Tang and its four major ingredients (Dangshen, Baizhu, Gancao and Fuling). The concentration of granulocyte-macrophage colony-stimulating factor (GM-CSP) in the culture supernatant at 3 hours and 18 hours were measured using an ELISA. Dangshen and Gancao significantly suppressed GM-CSP secretion in a dose-dependent manner. Baizhu showed no statistically significant effect on GM-CSP secretion 18 hours after in vitro drug-treatment. Fuling, by contrast, significantly augmented GM-CSP secretion in a dose dependent manner after 18 hours of drug treatment. Si-Jun-Zi-Tang showed a suppressive effect on GM-CSP secretion at 3 hours but significantly augmented GM-CSP secretion when the cells were treated with 8 mg/ml of the drug for 18 hours. The data suggested that Si-Jun-Zi-Tang might modulate hematopoiesis and immune response via regulating GM-CSP secretion, and the presence of Fuling in Si-Jun-Zi-Tang could counteract the suppressive effect of Dangshen and Gancao on GM-CSP secretion.


2009 ◽  
Vol 15 (9) ◽  
pp. 2459-2470 ◽  
Author(s):  
Garry P. Duffy ◽  
Tabassum Ahsan ◽  
Timothy O'Brien ◽  
Frank Barry ◽  
Robert M. Nerem

Sign in / Sign up

Export Citation Format

Share Document