MiR-29a Maintains Hematopoietic Stem Cell Self-Renewal and Is Required For Myeloid Leukemogenesis

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1190-1190
Author(s):  
Wenhuo Hu ◽  
James Dooley ◽  
Stephen S. Chung ◽  
Safak Yalcin ◽  
Yu Sup Shin ◽  
...  

Abstract microRNAs (miRNAs) are important regulators of both embryonic and adult tissue stem cell self-renewal. We previously showed that ectopic expression of miR-29a, a miRNA highly expressed in HSCs as well as in human acute myeloid leukemia (AML) stem cells, in immature mouse hematopoietic cells is sufficient to induce a myeloproliferative disorder that progresses to AML. During the early phase of this disease, miR-29a induces aberrant self-renewal of committed myeloid progenitors, strongly suggesting a role for miR-29a in regulating HSC self-renewal. In order to determine the role of miR-29a in HSC function, we have evaluated our recently described miR-29a/b1 null mouse. Homozygous deletion of miR-29a/b1 resulted in reduced bone marrow cellularity and reduced colony forming capacity of hematopoietic stem and progenitor cells (HSPCs). The phenotype was mediated specifically by miR-29a since miR-29b expression was not significantly altered in HSCs and reconstitution of miR-29a/b1 null HSPCs with miR-29a, but not miR-29b, rescued in vitro colony formation defects. Self-renewal defects were observed in miR-29a deficient HSCs in both competitive and non-competitive transplantation assays, and these deficits were associated with increased HSC cell cycling and apoptosis. Gene expression studies of miR-29a deficient HSCs demonstrated widespread gene dysregulation including a number of up-regulated miR-29a target genes including DNA methylation enzymes (Dnmt3a, -3b) and cell cycle regulators (e.g. Cdk6, Tcl1, Hbp1, Pten). Knockdown of one of these targets, Dnmt3a, in miR-29a deficient HSCs resulted in partial restoration of colony formation, providing functional validation that Dnmt3a mediates part of miR-29a null HSPCs functional defects. miR-29a loss also abrogated leukemogenesis in the MLL-AF9 retroviral AML model. Together, our results demonstrate that miR-29a positively regulates HSC self-renewal and is required for myeloid leukemogenesis. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1587-1587 ◽  
Author(s):  
Olivier Herault ◽  
Kristin J Hope ◽  
Eric Deneault ◽  
Matthias Trost ◽  
Nadine Mayotte ◽  
...  

