Alloreactive T Cell Clonotypes Identified By In Vitro Mixed Lymphoid Reaction and High-Throughput Sequencing Exhibit Increased Frequency In Peripheral Blood Samples From Patients Following Allogeneic Hematopoietic Cell Transplantation For Chronic Lymphocytic Leukemia

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 149-149
Author(s):  
Aaron C. Logan ◽  
Mark R. Krampf ◽  
Mark Klinger ◽  
Martin Moorhead ◽  
Jianbiao Zheng ◽  
...  

Abstract Introduction Allogeneic hematopoietic cell transplantation (allo-HCT) provides long-term immunologic disease control for a substantial portion of patients with hematologic malignancies. Chronic lymphocytic leukemia (CLL) is sensitive to graft-versus-leukemia (GVL) effects as evidenced by responses to reduced-intensity conditioning (RIC) allo-HCT, and to donor lymphocyte infusions (DLI) for post-HCT relapse. To identify potential alloreactive (AR)/GVL T cells, we performed in vitro mixed lymphocyte reactions (MLRs) between recipient CLL cells and donor T cells derived from blood apheresis products acquired for DLI. Responder and non-responder T cell populations from MLRs and recipient post-HCT blood samples underwent T cell receptor beta (TCRB) high-throughput sequencing (HTS). The prevalence of candidate AR/GVL TCRB clonotypes at various times following HCT was quantified and correlated with CLL disease burden and graft-versus-host disease (GVHD). Methods CLL cells isolated from cryopreserved PBMC aliquots of 7 patients who experienced post-HCT relapse were pre-stimulated in vitro for 72 hours with CpG oligodeoxynucleotides in X-VIVO 15 supplemented with IL-4, IL-7, BAFF, and GM-CSF. Upregulation of CD80, CD86, CD40L, MHCI, and/or MHCII was confirmed by flow cytometry. Donor T cells were isolated from cryopreserved DLI using pan-T cell isolation beads (Miltenyi), labeled with CFSE, and incubated with CpG-stimulated CLL cells for 7 days. Upon the conclusion of the MLR incubation, T cell populations were sorted into rapid responders (RR; CFSEdim), slow responders (SR; CFSEbrightCD69pos) and non-responders (NR; CFSEbrightCD69neg) and RNA was isolated from each cell population. RNA was then amplified and TCRB sequenced using the LymphoSIGHT platform (Sequenta). PBMC samples collected and cryopreserved pre-HCT and regularly following HCT and DLI were also subjected to TCRB-HTS. Results RR cells comprised 11.5 +/- 9.2% of MLR T cells, whereas SR were 4.2 +/- 3.5% and NR were 84.3 +/- 10.1% (Fig 1A). RR, SR, and NR populations demonstrated clonotypic exclusion with a mean 4.4% +/- 5.5% coincidence between populations (Fig 1B). TCRB diversity in the RR population was more restricted compared with diversity in the SR and NR populations, with the mean number of clonotypes comprising the top 50th percentile of total TCRB reads being 11.8 +/- 6.5%, 17.7 +/- 8.5%, and 20.2 +/- 1.8% of unique reads, respectively (p<0.01). Candidate AR/GVL TCRB clonotypes, specified as those enriched in MLR-responder populations compared to pre-stimulation samples, were validated by comparison with pre-stimulation frequency-matched clonotypes. The mean frequency of AR/GVL TCRB clonotypes in blood samples post-HCT were 10- to 100-fold greater than control clonotypes, depending on the patient (Fig 1C). AR/GVL T cells were present within the post-HCT PBMC TCRB repertoires at mean frequencies of 5x10-4 at day +90 rising to 2x10-3 by day +360 post-HCT in 3/4 patients experiencing at least 2 year remissions post-HCT. In patients experiencing early relapse (within 1yr post-HCT), no candidate AR/GVL clonotypes were identified in 1/3 patients and 2/3 exhibited AR/GVL clonotypes at roughly one log lower frequencies (mean 8x10-5 at day +90 and 4x10-4 at day 360) than those with longer remissions (Fig 1D). One patient who experienced fatal post-DLI steroid-refractory GVHD exhibited striking changes in AR/GVL clonotype prevalence following DLI (Fig 1D). Conclusions In vitro MLR between donor T cells and CpG-stimulated CLL cells selects clonotypically distinct T cell populations with an oligoclonal RR population. Persistence of adoptively transferred candidate AR/GVL clones identified by MLR appears to correlate with likelihood of maintaining clinical remission beyond 2 years in CLL patients undergoing RIC allo-HCT. Failure to adoptively transfer AR/GVL clonotypes may be associated with early treatment failure. Disclosures: Klinger: Sequenta, Inc.: Employment, Research Funding. Moorhead:Sequenta, Inc.: Employment, Research Funding. Zheng:Sequenta, Inc.: Employment, Research Funding. Faham:Sequenta Inc.: Employment, Stockholder Other.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 513-513
Author(s):  
Pier Edoardo Rovatti ◽  
Laura Zito ◽  
Eleonora Draghi ◽  
Monika Herrmann ◽  
Anetta Marcinek ◽  
...  

