Aryl Hydrocarbon Receptor Deficient Donor T Cells Display Decreased Migration and Cause Reduced Or Enhanced Graft-Versus-Host Diseases In Different Transplant Models

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4477-4477
Author(s):  
Kaifeng Lisa Lin ◽  
LeShara M Fulton ◽  
Jonathan Serody

The transcription factor aryl hydrocarbon receptor (AhR) is a cytosolic sensor of numerous small synthetic compounds (xenobiotics) and natural chemicals. Ligand binding of AhR causes a conformational change of the receptor, allowing its translocation to nucleus to regulate an array of genes. Different ligands could induce different sets of genes. AhR was first discovered as the mediator of dioxin toxicity. Its role in immunity was recently extensively investigated and expanded exponentially. Here we investigated the role of AhR in donor T cell-induced graft-versus-host diseases (GvHD) after bone marrow transplant in two MHC-mismatched models. B6D2 or Balb/c recipients were irradiated with one dose (950 rads for B6D2 and 800 rads for Balb/c) one day before transplant. C57BL/6 WT or AhR deficient (AhR KO) T cells were transplanted with T cell-depleted bone marrow to B6D2 or Balb/c, at a dose of three million T cells or five hundred thousand T cells, respectively. At different time points, recipient lymphoid organs or target organs were harvested and used for flow analysis or ELISA. A group of recipient mice were observed for an extended time to establish GvHD scores and survival curves. In B6 to B6D2 model, recipient mice transplanted with AhR KO T cells displayed lower GvHD scores and survived longer than mice transplanted with WT T cells (Figure 1C). We found that AhR KO donor T cells failed to accumulate in lymph nodes and spleen as rapidly as WT T cells as evident on day 1 and day 3 post-transplant (Figure 1A). Further investigation showed that the proliferation and cell death were similar between WT and AhR donor T cells, suggesting decreased migration of AhR KO T cells to lymphoid organs. It has been shown that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced AhR activation leads to the up-regulation of CCR4 and CCR5 in T cells, supporting our data that AhR affects cell migration. We also observed that lower percentage of AhR KO T cells produced IFN-g and IL-17 in lymph nodes and spleen early after transplant, but the differences disappeared at later time points (day 7). Colonic homogenates of AhR KO transplants contained less IFN-g, TNF-a, and IL-1a than WT transplants, which indicated that AhR KO T cells caused less inflammation in the gut (Figure 1B). Gut-associated injury due to inflammation is the major cause of death in this model. However, in B6 to Balb/c model, recipient mice transplanted with AhR KO T cells displayed the opposite survival curve. They had diminished survival compared to mice receiving WT T cells with most mice succumbing to GvHD around day 10 to day 15 before the onset of diarrhea. AhR KO T cells in this model still accumulated less in lymph nodes at early time points, which suggested that AhR played a role in cell migration in both models. It was noteworthy that after day 6, the number of AhR KO T cells in the spleen was actually similar to or higher than WT T cells in both models, suggesting cell proliferation was not affected by AhR deficiency. In conclusion, AhR KO T cells demonstrate decreased migration to lymphoid organs after bone marrow transplant compared to WT T cells. This decrease in migration may be the reason why mice transplanted with AhR KO T cells exhibit less inflammation in the gut and subsequently survive better from GvHD in the B6 to B6D2 model. However, mice transplanted with AhR KO T cells have diminished survival in B6 to Balb/c model despite of lower T cell numbers in lymph nodes at early time points. Thus, certain function of AhR in donor T cells is model dependent while other function is conserved among different models. These data suggest that investigators should be cautious regarding the supplementation of AhR ligands to diminish GvHD in clinical studies. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 960-964 ◽  
Author(s):  
JP Daley ◽  
MK Rozans ◽  
BR Smith ◽  
SJ Burakoff ◽  
JM Rappeport ◽  
...  

Abstract We have studied the effect of removing donor T cells by treatment with the monoclonal antibody Leu-1 and complement before marrow transplantation on the regeneration of functionally competent T lymphocytes in the blood at selected times after transplant. Using sensitive limiting-dilution methods that allow us to enumerate helper, cytotoxic, and proliferating T lymphocyte precursors, we report that regeneration of a functional T cell compartment is more severely impaired for the first 180 days after transplantation in those patients given T cell-depleted bone marrow than in recipients of untreated marrow. After this first 6 months, however, patients given T cell- depleted bone marrow had blood T cell frequencies comparable to those observed in patients given untreated marrow. Diminished frequencies of reactive T cells in recipients of depleted marrow could leave them more susceptible to infection or to the recurrence of neoplastic cells.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2162-2162
Author(s):  
Janelle A. Olson ◽  
Dennis B. Leveson-Gower ◽  
Andreas Beilhack ◽  
Robert S. Negrin