Abstract Abstract 1587 Although important efforts have been invested in the discovery of genes that regulate normal or leukemic hematopoietic stem cells (HSC) self-renewal, the number of validated candidates remains low, due largely to the unavailability of functionally pure stem cell populations. Moreover, it is often difficult to identify the normal counterpart cell from which leukemia originated, further complicating studies based on comparative gene expression. In this study, we used a series of recently characterized Hoxa9 + Meis1 acute myeloid leukemias (AML) derived from fetal liver (FL) cells (Wilhelm BT et al., submitted). These leukemias are remarkably similar in several aspects including their L-HSC frequency (between ∼1 in 100 to 350) except for one leukemia (FLA2) in which 70% of the cells show repopulation ability (i.e., L-HSC). We reasoned that comparative mRNA profiling of FLA2 to the phenotypically similar FLB1 (0.3% L-HSC) might identify genes uniquely associated with L-HSC self-renewal. We observed a 2–3-fold upregulation of Gpx3 in FLA2, which was confirmed by qRT-PCR. In accordance with this, all 14 of the tested Gpx3 promoter region CpG sequences were methylated in FLB1 and hypomethylated in FLA2 cells. The higher expression of GPx3 in FLA2 was confirmed at the protein level and reflected in elevated glutathione peroxidase activity in comparison to FLB1. Importantly, we also observed in FLA2 a relative reduction in reactive oxygen species (ROS) level (DCFDA) and a concomitant decrease in p38 MAPK activation (western blot and mass spectrometry). The correlation of Gpx3 levels with L-HSC frequency could be reflective of their functional dependence on this enzyme. FLA2 cells being difficult to manipulate ex vivo, to address this we utilized retroviruses encoding shRNAs and a GFP reporter to explore the in vivo function of FLA2 cells with downregulated Gpx3. The decrease in percentage of GFP+ donor cells when leukemia became apparent (∼19 days) from that of populations initially transplanted, was 4-fold higher following Gpx3 knockdown in comparison to shLuciferase transduction. Moreover, those shGpx3 infected FLA2 remaining at day 19 displayed a 3-fold decrease in GFP mean fluorescence intensity relative to their control counterparts. These results show that GFPhigh cells were selectively depleted, and suggest that Gpx3 is critical for the competitiveness of L-HSCs. Because redox metabolism has been implicated in HSC self-renewal, we also analyzed its expression and function in normal HSC to gain further insight into the role of GPx3 in stem cell activity. Interestingly, compared to FL-HSCs, isolated 3 and 4 week bone marrow (BM), HSCs exhibited a 39- and 6-fold decrease in Gpx3 expression, respectively. A correlation of Gpx3 levels with enhanced self-renewal was also observed in vitro as overexpression of several nuclear determinants of HSC expansion such as Hoxb4, NA10HD, Klf10 and Prdm16 promoted Gpx3 expression by 3.2 to 19.2-fold. We next infected BM cells enriched for HSCs with retroviruses carrying shRNAs to Gpx3. shRNA targeting of Gpx3 dramatically inhibited hematopoietic reconstitution. Transplantations of sublethally irradiated recipients indicated that Gpx3 knockdown significantly impaired both early and late donor-derived hematopoiesis. These results suggest that GPx3 is critical for repopulation mediated by both short and long-term repopulating cells. In reciprocal gain-of-function experiments, Lin-CD150+CD48- cells engineered to overexpress Gpx3, showed a marked competitive advantage over controls when transplanted following a 7-day ex vivo culture step. Insertional mutagenesis was ruled out as proviral integration analyses of six recipients confirmed polyclonal hematopoiesis. Moreover, some mice were in part reconstituted by the same clones, indicating that self-renewal occurred in vitro prior to transplantation. Phenotypic analysis of late-transplant hematopoietic tissues showed that Gpx3-transduced cells contributed to lymphoid and myeloid repopulation, confirming their multipotentiality. Together, these results indicate that Gpx3 enhances HSC expansion ex vivo possibly through modulation of self-renewal activity. In conclusion, a unique model of primary L-HSC was exploited to identify Gpx3 as a critical determinant for the competitiveness of L-HSCs and complementary experiments demonstrated a key role for this gene in normal HSC self-renewal. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4327-4327
Author(s):  
Nicola Vannini ◽  
Mukul Girotra ◽  
Olaia M. Naveiras ◽  
Vasco Campos ◽  
Evan Williams ◽  
...  

Abstract A tight control of hematopoietic stem cell (HSC) quiescence, self-renewal and differentiation is crucial for lifelong blood production. The mechanisms behind this control are still poorly understood. Here we show that mitochondrial activity determines HSC fate decisions. A low mitochondrial membrane potential (Δψm) predicts long-term multi-lineage blood reconstitution capability, as we show for freshly isolated and in vitro-cultured HSCs. However, as in vivo both quiescent and cycling HSCs have comparable Δψm distributions, a low Δψm is not per se related to quiescence but is also found in dividing cells. Indeed, using divisional tracking, we demonstrate that daughter HSCs with a low Δψm maintain stemness, whereas daughter cells with high Δψm have undergone differentiation. Strikingly, lowering the Δψm by chemical uncoupling of the electron transport chain leads to HSC self-renewal under culture conditions that normally induce rapid differentiation. Taken together, these data show that mitochondrial activity and fate choice are causally related in HSCs, and provides a novel method for identifying HSC potential after in vitro culture. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2411-2411
Author(s):  
Hein Schepers ◽  
Patrick M. Korthuis ◽  
Jan Jacob Schuringa ◽  
Edo Vellenga

