Myeloid Leukemia Cells With MLL partial Tandem Duplication Are Sensitive To Pharmacological Inhibition Of The H3K79 Methyltransferase DOT1L

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1256-1256 ◽  
Author(s):  
Michael W.M. Kühn ◽  
Michael Hadler ◽  
Scott R. Daigle ◽  
Chun-Wei Chen ◽  
Amit U. Sinha ◽  
...  

Abstract Genetic alterations of the mixed-lineage leukemia (MLL) gene are commonly identified in acute leukemias. In acute myeloid leukemia (AML), a partial tandem duplication (PTD) of MLL occurs in about 5-10% of AML patients and is associated with adverse prognosis. The mutation leads to an in-frame duplication of exons 5 to 11 resulting in the production of an aberrant MLL protein. Unlike chromosomal rearrangements of MLL, this mutation does not affect the functional histone 3 lysine 4 (H3K4) methyltransferase domain. However, AMLs carrying a MLL-PTD and MLL-rearranged leukemias share some common characteristics, such as overexpression of HOXA-cluster genes and dysregulated epigenetic functions. Recently, leukemias with various MLL-translocations have been shown to be dependent on the histone 3 lysine 79 (H3K79) methyltransferase, DOT1L, and are sensitive to EPZ004777, a recently described selective small-molecule DOT1L inhibitor. EPZ-5676, a DOT1L-inhibitor with improved potency and drug-like properties, has recently been identified and is currently under clinical investigation. To evaluate the therapeutic potential of DOT1L-inhibition in MLL-PTD positive leukemia cells, we assessed the effect of EPZ004777 on the MLL-PTD containing leukemia cell lines MUTZ-11 and EOL-1. In vitro treatment with EPZ004777 over a 14-day period resulted in dramatic reduction of cell proliferation compared to DMSO vehicle control in both cell lines beginning 7 days after the start of treatment. Similar results were obtained for MOLM-13, a leukemia cell line harboring a MLL-translocation, but not for HL-60, a non-MLL-rearranged leukemia cell line. To further investigate whether these findings reflect a selective response to EPZ004777 or non-specific drug toxicity, we first explored the genome-wide H3K79 dimethylation (H3K79me2) profile using chromatin immunoprecipitation (ChIP) followed by next generation sequencing in untreated MUTZ-11 cells. Across the HOXA-cluster locus, we detected a similar H3K79me2 distribution pattern as previously reported in MLL-rearranged leukemias. Further analysis of H3K79me2 in MUTZ-11 and EOL-1 cells after treatment with the inhibitor showed profound suppression of those marks as assessed by western blot and ChIP-PCR. Subsequent global gene expression analysis revealed concurrent downregulation of HOXA-cluster and other MLL-target genes after 7 days of DOT1L inhibition. To investigate the effect of EPZ004777 on the MLL-PTD positive cells in more detail, we analyzed cell differentiation and apoptosis upon a 10-day exposure to the compound. As previously described for EPZ004777-sensitive MLL-rearranged leukemias, drug treatment resulted in increased expression of CD11b and morphological changes consistent with myeloid cell differentiation. We further observed apoptotic cell death after EPZ004777 treatment as measured by an increase in the percentage of Annexin V positive cells and cleaved Caspase 3 protein compared to vehicle controls. In order to determine the effect of DOT1L inhibition in vivo, we tested the recently identified DOT1L-inhibitor, EPZ-5676, for its ability to inhibit leukemia growth in a subcutaneous EOL-1 xenograft model in immunocompromised rats. Similar to what we observed in vitro, continuous intravenous administration over 21 days led to substantial dose-dependent inhibition of tumor growth, abrogation of H3K79me2, and concurrent downregulation of selected MLL-target genes. Thus, we demonstrate unexpected sensitivity of MLL-PTD containing leukemia cell lines to the DOT1L inhibitors EPZ004777 in vitro and EPZ-5676 in vivo. These data suggest that patients with myeloid malignancies carrying this particular mutation might benefit from treatment with therapeutic approaches that target DOT1L. Disclosures: Daigle: Epizyme, Inc: Employment, Equity Ownership. Olhava:Epizyme Inc.: Employment. Pollock:Epizyme Inc.: Employment, Equity Ownership, Patents & Royalties, Stock Options Other. Armstrong:Epizyme Inc.: Has consulted for Epizyme Inc. Other.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4048-4048
Author(s):  
Melissa D Mathias ◽  
Jonathan T Sockolosky ◽  
Aaron Yu-Yuan Chang ◽  
Cheng Liu ◽  
K. Christopher Garcia ◽  
...  