Background Genomic loss of mismatched HLAs ("HLA loss") represents a frequent modality by which acute myeloid leukemia (AML) evades immune recognition from donor T cells after partially HLA-incompatible allogeneic hematopoietic cell transplantation (allo-HCT). One important consequence of this post-transplantation relapse mechanism is that infusions of lymphocytes from the original donor become ineffectual, prompting the search for alternative therapeutic options. Here, to circumvent the loss of physiological T cell receptor-HLA interactions in these patients, we tested the ability of an anti-CD3/CD33 bispecific antibody (BsAb) to re-target donor T cells towards HLA loss relapses. Methods For short-term in vitro experiments, T cells were co-cultured with the MOLM-13 AML cell line or with primary patient blasts for 96 hours in presence or absence of an anti-CD3/CD33 BsAb. As readouts, we measured T cell activation (as surface expression of CD25 and CD69) and the absolute counts and relative proportion of effectors and targets. For long-term in vitro experiments, we established mixed lymphocyte cultures (MLCs) of T cells purified from two patients after haploidentical HCT and primary AML blasts obtained from the same patients at the time of diagnosis. After sequential stimulations, the co-cultures were tested against targets of interest, with or without addition of the BsAb. Functional readouts were T cell degranulation (measured as CD107a expression), antigen-specific activation (as CD137/41-BB expression) and target-specific cytotoxicity (measured by time-lapse live cell imaging over a 48 hour time span). For in vivo experiments, human leukemic cells were infused intravenously into non-irradiated NSG mice, followed by intraperitoneal infusion of T cells and daily administration of the BiTE compound. Results First, we retrospectively analyzed immunophenotypic data of 36 AML patients who experienced HLA loss relapses at our Institution, documenting robust expression of CD33 on the surface of the relapsed leukemia in 35 of them (97%; Figure 1A). By short-term co-culture experiments we titrated the BsAb concentration to be used for subsequent in vitro assays to 100 ng/ml, and the most informative effector:target ratio to 1:3. Then, we established MLCs by stimulating T cells collected from two patients after partially HLA-incompatible allo-HCT with AML blasts collected from the same patients at the time of diagnosis. In both cases, donor-derived T cells robustly responded against the patient blasts both in term of degranulation (Figure 1B) and of antigen-specific activation (Figure 1C). As expected, when we tested the same T cells against the patient leukemia at time of HLA loss relapse, we detected no T cell-mediated responses. Noticeably, when the BsAb was added, in both cases we detected a strong response not only against the diagnosis but also against the HLA loss variants, indicating that T cells were effectively re-targeted towards leukemic cells. Similar results were obtained also by live cell imaging, measuring target cell apoptosis over 48 hours of recording: also in this assay, in fact, donor T cells recognized and killed leukemia at diagnosis (45% of detection area positive for apoptosis dye) and failed to recognize its HLA loss relapse counterpart (32% of area positive for apoptosis dye). Addition of the BsAb to the co-cultures had a minor effect on recognition of the original disease (45% of area positive for apoptosis dye) but drove dramatic cell death of HLA loss blasts (80% of area positive for apoptosis dye), demonstrating that the BsAb induced not only T cell activation but also and most importantly target cell killing (Figure 1D). Finally, we modeled the BsAb activity in vivo, showing that, whereas the sole infusion of human T cells is not able to prevent the outgrowth of leukemia in the bone marrow of NSG mice, addition of the bispecific antibody leads to effective disease clearance (Figure 1E). Conclusions Our results demonstrate that anti-CD3/CD33 BsAbs can effectively redirect donor T cells against HLA loss leukemia variants, resulting in their rapid and effective killing. Taken together, these promising findings strongly support translation of this approach to ad hoc designed early-phase clinical trials, to provide a rational therapy for this increasingly recognized but still treatment-orphan modality of post-transplantation relapse. Figure 1 Disclosures Subklewe: Janssen: Consultancy; Miltenyi: Research Funding; Pfizer: Consultancy, Honoraria; Oxford Biotherapeutics: Research Funding; Gilead: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria; Morphosys: Research Funding; Roche: Consultancy, Research Funding; AMGEN: Consultancy, Honoraria, Research Funding. Vago:Moderna Therapeutics: Research Funding; GenDx: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2766-2766
Author(s):  
Masahiro Suto ◽  
Eri Matsuki ◽  
Masahiro Miyata ◽  
Erika Sekiguchi ◽  
Hiroya Tamaki ◽  
...  