Abstract The transcriptional co-activator CITED2 has a conserved role in the maintenance of normal adult hematopoiesis. We have shown before that CD34+ cells from a subset of acute myeloid leukemia (AML) patients display enhanced CITED2 expression and that interfering with this expression is detrimental for leukemia maintenance. Ectopic expression of CITED2 in normal CD34+ stem and progenitor cells (HSPCs) resulted in increased proliferation and skewed myelo-erythroid differentiation in vitro. Long-Term Culture-Initiating Cell assays (LTC-IC) revealed a 5-fold increase in the number of Cobblestone Area Forming Cells (CAFCs), as a result of an increase in the number of phenotypically defined CD34+CD38- HSCs. CFC frequencies were also enhanced 5-fold upon CITED2 overexpression. To further substantiate these observations in vivo, we transplanted CITED2-transduced CD34+ cells into NSG mice. CD34+ cells with increased CITED2 expression displayed a >10x higher engraftment at week 12, as compared to control cells, confirming the higher frequency of CD34+CD38- HSCs, while myelo-lymphoid differentiation of these cells was comparable to control transplanted cells. Till date we have not observed leukemia development in these transplanted mice, suggesting that CITED2 as a single hit is not sufficient to transform human CB CD34+ cells. We recently identified the myeloid transcription factor PU.1 as a strong negative regulator of CITED2 and enhanced CITED2 expression in AML samples correlates with low PU.1 expression. We therefore investigated whether high CITED2 and low PU.1 expression would collaborate in maintaining self-renewal of HSCs. We combined lentiviral downregulation of PU.1 with overexpression of CITED2 (PU.1Low-CITED2High) and performed LTC-IC cultures on MS5 stroma. These experiments revealed that combined loss of PU.1 and enhanced CITED2 expression was sufficient to induce a strong proliferative advantage compared to control cells. Furthermore, a 3-fold increase of progenitor numbers was observed in CFC assays. While overexpression of CITED2 alone was not sufficient to allow 2nd CFC formation, additional downregulation of PU.1 now led to colony formation upon serial replating. This replating capacity of PU.1Low-CITED2High cells was limited to CD34+CD38- HSCs, as replating of CD34+CD38+ progenitor cells did not yield CFCs. This suggests that the combined loss of PU.1 and enhanced CITED2 expression is sufficient to maintain self-renewal properties of HSC, but this combination is not sufficient to reinforce self-renewal in committed progenitor cells. To more stringently assess self-renewal, cells were first cultured for 4 weeks on MS5 under myeloid differentiating conditions (G-CSF, IL3 and TPO) and subsequently plated into CFC assays, followed by secondary and tertiary replating experiments. Only PU.1Low-CITED2High cells were able to form CFCs after 10 weeks of culture, indicating that this combination indeed preserves self-renewal. Current experiments focus on the in vivo engraftment and self-renewal properties of these PU.1Low-CITED2High cells. Preliminary data indicate that these PU.1Low-CITED2High cells contribute ∼3-fold more to the myeloid lineage at week 12, compared to control and CITED2 only cells, and AML development is currently being investigated in these mice. Together, these data suggest that CITED2 is sufficient to increase LTC-IC and CFC frequencies, to skew myeloid differentiation, and to enhance engraftment of CB CD34+ cells in xenograft mice. Furthermore, CITED2 overexpression together with reduced PU.1 levels is necessary to maintain stem cell self-renewal. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (13) ◽  
pp. 1372-1378 ◽  
Author(s):  
Bradley W. Blaser ◽  
Leonard I. Zon

Generating a hematopoietic stem cell (HSC) in vitro from nonhematopoietic tissue has been a goal of experimental hematologists for decades. Until recently, no in vitro–derived cell has closely demonstrated the full lineage potential and self-renewal capacity of a true HSC. Studies revealing stem cell ontogeny from embryonic mesoderm to hemogenic endothelium to HSC provided the key to inducing HSC-like cells in vitro from a variety of cell types. Here we review the path to this discovery and discuss the future of autologous transplantation with in vitro–derived HSCs as a therapeutic modality.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3605-3605
Author(s):  
Yan Liu ◽  
Fan Liu ◽  
Xinyang Zhao ◽  
Goro Sashida ◽  
Anthony Deblasio ◽  
...  