Abstract INTRODUCTION T Cell Receptor mimic (TCRm) antibodies to low-density peptide epitopes from undruggable intracellular proteins presented in the context of major histocompatibility (MHC) molecules are therapeutically effective in mouse models of human cancers. CD47 blockade by use of a high affinity SIRPα variant protein (CV1) has been shown to improve the effects of monoclonal antibodies to high-density antigens in tumor models by enhancement of antibody dependent cellular phagocytosis (ADCP). We asked if combination therapy with a TCRm antibody to Preferentially Expressed Antigen in Melanoma (PRAME) could enhance activity of both drugs in vitro and in vivo. Additionally, we explored the role of macrophage-secreted cytokines in the enhanced in vivo activity. METHODS We performed in vitro ADCP assays with human acute myeloid and acute lymphoid leukemia cell lines containing antigens of interest using the two agents alone and in combination. We performed therapy experiments in NSG mice using the same leukemia cell lines transformed with a luciferase vector and measured tumor burden through bioluminescent imaging. Survival was measured. We examined cell-surface expression of epitopes of interest and HLA on cell lines in vitro after incubation with IFNγ and TNFα using flow cytometry and performed in vitro ADCP assays with the leukemia cell lines after pretreatment with IFNγ. RESULTS CV1 and TCRm antibody showed additive effects in vitro with a statistically significant increase in phagocytosis in both antigen positive cell lines with combination therapy versus single agent therapy. CV1 and TCRm antibody showed greater than additive therapeutic effects in vivo with a 3-log reduction in leukemia burden relative to control untreated mice and a 5-10 fold reduction relative to single agent groups. After therapy was stopped, mice treated with the combination had statistically significant increases in survival (p<0.0001). IFNγ and TNFα led to up-regulation of cell surface HLA-A*02:01. Additionally, the cytokines led to up-regulation of the PRAME derived epitope of interest. Pretreatment of human leukemia cell lines with IFNγ led to statistically significant increases in ADCP in vitro. CONCLUSIONS The elimination of anti-phagocytic signal produced by CD47 blockade with the high affinity SIRPα variant CV1, combined with the pro-phagocytic signal of Fc receptor engaging TCRm was effective even with an ultra-low density epitope (700-3000 sites per cell) in vitro and in vivo. A greater than additive effect was seen in two tumor models. These results support the potency of this drug combination. The large enhancement in activity in vivo vs. in vitro may be explained by macrophage-released cytokines leading to increased presentation of epitopes of interest and increased tumor kill. Disclosures Liu: Eureka Therapeutics: Employment, Equity Ownership, Patents & Royalties. Garcia:Alexo Therapeutics: Equity Ownership.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 538-538
Author(s):  
Elena Manara ◽  
Emma Baron ◽  
Alessandra Beghin ◽  
Claudia Tregnago ◽  
Emanuela Giarin ◽  
...  

Abstract Abstract 538 The cAMP response element binding protein (CREB) is a nuclear transcription factor downstream of various stimuli and is critical for the pathogenesis of leukemia. CREB overexpression promotes abnormal proliferation, cell cycle progression, and clonogenic potential in vitro and in vivo. We found that CREB deregulation in Acute Myeloid Leukemia (AML) is due to both genomic amplification and aberrant miRNA expression. CREB has been shown to be a direct target of the microRNA, miR-34b. The inverse correlation between CREB and miR-34b expression has been described in myeloid leukemic cell lines. Mir-34b restoration reduced CREB levels and leukemia proliferation in vitro. One reason for the lower expression of miR-34b in myeloid leukemia cell lines is the hypermethylation of its promoter. Our goal was to characterize the role of miR-34b in AML progression using primary cells and mouse models. We also studied the regulation of miR-34b expression in cells from patients with AML and myelodysplastic syndromes (MDS). Primary AML cells transiently overexpressing miR-34b had decreased clonogenicity, as well as increase in apoptosis (9.9 vs. 25.5%, p<0.001). Primary leukemia cells from AML patients (n=3) treated with the demethylating agent 5-aza-2′-deoxycytidine showed a rise in miR-34b expression after 16 hours (RQ=7±2.6). We also observed a concomitant decrease in CREB protein expression and its target genes. In vivo, miR-34b overexpression resulted in decreased CREB expression and suppression of leukemia growth in flank tumor models with HL-60 and K562 cells injected into NOD-SCID IL-2receptor gamma null (NSG) mice, measured by bioluminescence and tumor volume (n=10 per group). These results demonstrated that miR-34b is an important tumor-suppressor through downregulation of CREB. We next investigated miR-34b expression in a large series of AML patients (n=118), a group of MDS patients (n= 49), and healthy bone marrows (HL-BM) (n=17) by quantitative PCR. Our results demonstrated lower miR-34b expression in blast cells from AML patients at diagnosis compared to HL-BM. The lower miR-34b expression in AML patients correlated with elevated CREB levels, similar to myeloid leukemia cell lines. The expression levels of miR-34b in bone marrow from MDS patients were intermediate between AML patients and HL-BM. These results suggest that miR-34b regulates CREB and is involved in the evolution of MDS to AML. In an effort to understand the mechanism of miR-34b downregulation in primary AML and MDS BM cells, miR-34b promoter methylation was determined using MS-PCR in both patient cohorts. The miR-34b promoter was found to be methylated in 65% (78/118) of AML patients at diagnosis, while it was unmethylated in all MDS samples (49/49). In particular, 3 MDS patients that evolved to AML had miR-34b promoter hypermethylation exclusively at the onset of AML. We further tested this hypothesis by downregulating miR-34b in primary HL-BM and fetal liver cells by using both oligonucleotides and a lentiviral transduction. An increase in CREB mRNA and several CREB target genes (for example cyclin B1, cyclin E2, p21) was observed. Moreover, the cell cycle profile demonstrated increased numbers of cells in S phase compared to negative controls. Methylcellulose colony formation was also increased in HL-BM and fetal liver cells transduced with a miR-34b inhibitor compared to controls (197 vs. 101, p<0.001). Therefore, we conclude that miR-34b promoter methylation is critical for the pathogenesis of AML through regulation of CREB-dependent pathways. Disclosures: Sakamoto: Abbott Laboratories, Inc.: Research Funding; Genentech, Inc.: Research Funding.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2605-2605
Author(s):  
Lars Bullinger ◽  
Konstanze Dohner ◽  
Richard F. Schlenk ◽  
Frank G. Rucker ◽  
Jonathan R. Pollack ◽  
...  