Abstract The Nlrp6 (NOD-like receptor family pyrin domain containing 6) inflammasome is important for intestinal epithelial cell innate immune responses and for maintaining gut homeostasis by preventing microbial dysbiosis. Contrary to its role in epithelial cell inflammasome-mediated responses, we recently showed that Nlrp6 in gut epithelial cells exacerbates GVHD in a manner independent of the inflammasome or gut microbiota. However, donor allogeneic T cells are also critical for GVHD development, yet, the function of Nlrp6 in allogeneic T cells is unknown. We hypothesized that Nlrp6 deficient donor T cells would ameliorate experimental GVHD. To test our hypothesis, WT-BALB/crecipients were lethally irradiated and transplanted on day 0 with 5x10 6 bone marrow and 1.0x10 6 splenic CD90 +T cells from either syngeneic WT-BALB/c, allogeneic MHC-mismatched WT-B6 or Nlrp6 -/- donors. Contrary to our hypothesis, the survival of allogeneic recipients of Nlrp6 -/- donor T cells was significantly worse than those receiving WT-B6 T cells (p&lt;0.05). Nlrp6 -/- donor T cells also caused greater GVHD mortality and morbidity in an MHC mismatched haploidentical B6 into B6D2F1 model (p&lt;0.05) and an MHC mismatched B10.BR into B6 model. Similar results were obtained using B6 into BALB/c and B6 into B6D2F1 models performed at the University of Michigan, suggesting our results were not unique to local environmental factors. By contrast, GVHD severity and mortality were similar in an MHC matched multiple minor antigen mismatched B6 into C3H.sw model. Because the B6 into C3H.sw model is largely driven by CD8+ T cells whereas the previous models are mediated by both CD4+ and CD8+ T cells, we examined whether Nlrp6 separately regulates CD4+ and CD8+ T cell-mediated GVHD. In order to test this, we transplanted C3H.sw recipients as above except we infused either 1x10 6 CD4+ or CD8+ T cells from B6-WT or Nlrp6 -/- animals. GVHD severity and mortality (P&lt;0.05) were enhanced only when Nlrp6 -/- CD4+ T cells were transplanted. These data suggested that Nlrp6 regulates allogeneic T cell responses in a subset-specific manner. To explore how Nlrp6 regulates intrinsic responses in donor T cell subsets, we tested naïve T cell proliferation in vitro after allogeneic or non-specific TCR stimulation. Consistent with the lack of increased GVHD induced by CD8+ Nlrp6 -/- donor T cells in the B6 into C3H.sw model, Nlrp6 -/- CD4+ but not CD8+ T cells proliferated more than WT-B6 CD4+ or CD8+ T cells, respectively, when stimulated with either anti-CD3/CD28 antibodies or lethally irradiated allogeneic antigen presenting cells in a mixed lymphocyte reaction. In addition, activation-induced apoptosis was decreased in Nlrp6 -/- CD4+ T cells compared to WT T cells. Importantly, Treg suppressive function was not altered in Nlrp6 -/- T cells. Therefore, increased proliferative responses and resistance to activation-induced apoptosis may have contributed to the enhanced GVHD caused by Nlrp6 -/- donor T cells. Increased Th1 and Th17 polarization is associated with worse GVHD. Because only CD4+ Nlrp6 -/- T cells enhanced GVHD, we tested whether Nlrp6 influenced T helper cell differentiation into Th1, Th17, and Th2 subsets. Consistent with our in vivo data, Th1 in vitro differentiation was enhanced in Nlrp6 -/- CD4+ T cells. To determine the molecular signaling events altered by Nlrp6 deficiency, we tested various T cell activation signaling pathways and found that phosphorylation of ZAP-70 was increased in Nlrp6 -/- T cells. These data suggested that Nlrp6 in donor T cells may regulate allo-immune responses via ZAP-70 pathway. GVH and graft-versus-tumor (GVT) responses are intricately linked. Because CD8+ responses were not affected by Nlrp6 deficiency, we hypothesized that GVT responses would be unaltered in Nlrp6 -/- donor T cells. Indeed, Nlrp6 -/- T cells showed equivalent in vivo GVL responses to MLL-AF4 leukemia cells as WT-T cells. Hence Nlrp6in donor T cells is not required for GVT responses. Altogether our data suggested that Nlrp6 negatively-regulates allogeneic donor CD4+ T cell responses, possibly via negative regulation of ZAP-70 signaling, resulting in mitigation of GVHD and maintenance of robust GVT responses. Disclosures Ishizawa: AbbVie: Research Funding; Eisai: Honoraria; Chugai: Honoraria; Ono: Honoraria; Celgene: Honoraria; Takeda: Honoraria; Bayer: Research Funding; Bristol Myers Squibb: Speakers Bureau; Pfizer: Research Funding; Kyowa Kirin: Consultancy; SymBio: Honoraria, Research Funding; Otsuka: Research Funding; Novartis: Honoraria, Research Funding, Speakers Bureau; Sanofi: Research Funding; IQVIA: Research Funding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana Colado ◽  
Esteban Enrique Elías ◽  
Valeria Judith Sarapura Martínez ◽  
Gregorio Cordini ◽  
Pablo Morande ◽  
...  