Abstract Abstract 3605 Poster Board III-541 The Polycomb group (PcG) protein Bmi1 maintains silencing of the Ink4a-Arf locus and plays a key role in stem cell self-renewal and oncogenesis. The phosphoinositide 3-kinase-Akt (PI3K-Akt) signaling pathway regulates cell survival, growth, metabolism, migration and angiogenesis. In response to acute Pten loss (which results in Akt activation), mouse embryonic fibroblasts (mefs) accumulate p16Ink4a and p19Arf and undergo senescence. Similarly, Bmi1 −/− mefs undergo premature senescence and accumulate p16Ink4a and p19Arf. PTEN and Bmi1 have similar effects on hematopoiesis; Pten deletion promotes hematopoietic stem cell (HSC) proliferation, resulting in HSC depletion, whereas loss of Bmi1 impairs HSC self-renewal capability, also leading to bone marrow failure. These similarities led us to examine whether the PI3K/Akt pathway functions upstream of Bmi1 to negatively regulate its function and indeed we found that PKB/Akt phosphorylates Bmi1 in vivo, which results in its dissociation from chromatin and in de-repression of the Ink4a-Arf locus. Furthermore, activation of the PI3K/Akt pathway suppresses the ability of Bmi1 to promote cell growth and tumourigenesis and decreases the global level of histone H2A ubiquitination. PI3K/Akt signaling is not active in hematopoietic stem cells, but it is active in more committed progenitor cells. Thus, phosphorylation and inactivation of Bmi1 by Akt may limit HSC self-renewal. Our study also provides a mechanism for the upregulation of p16Ink4a and p19Arf seen in cancer cells that have activation of the PI3K/Akt signaling pathway, and identifies important crosstalk between phosphorylation and chromatin structure. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3461-3461
Author(s):  
Beiyan Zhou

Abstract Abstract 3461 The mixed lineage leukemia (MLL) gene codes for an evolutionarily conserved histone methyltransferase that is crucial for early hematopoiesis. As a result of a chromosomal translocation involving locus 11q23 results in formation of chimeras composed of the 5' part of the MLL gene fused with more than 60 partner genes lead to disruption of normal function of MLL as a histone methytransferase and acquisition of transcriptional properties conferred by the partner genes. MLL fusion genes (MLL-FG) are often the causal mutations for aggressive acute myeloid and lymphoid leukemias (AML and ALL) that correlated with poor prognosis. In order to treat or even eliminate MLL-associated leukemias, extensive studies on the regulatory mechanism underlying MLL associated transformation and progression have been carried out. Leukemic stem cells (LSC) can derive from either hematopoietic stem or progenitor cells with the recruitment of MLL-fusion genes (MLL-FG) and wild type MLL protein. We report that miR-150, a key hematopoietic regulatory microRNA (miRNA) and one of the most downregulated miRNAs in MLL-associated leukemias, acts as a tumor suppressor to block the leukemogenic potency of leukemic stem cells. When expression of miR-150 was restored, a significantly suppressed leukemic stem cell potency of MLL-AF9 cells was observed both in vivo and in vitro. Gene profiling analysis demonstrated that elevated miR-150 altered various aspects of gene expression patterns in MLL-AF9 cells, including stem cell signatures, cancer pathways, and cell survival. By screening more than 30 predicted target genes, we identified multiple leukemia-associated oncogenes as bona fide miR-150 targets, and knockdown of these genes by shRNAs recapitulated the tumor suppressive effects observed after ectopically expression of miR-150 in MLL-AF9 cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4829-4829
Author(s):  
David C Dorn ◽  
Wei He ◽  
Joan Massague ◽  
Malcolm A.S. Moore

Abstract Abstract 4829 The role of TIF1γ in hematopoiesis is still incompletely understood. We previously identified TIF1γ as a novel binding factor for Smad2/3 in the Transforming Growth Factor-β (TFGβ)-inducible signaling pathway implicated in the enhancement of erythropoiesis. To investigate the function of TIF1γ in regulation of hematopoietic stem cells we abrogated TIF1γ signaling by shRNA gamma-retroviral gene transfer in human umbilical cord blood-derived CD34+ hematopoietic stem/ progenitor cells (HCS/ HPCs). Upon blocking TIF1γ the self-renewal capacity of HSCs was enhanced two-fold in vitro as measured by week 5 CAFC assay and three-fold in vivo as measured by competitive engraftment in NOD/ SCID mice over controls. This was associated with a delay in erythroid differentiation and enhanced myelopoiesis. These changes were predominantly observed after TIF1γ knockdown and only mildly after Smad2 depletion but not after Smad3 or 4 reduction. Our data reveal a role for TIF1γ-mediated signaling in the regulation of HSC self-renewal and differentiation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2332-2332
Author(s):  
Vitalyi Senyuk ◽  
Yunyuan Zhang ◽  
Yang Liu ◽  
Ming Ming ◽  
Jianjun Chen ◽  
...  