Abstract Inhibitors of histone deacetylases (HDACIs) like valproic acid (VPA) display activity in murine leukemia models, and induce tumor-selective cytoxicity against blasts from patients with acute myeloid leukemia (AML). However, despite of the existing knowledge of the potential function of HDACIs, there remain many unsolved questions especially regarding the factors that determine whether a cancer cell undergoes cell cycle arrest, differentiation, or death in response to HDACIs. Furthermore, there is still limited data on HDACIs effects in vivo, as well as HDACIs function in combination with standard induction chemotherapy, as most studies evaluated HDACIs as single agent in vitro. Thus, our first goal was to determine a VPA response signature in different myeloid leukemia cell lines in vitro, followed by an in vivo analysis of VPA effects in blasts from adult de novo AML patients entered within two randomized multicenter treatment trials of the German-Austrian AML Study Group. To define an VPA in vitro “response signature” we profiled gene expression in myeloid leukemia cell lines (HL-60, NB-4, HEL-1, CMK and K-562) following 48 hours of VPA treatment by using DNA Microarray technology. In accordance with previous studies in vitro VPA treatment of myeloid cell lines induced the expression of the cyclin-dependent kinase inhibitors CDKN1A and CDKN2D coding for p21 and p19, respectively. Supervised analyses revealed many genes known to be associated with a G1 arrest. In all cell lines except for CMK we examined an up-regulation of TNFSF10 coding for TRAIL, as well as differential regulation of other genes involved in apoptosis. Furthermore, gene set enrichment analyses showed a significant down-regulation of genes involved in DNA metabolism and DNA repair. Next, we evaluated the VPA effects on gene expression in AML samples collected within the AMLSG 07-04 trial for younger (age<60yrs) and within the AMLSG 06-04 trial for older adults (age>60yrs), in which patients are randomized to receive standard induction chemotherapy (idarubicine, cytarabine, and etoposide = ICE) with or without concomitant VPA. We profiled gene expression in diagnostic AML blasts and following 48 hours of treatment with ICE or ICE/VPA. First results from our ongoing analysis of in vivo VPA treated samples are in accordance with our cell line experiments as e.g. we also see an induction of CDKN1A expression. However, the picture observed is less homogenous as concomitant administration of ICE, as well as other factors, like e.g. VPA serum levels, might substantially influence the in vivo VPA response. Nevertheless, our data are likely to provide new insights into the VPA effect in vivo, and this study may proof to be useful to predict AML patients likely to benefit from VPA treatment. To achieve this goal, we are currently analyzing additional samples, and we are planning to correlate gene expression findings with histone acetylation status, VPA serum levels, cytogenetic, and molecular genetic data.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4044-4044
Author(s):  
Blake S Moses ◽  
Jennifer Fox ◽  
Xiaochun Chen ◽  
Samantha McCullough ◽  
Sang Ngoc Tran ◽  
...  