AbstractHypogammaglobulinemia is the most frequently observed immune defect in chronic lymphocytic leukemia (CLL). Although CLL patients usually have low serum levels of all isotypes (IgG, IgM and IgA), standard immunoglobulin (Ig) preparations for replacement therapy administrated to these patients contain more than 95% of IgG. Pentaglobin is an Ig preparation of intravenous application (IVIg) enriched with IgM and IgA (IVIgGMA), with the potential benefit to restore the Ig levels of all isotypes. Because IVIg preparations at high doses have well-documented anti-inflammatory and immunomodulatory effects, we aimed to evaluate the capacity of Pentaglobin and a standard IVIg preparation to affect leukemic and T cells from CLL patients. In contrast to standard IVIg, we found that IVIgGMA did not modify T cell activation and had a lower inhibitory effect on T cell proliferation. Regarding the activation of leukemic B cells through BCR, it was similarly reduced by both IVIgGMA and IVIgG. None of these IVIg preparations modified spontaneous apoptosis of T or leukemic B cells. However, the addition of IVIgGMA on in vitro cultures decreased the apoptosis of T cells induced by the BCL-2 inhibitor, venetoclax. Importantly, IVIgGMA did not impair venetoclax-induced apoptosis of leukemic B cells. Overall, our results add new data on the effects of different preparations of IVIg in CLL, and show that the IgM/IgA enriched preparation not only affects relevant mechanisms involved in CLL pathogenesis but also has a particular profile of immunomodulatory effects on T cells that deserves further investigation.


Blood ◽  
2021 ◽  
Author(s):  
Billy Michael Chelliah Jebaraj ◽  
Annika Müller ◽  
Rashmi Priyadharshini Dheenadayalan ◽  
Sascha Endres ◽  
Philipp M. Roessner ◽  
...  

Covalent Bruton tyrosine kinase (BTK) inhibitors such as ibrutinib have proven to be highly beneficial in the treatment of chronic lymphocytic leukemia (CLL). Interestingly, the off-target inhibition of IL-2-inducible T-cell kinase (ITK) by ibrutinib may also play a role in modulating the tumor microenvironment, potentially enhancing the treatment benefit. However, resistance to covalently binding BTK inhibitors can develop by a mutation in cysteine 481 of BTK (C481S), which prevents the irreversible binding of the drugs. In the present study we performed pre-clinical characterization of vecabrutinib, a next generation non-covalent BTK inhibitor, with ITK inhibitory properties similar to those of ibrutinib. Unlike ibrutinib and other covalent BTK inhibitors, vecabrutinib showed retention of the inhibitory effect on C481S BTK mutants in vitro, similar to that of wildtype BTK. In the murine Eµ-TCL1 adoptive transfer model, vecabrutinib reduced tumor burden and significantly improved survival. Vecabrutinib treatment led to a decrease in CD8+ effector and memory T-cell populations, while the naïve populations were increased. Of importance, vecabrutinib treatment significantly reduced frequency of regulatory CD4+ T-cells (Tregs) in vivo. Unlike ibrutinib, vecabrutinib treatment showed minimal adverse impact on activation and proliferation of isolated T-cells. Lastly, combination treatment of vecabrutinib with venetoclax was found to augment treatment efficacy, significantly improve survival and lead to favourable reprogramming of the microenvironment in the murine Eµ-TCL1 model. Thus, non-covalent BTK/ITK inhibitors such as vecabrutinib may be efficacious in C481S BTK mutant CLL, while preserving the T-cell immunomodulatory function of ibrutinib.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5186-5186
Author(s):  
Ronald M. Paranal ◽  
Hagop M. Kantarjian ◽  
Alexandre Reuben ◽  
Celine Kerros ◽  
Priya Koppikar ◽  
...  