Abstract Abstract 2332 MicroRNA-9 (miR-9) is required for normal neurogenesis and organ development. The expression of miR-9 is altered in several types of solid tumors suggesting that it may have a function in cell transformation. However the role of this miR in normal hematopoiesis and leukemogenesis is unknown. Here we show that miR-9 is expressed at low levels in hematopoietic stem/progenitor cells (HSCs/HPCs), and that it is upregulated during hematopoietic differentiation. Ectopic expression of miR-9 strongly accelerates terminal myelopoiesis, while promoting apoptosis in vitro and in vivo. In addition, the inhibition of miR-9 in HPC with a miRNA sponge blocks myelopoiesis. EVI1, required for normal embryogenesis, and is considered an oncogene because inappropriate upregulation induces malignant transformation in solid and hematopoietic cancers. In vitro, EVI1 severely affects myeloid differentiation. Here we show that EVI1 binds to the promoter of miR-9–3 leading to DNA hypermethylation of the promoter as well as repression of miR-9. We also show that ectopic miR-9 reverses the myeloid differentiation block that is induced by EVI1. Our findings suggest that inappropriately expressed EVI1 delays or blocks myeloid differentiation, at least in part by DNA hypermethylation and downregulation of miR-9. It was previously reported that FoxOs genes inhibit myeloid differentiation and prevent differentiation of leukemia initiating cells. Here we identify FoxO3 and FoxO1 as new direct targets of miR-9 in hematopoietic cells, and we find that upregulation of FoxO3 in miR-9-positive cells reduces the acceleration of myelopoiesis. These results reveal a novel role of miR-9 in myelopoiesis and in the pathogenesis of EVI1-induced myeloid neoplasms. They also provide new insights on the potential chromatin-modifying role of oncogenes in epigenetic changes in cancer cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 211-211
Author(s):  
Timothy S. Olson ◽  
Satoru Otsuru ◽  
Ted Hofmann ◽  
Edwin M. Horwitz