Abstract Antimalarial artemisinins have broad antineoplastic activity in vitro, are well tolerated and inexpensive, and can be parenterally or orally administered in humans. Artemisinin-derived trioxane diphenylphosphate dimer 838 (ART838; a potent artemisinin-derivative) inhibited acute leukemia growth in vivo and in vitro, at doses where normal human CD34+ hematopoietic stem-progenitor cell clonogenicity was essentially unaffected (Fox et al, Oncotarget 2016, PMID: 26771236). In our focused drug combination screen for drugs that synergize with ART838, the only BCL2 inhibitors in the screen library of 111 emerging antineoplastic compounds, navitoclax (ABT737) and venetoclax (ABT199; FDA-approved), were identified as 2 of the top 3 candidates. Synergies between ART838 and BCL2 inhibitors were validated in multiple acute leukemia cell lines and primary cases. This ART838-BCL2 inhibitor synergy may be due to reduced levels of MCL1 protein that we and others have observed in multiple acute leukemia cell lines and primary cases treated with artemisinins (Budhraja et al, Clin Cancer Res 2017, PMID: 28974549). Treatment of acute leukemia xenografts with the ART838 plus ABT199 combination reduced leukemia growth rates and prolonged survivals, compared to vehicle or either ART838 or ABT199 alone. To add to the efficacy of this ART838 plus ABT199 treatment regimen, we sought to rationally add a third low-toxicity active antileukemic agent. Sorafenib (SOR; FDA-approved) inhibits multiple kinases which may mediate its antileukemic activity, with the importance of the targets varying from case to case; e.g. FLT3 is an important target in many AMLs. In addition, several reports have found that SOR reduces MCL1 protein stability and translation through inhibition of the ERK and PI3K pathways (Wang et al, Clin Cancer Res 2016, PMID: 26459180; Huber et al, Leukemia 2011, PMID: 21293487). In all acute leukemia cell lines tested, we observed large reductions in MCL1 protein levels with SOR treatment, which may further rationalize the addition of SOR to our ART838 plus ABT199 antileukemic regimen. We had previously observed strong in vitro synergy between ART838 and SOR (PMID: 26771236). Treatment of acute leukemia xenografts with the ART838 plus SOR combination reduced leukemia xenograft growth rates and prolonged survivals, compared to single drugs. Mice bearing luciferase-labelled acute leukemia xenografts were treated (PO daily x5) with single drug or 2-drug or 3-drug combinations of ART838, ABT199, and SOR, each at their individual maximally tolerated doses. Treatment with this 3-drug combination caused rapid regression of luciferase-labelled MV4;11 AML xenografts (Fig 1A). The 5-day treatment cycles were repeated every other week, and mice receiving this 3-drug combination survived >4 times longer than vehicle-treated mice (Fig 1B). Mouse body weights were stable during treatment. Although myelosuppression is the human clinical dose-limiting toxicity of each of these 3 drugs, mouse blood cell counts during 3-drug combination treatment were in the normal range. Treatment of a luciferase-labelled primary AML leukemia xenograft with this 3-drug combination reduced leukemia growth more than the single drugs or 2-drug combinations (Fig 1C). Assessment of efficacy and pharmacokinetics-pharmacodynamics against diverse acute leukemia xenografts will test this combination of ART838, ABT199 plus SOR as a rational low-toxicity drug triad for treatment of acute leukemias and potentially other cancers. Disclosures Fox: Intrexon Corporation: Employment. Tyner:Genentech: Research Funding; Janssen: Research Funding; AstraZeneca: Research Funding; Gilead: Research Funding; Incyte: Research Funding; Constellation: Research Funding; Array: Research Funding; Takeda: Research Funding; Vivid Biosciences: Membership on an entity's Board of Directors or advisory committees; Aptose: Research Funding. Civin:ConverGene LLC: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding; GPB Scientific LLC: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; 3DBioWorks Inc: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; BD (Becton Dickinson): Honoraria.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2187-2187
Author(s):  
Xiaomei Yan ◽  
Yoshihiro Hayashi ◽  
Xinghui Zhao ◽  
Aili Chen ◽  
Yue Zhang ◽  
...  