Introduction: Allogeneic hematopoietic stem-cell transplantation (HSCT) is curative for many patients with advanced hematologic cancers, including adverse-risk acute myeloid leukemia (AML). This is principally through the induction of a graft-versus-leukemia (GVL) immune effect, mediated by donor T-cells. The incredible diversity and specificity of T-cells is due to rearrangement between V, D, and J regions and the random insertion/deletion of nucleotides, taking place in the hypervariable complementarity determining region 3 (CD3) of the T-cell receptor (TCR). Massively parallel sequencing of CDR3 allows for a detailed understanding of the T-cell repertoire, an area relatively unexplored in AML. Therefore, we sought out to characterize the T-cell repertoire in AML before and after HSCT, specifically for those with a durable remission. Methods: We identified 45 bone marrow biopsy samples, paired pre- and post-HSCT, from 14 patients with AML in remission for > 2 years as of last follow-up. We next performed immunosequencing of the TCRβ repertoire (Adaptive Biotechnologies). DNA was amplified in a bias-controlled multiplex PCR, resulting in amplification of rearranged VDJ segments, followed by high-throughput sequencing. Resultant sequences were collapsed and filtered in order to identify and quantitate the absolute abundance of each unique TCRβ CDR3 region. We next employed various metrics to characterize changes in the TCR repertoire: (1) clonality (range: 0-1; values closer to 1 indicate a more oligoclonal repertoire), it accounts for both the number of unique clonotypes and the extent to which a few clonotypes dominate the repertoire; (2) richness with a higher number indicating a more diverse repertoire with more unique rearrangements); (3) overlap (range: 0-1; with 1 being an identical T-cell repertoire). All calculations were done using the ImmunoSeq Analyzer software. Results: The median age of patients included in this cohort was 58 years (range: 31-69). Six patient (43%) had a matched related donor, and 8 (57%) had a matched unrelated donor. Baseline characteristics are summarized in Figure 1A. Six samples were excluded from further analysis due to quality. TCR richness did not differ comparing pre- and post-HSCT, with a median number pre-HSCT of 3566 unique sequences (range: 1282-22509) vs 3720 (range: 1540-12879) post-HSCT (P = 0.7). In order to assess whether there was expansion of certain T-cell clones following HSCT, we employed several metrics and all were indicative of an increase in clonality (Figure 2B). Productive clonality, a measure of reactivity, was significantly higher in post-transplant samples (0.09 vs 0.02, P = 0.003). This is a measure that would predict expansion of sequences likely to produce functional TCRs. The Maximum Productive Frequency Index was higher post-HSCT indicating that the increase in clonality was driven by the top clone (most prevalent per sample). Similarly for the Simpson's Dominance index, another marker of clonality which was higher post-HSCT (0.01 vs 0.0009, P = 0.04). In order to determine whether this clonal expansion was driven by TCR clones shared among patients, we compared the degree of overlap in unique sequences among pre and post-HSCT samples. We found there was very little overlap between samples in the pre and the post-transplant setting and no change in the Morisita and Jaccard Overlap Indices. Conclusions: In conclusion, we show in this analysis an increase in clonality of T-cells following HSCT in patients with AML. This is likely related to the GVL effect after recognition of leukemia antigens by donor T cells and subsequent expansion of these T-cells. These expanded T-cell clonotypes were unlikely to be shared by patients in this cohort, likely reflecting the variety of antigens leading to the GVL effect. This could have direct implications on TCR-mediated immune-therapies given the likely need for a personalized, patient-specific design for these therapies. Figure 1 Disclosures Kantarjian: BMS: Research Funding; Novartis: Research Funding; AbbVie: Honoraria, Research Funding; Jazz Pharma: Research Funding; Astex: Research Funding; Immunogen: Research Funding; Actinium: Honoraria, Membership on an entity's Board of Directors or advisory committees; Agios: Honoraria, Research Funding; Daiichi-Sankyo: Research Funding; Takeda: Honoraria; Amgen: Honoraria, Research Funding; Cyclacel: Research Funding; Ariad: Research Funding; Pfizer: Honoraria, Research Funding. Short:Takeda Oncology: Consultancy, Research Funding; AstraZeneca: Consultancy; Amgen: Honoraria. Cortes:Takeda: Consultancy, Research Funding; Bristol-Myers Squibb: Consultancy, Research Funding; Jazz Pharmaceuticals: Consultancy, Research Funding; Sun Pharma: Research Funding; BiolineRx: Consultancy; Novartis: Consultancy, Honoraria, Research Funding; Astellas Pharma: Consultancy, Honoraria, Research Funding; Merus: Consultancy, Honoraria, Research Funding; Immunogen: Consultancy, Honoraria, Research Funding; Biopath Holdings: Consultancy, Honoraria; Daiichi Sankyo: Consultancy, Honoraria, Research Funding; Pfizer: Consultancy, Honoraria, Research Funding; Forma Therapeutics: Consultancy, Honoraria, Research Funding. Jabbour:Cyclacel LTD: Research Funding; Pfizer: Consultancy, Research Funding; Amgen: Consultancy, Research Funding; AbbVie: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; BMS: Consultancy, Research Funding; Adaptive: Consultancy, Research Funding. Molldrem:M. D. Anderson & Astellas Pharma: Other: Royalties.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1012-1020 ◽  
Author(s):  
JS Moore ◽  
MB Prystowsky ◽  
RG Hoover ◽  
EC Besa ◽  
PC Nowell