Abstract Abstract 211 Bone marrow (BM) radioablation produces structural changes in the endosteal osteoblastic stem cell niche, a critical site of hematopoietic stem cell (HSC) engraftment following HSC transplantation (HSCT). We have previously shown that total body irradiation (TBI) in wildtype (WT) mice induces migration of recipient megakaryocytes to the niche and an expansion of niche osteoblasts that supports HSC engraftment following transplantation. We have also demonstrated that c-MPL-deficient (mpl−/−) recipients have decreases in total megakaryocytes (35% of WT), the percentage of megakaryocytes migrating to the endosteum (<20% of WT), and niche osteoblast expansion (<50% of WT) following TBI, leading to profound deficits in long-term (LT)-HSC engraftment following HSCT. We now present data examining mechanisms by which megakaryocytes facilitate both niche osteoblast expansion post-TBI and donor HSC engraftment following HSCT, and a therapeutic strategy utilizing these mechanisms to enhance donor HSC engraftment. The decrease in total megakaryocytes and absent thrombopoietin (TPO) signaling in mpl−/− mice resulted in a 90% reduction in post-TBI mpl−/− versus WT BM levels of platelet-derived growth factor beta (PDGFβ), a known osteoblast growth factor. In vitro, megakaryocytes cultured together or across a transwell membrane markedly enhanced osteoblast growth (> 2.5 fold, p < 0.001), but PDGFβ signaling inhibition completely abrogated megakaryocyte-driven osteoblast growth. In vivo, inhibition of PDGF receptor signaling in WT mice via imatinib treatment resulted in near complete blockade of TBI-induced osteoblast expansion, and imatinib treatment of primary recipients resulted in diminished LT-HSC engraftment in secondary transplant assays. Blockade of CD41 integrin-mediated adhesion of megakaryocytes in WT recipient BM blocked TBI-induced megakaryocyte migration to the endosteal niche and severely abrogated LT-HSC engraftment efficiency. However, in contrast to c-MPL deficiency, CD41 blockade did not decrease PDGFβ expression or niche osteoblast expansion, suggesting that in addition to PDGFβ-dependent effects on niche expansion, the megakaryocyte migration to the niche itself is also required to efficiently engraft HSC. Mice with decreased GATA-1 expression (Gata-1tm2sho/J), have a large increase in total BM megakaryocytes a >2-fold (p < 0.001) increase in PDGFβ levels, and greatly increased expansion of osteoblast and other mesenchymal elements 48 hours post-TBI compared to WT mice. However, Gata-1tm2sho/J megakaryocytes have known defective terminal differentiation and function including decreased platelet production, and Gata-1tm2sho/J primary recipients did not engraft LT-HSC more efficiently than WT primary recipients, demonstrating the need for fully functional megakaryocytes, and not only increased PDGFβ-induced mesenchymal proliferation, to foster HSC engraftment. Finally, we have examined whether TPO administration prior to radioablation and HSCT can enhance host megakaryocyte effects on the niche and HSC engraftment. TPO administration for 5 days prior to radioablation, resulted in a significant increase in BM megakaryocytes and a 50% increase in niche osteoblast expansion. Furthermore, competitive secondary transplantation assays demonstrated that TPO- versus sham-treatment of primary recipients prior to TBI and BM transplant, resulted in increased initial engraftment at 24 hours post-primary transplant (40% increase, p < 0.05) increased short-term HSC and progenitor engraftment 3–6 weeks following secondary transplant (4–20 fold increase, p < 0.02), and sustained LT-HSC engraftment at 28 weeks post-transplant in 47% versus 7% (p < 0.05) of secondary recipients of TPO- versus sham-treated primary recipient BM, respectively. Taken together, our results demonstrate that host megakaryocytes facilitate efficient HSC engraftment following TBI and HSCT through PDGFβ-dependent enhancement of niche osteoblast expansion and through direct interactions of megakaryocytes with the niche. TPO-treatment of transplant recipients prior to radioablation and stem cell infusion enhances these megakaryocyte-dependent pathways and subsequent donor HSC engraftment efficiency, providing a clinically applicable strategy to enhance niche function and stem cell engraftment following clinical transplantation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3764-3764
Author(s):  
Patali S Cheruku ◽  
Marina Bousquet ◽  
Guoqing Zhang ◽  
Guangtao Ge ◽  
Wei Ying ◽  
...  

Abstract Leukemic stem cells (LSCs) are derived from hematopoietic stem or progenitor cells and often share gene expression patterns and specific pathways. Characterization and mechanistic studies of LSCs are critical as they are responsible for the initiation and potential relapse of leukemias, however the overall framework, including epigenetic regulation, is not yet clear. We previously identified microRNA-150 (miR-150) as a critical regulator of mixed lineage leukemia (MLL) -associated leukemias by targeting oncogenes. Our additional results suggest that miR-150 can inhibit LSC survival and disease initiating capacity by suppressing more than 30% of “stem cell signature genes,” hence altering multiple cancer pathways and/or stem cell identities. MLL-AF9 cells derived from miR-150 deficient hematopoietic stem/progenitor cells displayed significant proliferating advantage and enhanced leukemic colony formation. Whereas, with ectopic miR-150 expression, the MLL-AF9 associated LSC population (defined as Lin-ckit+sca1- cells) was significantly decreased in culture. This is further confirmed by decreased blast leukemic colony formation in vitro. Furthermore, restoration of miR-150 levels in transformed MLL-AF9 cells, which often display loss of miR-150 expression in AML patients with MLL-fusion protein expressing, completely blocked the myeloid leukemia development in a transplantation mouse model. Gene profiling analysis demonstrated that an increased level of miR-150 expression down regulates 30 of 114 stem cell signature genes by more than 1.5 fold, partially mediated by the suppressive effects of miR-150 on CBL, c-Myb and Egr2 oncogenes. In conclusion, our results suggest that miR-150 is a potent MLL-AF9 leukemic inhibitor that may act by suppressing the survival and leukemic initiating potency of MLL-AF9 LSCs. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document