Abstract Transcription factors RUNX1/CBFβ play critical roles in hematopoiesis. Both of them are frequently involved in chromosomal translocations, point mutations, or deletions in acute leukemia. The mixed lineage leukemia (MLL) gene is also frequently involved in chromosomal translocations or partial tandem duplication in acute leukemia. We have previously shown that MLL, RUNX1, and CBFβ interact and form a regulatory complex to regulate downstream target genes. However, the functional consequence of MLL fusions on RUNX1/CBFβ activity remains unknown. To determine the impact of MLL fusion protein on RUNX1/CBFβ, we introduced either MLL, MLL-BP (longer N-terminal Flag-tagged MLL construct which contains CXXC domain; 1-1406), or MLL-fusions together with RUNX1, CBFβ, or both RUNX1 and CBFβ into 293T cells. MLL-BP and MLL fusions significantly decreased RUNX1 levels compared with controls (empty vector and MLL). CBFβ protein was mildly decreased by MLL-BP and MLL-fusions when expressed alone. However, when CBFβ was co-expressed with RUNX1, it was significantly decreased compared with controls. The expression levels of RUNX1 and CBFβ proteins in LSK cells from Mll-Af9 knock-in mice were significantly lower than those from wild-type (WT) mice. To confirm these findings in human acute myeloid leukemia (AML), we measured the expression of RUNX1 and CBFβ at both mRNA and protein levels in various leukemia cell lines. The expression levels of RUNX1 and CBFβ proteins were significantly decreased in AML cells with MLL fusion and MLL partial tandem duplication (MLL-PTD) compared with those in AML cells without MLL aberrations. MLL fusions still have CXXC domain. In MLL-PTD, the CXXC domain is duplicated. Our data showed that RUNX1 protein is not only down-regulated by MLL fusion proteins, but also by MLL-BP. Thus, to determine which region is involved in the down-regulation of RUNX1, we introduced a series of MLL deletion mutants into 293T cells and measured RUNX1 protein expression. MLL deletion mutants without CXXC domain had no effect on RUNX1 stability. The construct which contains point mutations in CXXC domain also lacked the ability to reduce RUNX1 expression. Furthermore, overexpression of only CXXC domain and flanking regions could down-regulate RUNX1 protein expression. These results suggest that MLL fusion proteins and the N-terminal MLL portion of MLL fusions down-regulate RUNX1 and CBFβ protein expression via the MLL CXXC domain and flanking regions. To understand the impact of RUNX1/CBFβ down-regulation on hematopoietic stem and progenitor cells (HSPCs), we generated RUNX1+/–/CBFβ+/– mice as a hypomorph model. The percentage of bone marrow (BM) LSK cells from RUNX1+/–/CBFβ+/– mice was significantly increased compared with that from WT mice. Using BM cells from these mice, we performed in vitro CFU assay and in vivo bone marrow transplantation (BMT) assay. BM cells from RUNX1+/–/CBFβ+/– mice provided more colonies in CFU assay compared with those from WT mice. To determine whether restoration of RUNX1 could repress the MLL mediated leukemogenesis, we retrovirally overexpressed WT RUNX1 in BM cells from Mll-Af9 knock-in mice. Using transduced BM cells, we performed in vitro CFU assay and in vivo BMT assay. RUNX1 overexpressed Mll-Af9 (Mll-Af9/RUNX1) cells underwent terminal differentiation after 2 times replating, while control vector transduced Mll-Af9 (Mll-Af9/Control) cells could still be replated more than 4 times. All the recipient mice transplanted with Mll-Af9/Control cells developed AML. In contrast, all the recipient mice transplanted with Mll-Af9/RUNX1 never develop AML. Furthermore, when we treated MLL leukemia cell lines with DOT1L inhibitor (EPZ-5676), RUNX1 protein levels in these MLL leukemia cell lines were significantly increased 48 hours after the treatment in comparing with controls treated with DMSO. However, there was no significant mRNA expression level change of RUNX1within 48 hours. Future studies are needed to fully understand the mechanism of whether this increasing RUNX1 protein level by DOT1L inhibitor is through blocking CXXC domain and flanking regions mediated degradation. In conclusion, MLL aberrations down-regulate RUNX1/CBFβ via their CXXC domain and flanking regions. Down-regulation of RUNX1/CBFβ plays critical role for MLL mediated leukemia development. Targeting RUNX1/CBFβ levels allows us to test novel therapies for MLL leukemias. Disclosures Mulloy: Celgene: Research Funding; Seattle Genetics: Research Funding; Amgen: Research Funding; NovImmune: Research Funding.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2498-2498
Author(s):  
Jeffrey L. Cleland ◽  
Alvin Wong ◽  
Susan E. Alters ◽  
Peter A. Harris ◽  
Chris R. Dunk ◽  
...  

Abstract An ideal treatment for lymphoma and leukemia is the use of highly selective compounds to eliminate diseased cells with minimal systemic toxicity to normal tissues (cf. imatinib mesylate; Gleevec). AQ4N (1,4 bis[[2-(dimethylamino)ethylamino}-5,8-hydroxyanthracene-9,10-dione bis N-oxide) is designed to have little or no toxicity until selectively activated by bioreduction in hypoxic cells to AQ4 (reduced AQ4N), a highly potent DNA topoisomerase II inhibitor. In a series of studies, AQ4 has been shown to have potent cytotoxicity on lymphoma and leukemia cell lines in vitro and AQ4N has selective activity in lymphatic tissues in vivo. The IC50 of AQ4, was 0.63, 12.0, 90.5 and 150 nM in Namalwa, Daudi, Ramos, and Raji human lymphoma cell lines and 1.0, 6.0, and 20 nM in HL-60, KG1a and K562 human leukemia cell lines. On several of the tumor lines the activity of AQ4 was more potent than doxorubicin (i.e. IC50 for Dox was 20.3 nM on Namalwa). AQ4N also had anti-proliferative activity at μM levels indicating a potential mechanism for activation by these cell lines. In repeat dose toxicology studies of AQ4N in pigmented rats and cynomolgus monkeys, the maximum tolerated doses (MTD; rats: 20 mg/kg/wk x 6; monkeys 6 mg/kg/wk x 6) resulted in lymphoid tissue atrophy. A decrease in lymphocyte levels and atrophy of the spleen, thymus, and mandibular and mesenteric lymph nodes were observed at terminal sacrifice of the animals. In contrast, there was an absence of myelosuppression and only mild neutropenia and minor bone marrow atrophy at the MTD. Administration of radiolabeled AQ4N (14C-benzene) to pigmented rats and cynomolgus monkeys indicated persistence of AQ4N radioactivity in lymphoid tissues for several weeks after a single dose (rats: 20 mg/kg (130–140 μCi/kg); monkeys: 10 mg/kg (135 μCi/kg)). For example, in rats the half-life of radioactive AQ4N in the spleen was 538 hrs with 0.9 μg AQ4N/g tissue (spleen) remaining one week after dosing. Monkeys demonstrated a similar effect with 76.5–86.8 μg AQ4N/g tissue observed in the spleen one week after treatment. Other tissues contained significantly less radioactive AQ4N with the exception of the liver (67.9–78.6 μg AQ4N/g tissue) and adrenal cortex (78.7–86.6 μg AQ4N/g tissue). While some hypertrophy and eosinophila was observed in the adrenal glands, liver toxicity was not observed at the MTD in the repeat dose cynomolgus monkey toxicology study. Overall, these initial findings indicate that AQ4N is active in vitro against human lymphoma and leukemia cell lines and selectively targets lymphoid tissues in vivo suggesting the potential benefit of AQ4N in the treatment of lymphoproliferative diseases.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4244-4244
Author(s):  
Tsuyoshi Nakamaki ◽  
Norimichi Hattori ◽  
Hidetoshi Nakashima ◽  
Takashi Maeda ◽  
Hirotsugu Ariizumi ◽  
...  