The consistent occurrence of T cell abnormalities in patients with B cell chronic lymphocytic leukemia (B-CLL) suggest that the non- neoplastic host T cells may be involved in the pathogenesis of this B cell neoplasm. Because potential defects of immunoglobulin regulation are evident in B-CLL patients, we investigated one aspect of this by studying the T cell-mediated immunoglobulin isotype-specific immunoregulatory circuit in B-CLL. The existence of class-specific immunoglobulin regulatory mechanisms mediated by Fc receptor-bearing T cells (FcR + T) through soluble immunoglobulin binding factors (IgBFs) has been well established in many experimental systems. IgBFs can both suppress and enhance B cell activity in an isotype-specific manner. We investigated the apparently abnormal IgA regulation in a B-CLL patient (CLL249) whose B cells secrete primarily IgA in vitro. Enumeration of FcR + T cells showed a disproportionate increase in IgA FcR + T cells in the peripheral blood of this patient. Our studies showed that the neoplastic B cells were not intrinsically unresponsive to the suppressing component of IgABF produced from normal T cells, but rather the IgABF produced by the CLL249 host T cells was defective. CLL249 IgABF was unable to suppress IgA secretion by host or normal B cells and enhanced the in vitro proliferation of the host B cells. Size fractionation of both normal and CLL249 IgABF by gel-filtration high- performance liquid chromatography (HPLC) demonstrated differences in the ultraviolet-absorbing components of IgABF obtained from normal T cells v that from our patient with defective IgA regulation. Such T cell dysfunction may not be restricted to IgA regulation, since we have found similar expansion of isotype-specific FcR + T cells associated with expansion of the corresponding B cell clone in other patients with B-CLL. These data suggest that this T cell-mediated regulatory circuit could be significantly involved in the pathogenesis of B-CLL.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 547-547
Author(s):  
Tomohiro Aoki ◽  
Lauren C. Chong ◽  
Katsuyoshi Takata ◽  
Katy Milne ◽  
Monirath Hav ◽  
...  