Abstract Pervious in vitro studies have shown that molecular alterations of BCR-ABL-positive leukemia cells such as amplification of BCR-ABL gene and/or mutation(s) of abl kinase domain cause resistant to imatinib. However recent study showed that alterations of imatinib bioavailability might be a important factor to cause clinical resistant in BCR-ABL-positive leukemia patients, showing a differences between in vivo and in vitro sensitivity to imatinib of BCR-ABL-positive cells. To analyze mechanism(s) of clinical resistance to imatinib and to overcome the resistance, we have sequentially established and characterized two leukemia cell lines from a patient with myeloid blastic crisis of chronic myeloid leukemia (CML) who showed progressively resistant to imatinib. Case report and establishment of cell lines: a 59-years-old women developed blastic crisis preceded by four years of chronic phase of CML. Increased blasts in crisis was positive for CD13, 33 and showed double Ph-chromosome in addition to complexed chromosomal alterations such as, add(3)(p13), add(3)(q11), add(5)(q11), der(19)(3;19) (p21;q13). After repeated courses of combination chemotherapy including, 600mg of imatinib was administered orally in combination with chemotherapeutic drugs. For a brief period Imatinib showed clinical effects and slowed the increase of BCR-ABL-positive cells, however myeloblast progressively increased in peripheral blood in spite of daily administration of imatinib and she died four months treatment with imatinib. Two myeloid leukemia cell lines, NS-1 and NS-2 were established, after obtaining informed consent, from peripheral blood at day 65 and day 95 after initiation of imatinib administration, respectively. Cell surface phenotype and karyotype of these cell lines were identical to original blasts. NS-1 and NS-2 cell lines were characterized compared with BCR/ABL-positive K562 erythroleukemia cell line as a control Quantitative analysis by real-time polymerase chain reaction showed that copy number of BCR-ABL transcript were 2.2 × 105 and 1.6 × 10 5/μg RNA in NS-1 and NS-2 respectively, showing slightly lower than those (5.8 × 105) in K562 cell line. Although nucleotide sequence analysis showed that a point mutation in abl kinase domain resulted in amino acid substitution pro310ser in NS-1 cell line, no additional mutation was found in NS-2 cell line. Western blot analysis showed levels of both 210 KD BCR-ABL protein and BCR-ABL phosphorylation were similar in NS-1, NS-2 and K562 cells. Although two hours incubation with 10 mM imatinibin vitro did not show any detectable difference in levels of phosphorylation of BCR-ABL protein between NS-1 and NS-2 cell lines, sensitivity to imatinib measured by MTT assay showed that IC50 was 0.1 mM, 0.5 mM and 1.0mMin NS-1, NS-2 and K562 cell lines respectively. The measured IC50 of both NH-1 and NH-2 cell lines were much lower than reported plasma concentrations achieved by oral administration of 600 mg of imatinib (above 10 μM). The present results suggest difference between in vivo and in vitro sensitivity to imatinib indicate that alteration of bioavailability of imatinib possibly involved in clinical resistance to this drug, accumulations of BCR-ABL gene amplification and/or mutation are not necessarily a major reason of progressive clinical resistance to imatinib in BCR-ABL positive leukemia.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3271-3271
Author(s):  
John M. Fidler ◽  
Jinhua An ◽  
John H. Musser ◽  
Duncan H. Mak ◽  
Bing Carter ◽  
...  

Abstract Abstract 3271 Acute Myeloid Leukemia (AML) is the most common form of adult acute leukemia and the second most common childhood leukemia. AML has the lowest survival rate among leukemias, and the frequency is increasing as the population ages. Current therapies are inadequate, and a need exists for better therapeutic agents to treat AML, both as initial treatment for newly diagnosed patients and for those who have failed current therapy and relapsed. Natural products, such as taxol, have shown activities in a variety of disease states, including cancer. Triptolide is a natural product diterpenoid derived from Tripterygium wilfordii Hook f, and has shown anti-cancer activity in a broad range of solid tumors in preclinical models. It induces apoptosis in various leukemic cell lines and primary AML blasts (Carter, B et al, Blood 2006). Derivatives of triptolide with improved pharmacokinetics and bioavailability offer the opportunity to optimize the activity of triptolide for clinical application in AML. MRx102 is a triptolide derivative that is more hydrophobic than triptolide. It has potent in vitro cytotoxic activity with human tumor and leukemia cell lines, an unusual result for triptolide derivatives because they are usually much less active in vitro than the parent compound. Designed as a prodrug, MRx102 exerts cytotoxic activity with human AML cell lines and other human leukemia cell lines without pre-incubation with plasma esterases (IC50 of 51.0 and 37.1 nM with MV4-11 AML cells at 48 and 72 hours, respectively, ∼55% and ∼36% of the activity of triptolide, respectively). MRx102 decreases the viable CD34+ blasts of AML patient samples (a mean of 79.8 ± 8.8% specific apoptosis at 100 nM, n=3), and overcomes the apoptosis protection by co-cultivated stromal cells (with a similar mean of 74.1 ± 8.5%). MRx102 shows dose-dependent anti-tumor activity with the MV4-11 cell line in nude mouse human AML tumor xenografts. After 42 days of MRx102 dosing at 1.35 mg/kg/day i.p., tumor volume was inhibited by 99.7%. Tumors removed from several mice appeared to be Matrigel pellets rather than vascularized tumors, suggesting that many of the tumors were completely eliminated. In studies with the OCI-AML3 human AML cell line xenograft model, the group receiving MRx102 at 1.35 mg/kg/day i.p. showed similar high activity, with mean tumor volume reduced by as much as 99.2% on day 23 compared to the vehicle control group. Tumors of 7 of 10 mice were smaller than the day 0 volumes at the day 28 end of the study. As part of drug development, toxicology testing with MRx102 was initiated with an acute single dose rat toxicology study with no deaths and no adverse signs up to the top dose of 3.0 mg/kg MRx102 in DMSO/PBS administered i.v. The maximum tolerated dose (MTD) is greater than 3 mg/kg of MRx102, and the no observable adverse effect level (NOAEL) is at least 3 mg/kg. A 7-day subacute rat toxicology study of MRx102 showed no deaths and no adverse signs up to the top dose of 1.5 mg/kg/day MRx102 in DMSO/PBS administered daily i.v. for 7 days. The histopatholgy report shows no findings related to administration of the test article. The MRx102 MTD is greater than 1.5 mg/kg/day, and the NOAEL is at least 1.5 mg/kg/day. Previously observed NOAELs for related compounds have been less than 0.1 mg/kg/day. The current studies show potent anti-tumor activity as well as an unusually positive safety profile for MRx102 when compared to triptolide and other triptolide derivatives. Further MRx102 drug development is underway, with the intention of submitting an Investigational New Drug application to the Food and Drug Administration leading to clinical evaluation of MRx102 in AML patients. Updated results on current drug development activities will be presented at the meeting. This work is supported in part by NCI SBIR Contract HHSN261200900061C to MyeloRx LLC. Disclosures: Fidler: MyeloRx LLC: Employment, Equity Ownership, PI for an NCI Contract to MyeloRx LLC, Patents & Royalties. An:MyeloRx LLC: Employment, Equity Ownership, participant in research under an NCI SBIR Contract to MyeloRx LLC. Musser:MyeloRx LLC: Employment, Equity Ownership, Patents & Royalties, participant in research under an NCI SBIR Contract to MyeloRx LLC. Mak:MyeloRx LLC: participant in research under an NCI SBIR Contract to MyeloRx LLC. Carter:MyeloRx LLC: participant in research under an NCI SBIR Contract to MyeloRx LLC. Andreeff:MyeloRx LLC: Consultancy, participant in research under an NCI SBIR Contract to MyeloRx LLC.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3523-3523
Author(s):  
Danielle Garshott ◽  
Nicole Melong ◽  
Tania T. Sarker ◽  
Yue Xi ◽  
Amy Brownell ◽  
...  