INTRODUCTION: Classic Hodgkin lymphoma (cHL) is uniquely characterized by an extensively dominant microenvironment composed primarily of different types of non-cancerous immune cells with a rare population (~1%) of tumor cells. Detailed characterization of these cellular components and their spatial relationship is crucial to understand crosstalk and therapeutic targeting in the cellular ecosystem of the tumor microenvironment (TME). METHODS: In this study, we performed high dimensional and spatial profiling of immune cells in the TME of cHL. Single cell RNA sequencing (scRNA-seq) was performed with the 10x Genomics platform on cell suspensions collected from lymph nodes of 22 cHL patients, including 12 of nodular sclerosis subtype, 9 of mixed cellularity subtype and 1 of lymphocyte-rich subtype, with 5 reactive lymph nodes (RLNs) serving as normal controls. Illumina sequencing (HiSeq 2500) was performed to yield single-cell expression profiles for 127,786 cells. We also performed multicolor IHC and imaging mass cytometry (IMC) on TMA slides from the same patients. RESULTS: Unsupervised clustering using PhenoGraph identified 22 cell clusters including 12 T cell clusters, 7 B cell clusters and 1 macrophage cluster. While most immune cell populations were common between cHL and RLN, we observed an enrichment of cells from cHL in all 3 regulatory T cell (Treg) clusters. The most cHL-enriched cluster was characterized by high expression of LAG3, in addition to common Treg markers such as IL2RA (CD25) and TNFRSF18 (GITR), but lacked expression of FOXP3, consistent with a type 1 regulatory (Tr1) T cell population. LAG3+ T cells in cHL had high expression of immune-suppressive cytokines IL-10 and TGF-b . In vitro exposure of T cells to cHL cell line supernatant induced significantly higher levels of LAG3 in naïve T cells compared to co-culture with other lymphoma cell line supernatant or medium only. CD4+ LAG3+ T cells isolated by FACS also suppressed the proliferation of responder CD4+ T cells when co-cultured in vitro. Additionally, Luminex analysis revealed that cHL cell lines secrete substantial amounts of cytokines and chemokines that can promote Tr1 cell differentiation (e.g. IL-6). Our scRNA-seq analysis revealed that LAG3 expression was significantly higher in cHL cases with loss of major histocompatibility class II (MHC-II) expression on HRS cells as compared to MHC-II positive cases (P = 0.019), but was not correlated with EBV status or histological subtype. Strikingly, LAG3 was identified as the most up-regulated gene in cells from MHC-II negative cases compared to MHC-II positive cases. Topological analysis using multicolor IHC and IMC revealed that in MHC-II negative cases, HRS cells were surrounded by LAG3+ T cells. In these cases, the density of LAG3+ T cells in HRS cell-rich regions was significantly increased, and the average distance between an HRS cell and its closest LAG3+ T cell neighbor was significantly shorter. These associations were confirmed in an independent cohort of 166 cHL patients. Finally, we observed a trend towards an inferior disease-specific survival (DSS; P = 0.072) and overall survival (OS; P = 0.12) in cases with an increased number of LAG3+ T cells. A high proportion of LAG3+ T cells (&gt; 20%) was identified as an independent prognostic factor for DSS by multivariate Cox regression. CONCLUSIONS: Our results reveal a diverse TME composition with inflammatory and immunosuppressive cellular components that are linked to MHC class II expression status on HRS cells (Figure). Unprecedented transcriptional and spatial profiling at the single cell level has established the pathogenic importance of HRS cell-induced CD4+ LAG3+ T cells as a mediator of immunosuppression in cHL, with potential implications for novel therapeutic approaches. Figure Disclosures Savage: Seattle Genetics, Inc.: Consultancy, Honoraria, Research Funding; BMS, Merck, Novartis, Verastem, Abbvie, Servier, and Seattle Genetics: Consultancy, Honoraria. Scott:Roche/Genentech: Research Funding; Celgene: Consultancy; Janssen: Consultancy, Research Funding; NanoString: Patents & Royalties: Named inventor on a patent licensed to NanoSting [Institution], Research Funding. Steidl:Bristol-Myers Squibb: Research Funding; Nanostring: Patents & Royalties: Filed patent on behalf of BC Cancer; Roche: Consultancy; Seattle Genetics: Consultancy; Bayer: Consultancy; Juno Therapeutics: Consultancy; Tioma: Research Funding.


Blood ◽  
2021 ◽  
Author(s):  
Maissa Mhibik ◽  
Erika M. Gaglione ◽  
David Eik ◽  
Ellen K Kendall ◽  
Amy Blackburn ◽  
...  

Bruton Tyrosine Kinase inhibitors (BTKis) are a preferred treatment for patients with chronic lymphocytic leukemia (CLL). Indefinite therapy with BTKis, while effective, presents clinical challenges. Combination therapy can deepen responses, shorten treatment duration, and possibly prevent or overcome drug resistance. We previously reported on a CD19/CD3 bispecific antibody (bsAb) that recruits autologous T cell cytotoxicity against CLL cells in vitro. Compared to observations with samples from treatment-naïve patients, T cells from patients being treated with ibrutinib expanded more rapidly and exerted superior cytotoxic activity in response to the bsAb. In addition to BTK, ibrutinib also inhibits IL2 inducible T cell Kinase (ITK). In contrast, acalabrutinib, does not inhibit ITK. Whether ITK inhibition contributes to the observed immune effects is unknown. To better understand how BTKis modulate T-cell function and cytotoxic activity, we cultured peripheral blood mononuclear cells (PBMCs) from BTKi-naive, and ibrutinib- or acalabrutinib-treated CLL patients with CD19/CD3 bsAb in vitro. T-cell expansion, activation, differentiation, and cytotoxicity were increased in PBMCs from patients on treatment with either BTKi compared to that observed for BKTi-naïve patients. BTKi therapy transcriptionally downregulated immunosuppressive effectors expressed by CLL cells, including CTLA-4 and CD200. CTLA-4 blockade with ipilimumab in vitro increased the cytotoxic activity of the bsAb in BTKi-naïve but not BTKi-treated PBMCS. Taken together, BTKis enhance bsAb induced cytotoxicity by relieving T cells of immunosuppressive restraints imposed by CLL cells. The benefit of combining bsAb immunotherapy with BTKis needs to be confirmed in clinical trials.