Abstract Background: Acute leukemias are the most common cancers in childhood. Despite multi-agent chemotherapy protocols and the introduction of novel molecularly targeted therapies which have resulted in improved survival over the last few decades, relapsed acute lymphoblastic leukemia remains the second most common pediatric cancer diagnosis. In addition, morbidities from current chemotherapy regimens are unacceptably high. Abundant evidence point to a major role for mediators of the unfolded protein response (UPR) in normal and leukemic white blood cell biology. We have demonstrated that activation of the UPR is a productive approach to inhibit the proliferation of solid tumor cell lines in vitro and to reducing xenograft burden in vivo. The UPR consists of genetically distinct mechanisms that serve to clear misfolded proteins from the endoplasmic reticulum (ER) and enhance protein folding, or induce apoptosis if the initiating stress is prolonged or robust. ML291 is a novel UPR-inducing sulfonamidebenzamide, identified through cell-based high throughput screening and iterative SAR-guided chemical synthesis, that overwhelms the adaptive capacity of the UPR and induces apoptosis in a variety of solid cancer models. Objective: To determine the ability of ML291 to activate the UPR and induce apoptosis in a panel of leukemia cell lines, and to use CHOP-null K562 cells to elucidate the relative contribution of the UPR. We hypothesized that ML291 might activate the PERK/eIF2a/CHOP (apoptotic) arm of the UPR and reduce leukemic cell burden in vitro and in vivo. Methods: MTT and luciferase-based proliferation assays, flow cytometry and RT-qPCR were used to evaluate cell growth, UPR activation and apoptosis in a panel of leukemia cell lines that included AML, ALL and CML in cells exposed to ML291. CRISPR-Cas9 genome editing was used to delete CHOP in K562 (human myeloid leukemia) cells. Deletion was validated by immunoblot analysis and these cells were subjected to the same proliferation and gene analyses described above. The in vivo response to ML291 therapy was evaluated in an established zebrafish xenograft assay (Corkery et al. BJH 2011) in which embryos were xenotransplanted with wild type or CHOP knockdown K562 cells and embryos bathed in ML291. Results: Immunoblot and RT-qPCR analysis revealed an accumulation of proteins and increased gene expression for downstream UPR genes, including CHOP, GRP78/BiP, GADD34 and XBP1 in leukemia cells following ML291 treatment, indicating the activation of the UPR. Increased expression of the apoptotic genes, NOXA, PUMA and DR5 was also observed post-treatment with ML291; and dose response proliferation assays performed after 24 hours revealed IC50 concentrations of 1 - 30µM across cell lines. CHOP deleted K562 cells were protected from cell death when cultured with increasing concentrations of ML291, and were significantly less able to translocate phosphatidylserine across the cell membrane and activate the caspase cascade. When zebrafish embryos xenotransplanted with K562-wild type or -CHOP-null cells were bathed in water containing 5mM ML291 for three days, there was a significant reduction in leukemia cell burden exclusively in theK562 wild type xenografts. Conclusion: Collectively these data indicate that intact PERK/eIF2a/CHOP signaling is required for efficient leukemic cell apoptosis in response to ML291 in vitro and in vivo, and support the hypothesis that small molecule enforcement of the UPR might be a productive therapeutic approach in leukemia. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2475-2475
Author(s):  
Dimitrios T.P. Trafalis ◽  
Konstantinos Lilakos ◽  
Daphne Koumbi ◽  
Panayiotis Dalezis ◽  
Maria K. Angelopoulou ◽  
...  

Abstract Clinical protocols combining a topoisomerase I (topo I) and a topoisomerase IIalpha (topo II inhibitor) have shown major responses against several tumours including acute leukemia and myelodysplastic syndromes. However, combinations with topoisomerase targeting drugs should be considered with caution because antagonistic effects have been observed when administering camptothecin or topotecan (topo I inhibitors) with doxorubicin (topo II inhibitor). Octreotide (OCT) is an eight amino-acid peptide, which attains its biological effects on target cells by binding preferentially to sst2 and, to a lesser extent, to sst3 and sst5 somatostatin receptors (SS-Rs). The presence of SS-Rs in human lymphoid leukemia cell lines, in malignant lymphomas and in lymphoproliferative diseases is clearly detected. We studied the in vitro effect of combinations of OCT with doxorubicin (DOX) and topotecan (TP) on cell growth and viability in four human lymphoblastic leukemia cell lines (CCRF-CEM, RPMI-8226, JURKAT, MOLT-4) and on the Topo I, IIalpha and sst2 expression in JURKAT, MOLT-4 leukemia cell lines, as well as the in vivo effect on rodent P388 lymphocytic and L1210 lymphoid leukemias. In vitro growth inhibition and cytotoxicity were evaluated with the MTT colormetric metabolic assay. Topo I, IIalpha and sst2 mRNAs were detected with RT-PCR and the quantification of the electrophoresed specific PCR products was accomplished with Molecular Imager FX. In vivo antitumour activity was estimated by the % survival ratio of treated to untreated (control) mice and the ratio of 70-day tumour free survivors (cures). The in vitro growth inhibition and cytotoxicity that were induced by the DOX and TP combinations were neither synergistic nor additive and were similar to the activity of DOX alone. However, with the addition of OCT to the DOX and TP combinations a significant (p&lt;0.001) synergistic effect was resulted in all tested cell lines. Treatment of cell lines with DOX produced almost a total consumption of Topo I and IIalpha mRNAs and with TP induced increase of Topo IIalpha mRNA levels (0.5–1.5 folds). OCT is clearly upregulates the Topo IIalpha expression (&gt;2.5 folds) and restores Topo I mRNA production in cells treated with DOX. The sst2 mRNA levels were not affected in any case. In vivo antitumour activity of DOX and TP combinations was neither synergistic nor additive and it was similar to the activity of DOX alone. The addition of OCT to DOX and TP combinations produced an important synergistic antitumour effect increasing significantly survival time and cures (p&lt;0.01) in both P388 and L1210 leukemias. Our data indicate that the antagonistic effects of Topo I and Topo II inhibitors may be due to effects on the regulation of topoisomerases expression. OCT significantly enhances the antileukemic activity of combinations with such important anticancer drugs, upregulating Topo I and IIalpha expression.


Sign in / Sign up

Export Citation Format

Share Document