Gut ◽  
2015 ◽  
Vol 66 (3) ◽  
pp. 454-463 ◽  
Author(s):  
Daniele Mennonna ◽  
Cristina Maccalli ◽  
Michele C Romano ◽  
Claudio Garavaglia ◽  
Filippo Capocefalo ◽  
...  

ObjectivePatient-specific (unique) tumour antigens, encoded by somatically mutated cancer genes, generate neoepitopes that are implicated in the induction of tumour-controlling T cell responses. Recent advancements in massive DNA sequencing combined with robust T cell epitope predictions have allowed their systematic identification in several malignancies.DesignWe undertook the identification of unique neoepitopes in colorectal cancers (CRCs) by using high-throughput sequencing of cDNAs expressed by standard cancer cell cultures, and by related cancer stem/initiating cells (CSCs) cultures, coupled with a reverse immunology approach not requiring human leukocyte antigen (HLA) allele-specific epitope predictions.ResultsSeveral unique mutated antigens of CRC, shared by standard cancer and related CSC cultures, were identified by this strategy. CD8+and CD4+T cells, either autologous to the patient or derived from HLA-matched healthy donors, were readily expanded in vitro by peptides spanning different cancer mutations and specifically recognised differentiated cancer cells and CSC cultures, expressing the mutations. Neoepitope-specific CD8+T cell frequency was also increased in a patient, compared with healthy donors, supporting the occurrence of clonal expansion in vivo.ConclusionsThese results provide a proof-of-concept approach for the identification of unique neoepitopes that are immunogenic in patients with CRC and can also target T cells against the most aggressive CSC component.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3436-3436
Author(s):  
Renier J. Brentjens ◽  
Daniel Hollyman ◽  
Jae Park ◽  
Elmer Santos ◽  
Raymond Yeh ◽  
...  

Abstract Abstract 3436 Poster Board III-324 Patient T cells may be genetically modified to express chimeric antigen receptors (CARs) targeted to antigens expressed on tumor cells. We have initiated a clinical trial treating chemotherapy-refractory chronic lymphocytic leukemia (CLL) patients with autologous T cells modified to express the 19-28z CAR targeted to the CD19 antigen expressed on most B cell malignancies. In the first cohort of this trial, patients were infused with the lowest planned dose of modified T cells alone. All patients treated in this cohort experienced low-grade fevers following modified T cell infusion, and 2 of 3 treated patients exhibited subjective and laboratory evidence of transient reductions in tumor burden. The first patient treated on the second cohort of this study received prior cyclophophamide chemotherapy followed by the same dose of modified T cells administered to the first cohort of patients. This patient experienced persistent fevers, dyspnea, hypotension, renal failure, and died 44 hours following modified T cell infusion, likely secondary to sepsis. Modified T cells were not detectable in the peripheral blood of treated patients at 1 hour following completion of T cell infusion. However, post mortem analyses revealed a rapid infiltration of targeted T cells into anatomical sites of tumor involvement. Serum levels of the inflammatory cytokines IL-5, IL-8, and GM-CSF, but not TNFα, markedly and rapidly increased following infusion of genetically targeted T cells in this patient, mirroring the in vitro cytokine secretion profile of this patient's T cells, and consistent with marked in vivo activation of the modified T cells. Similar cytokine signatures were not found in patients from the first cohort. Significantly, serum cytokine analyses from the second cohort patient revealed a marked increase in the pro-proliferative cytokines IL-2, IL-7, IL-12, and IL-15 following cyclophosphamide therapy, in contrast to the baseline levels found in the first cohort. This report demonstrates the high efficiency trafficking of CD19-targeted T cells and in vivo activation of T cells encoding a second generation CD28/zeta chain-based chimeric antigen receptor. Furthermore, these data highlight mechanisms whereby cyclophosphamide may generate an in vivo milieu that enhances the anti-tumor efficacy of autologous tumor targeted T cells. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document