Abstract Natural Killer (NK) cells have the ability to suppress graft-versus-host disease (GVHD) while inducing a graft-versus-tumor response (GVT) during allogeneic bone marrow transplantation (BMT). Previous studies in allogeneic BMT models have shown NK cell trafficking to and proliferation in lymphoid organs and GVHD target organs, which are also sites of donor T cell trafficking. This study aims to investigate the impact of NK cells on alloreactive, GVHD-inducing donor T cells. Interleukin-2 activated allogeneic NK cells isolated from C57Bl6 (H–2b) or FVB (H–2q) animals were transplanted along with T cell-depleted bone marrow into lethally irradiated BALB/c (H–2d) mice, followed 2 days later by luciferase-expressing CD4+ and CD8+ conventional T cells from the same donor strain (NK+Tcon group). Control mice received lethal irradiation and T cell-depleted bone marrow on day 0, and luciferase-expressing T cells on day 2 after transplant (Tcon group). Bioluminescence imaging of NK+Tcon mice revealed a significantly lower T cell bioluminescent signal (p=0.03 for FVB into BALB/c on day 6) than from Tcon mice. CFSE proliferation analysis of alloreactive T cells on day 3 after transplant showed no significant change in the percent of donor T cells that have divided in the spleen, and only a slight decrease in the percent of T cells that have divided in the lymph nodes when NK cells are present. However, at this timepoint 82% of the proliferating cells have divided past the third generation, in contrast to 64% in the NK+Tcon mice. Donor T cells in both groups become equally activated in vivo, expressing similar levels of the early-activation marker CD69. T cells re-isolated from NK+Tcon animals at day 5 stained 2 to 10-fold higher for the TUNEL apoptosis marker than those from Tcon mice in the mesenteric and peripheral lymph nodes, respectively (p<0.0001). Additionally, decreased numbers of T cells were re-isolated from the peripheral lymph nodes in the NK+Tcon group as compared to the Tcon group. This increase in TUNEL staining was not seen when the transplanted NK cells were isolated from a perforin-deficient donor. This indicates that NK cells in lymph nodes use a perforin-dependent mechanism to increase apoptosis in proliferating, alloreactive donor T-cells, which are syngeneic to the transplanted NK cells. Donor T cells re-isolated from the lymph nodes of transplanted mice up-regulate the NKG2D ligand Rae1γ as compared to naïve T cells, as shown by FACS. This suggests that NK cells may cause direct lysis of alloreactive donor T cells in vivo during GVHD induction, mediated by the NK cell activating receptor NKG2D. This study provides crucial mechanistic information regarding the function of NK cells in suppressing GVHD.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 960-964
Author(s):  
JP Daley ◽  
MK Rozans ◽  
BR Smith ◽  
SJ Burakoff ◽  
JM Rappeport ◽  
...  

We have studied the effect of removing donor T cells by treatment with the monoclonal antibody Leu-1 and complement before marrow transplantation on the regeneration of functionally competent T lymphocytes in the blood at selected times after transplant. Using sensitive limiting-dilution methods that allow us to enumerate helper, cytotoxic, and proliferating T lymphocyte precursors, we report that regeneration of a functional T cell compartment is more severely impaired for the first 180 days after transplantation in those patients given T cell-depleted bone marrow than in recipients of untreated marrow. After this first 6 months, however, patients given T cell- depleted bone marrow had blood T cell frequencies comparable to those observed in patients given untreated marrow. Diminished frequencies of reactive T cells in recipients of depleted marrow could leave them more susceptible to infection or to the recurrence of neoplastic cells.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3511-3511
Author(s):  
Hongmei Li ◽  
Daniel Kaplan ◽  
Anthony Jake Demetris ◽  
Jennifer McNiff ◽  
Mark Shlomchik ◽  
...  

Abstract Graft-versus-host disease (GVHD) is initiated when alloreactive donor T cells are primed by professional antigen-presenting cells (APCs) to undergo clonal expansion and maturation. Host APCs that survive pretransplant conditioning play an essential role in this T cell activation, and are an attractive target for GVHD prevention and treatment. However, APCs are diverse in phenotype, location and function and an understanding of the roles of distinct subsets is an important first step in developing APC-targeted therapies. Skin is the most frequently affected organ in GVHD. Langerhans cells (LCs), characterized by expression of Langerin, are a major APC in the epidermis, and thus it was logical to hypothesize that host LCs would have a role in GVHD induction. Indeed, in an MHC-mismatched model, Merad et al. showed that host LCs persist after T cell-depleted (TCD) but not T cell-replete bone marrow transplant (BMT), and that these host LCs in donor→host chimeras are sufficient to induce skin GVHD after a second allogeneic bone marrow transplant (alloBMT). However, this work did not examine the role of recipient LCs when all other APCs are intact, the scenario at the time of transplant in all patients. To address this question, we created a transgenic mouse that constitutively lacks epidermal LCs. We did so by expressing diphtheria toxin A chain (DTA) driven by the human Langerin gene (Kaplan, et al 2005) in a bacterial artificial chromosome (BAC). We used Langerin-DTA BAC transgene positive (Tg+) mice or Tg-littermates as recipients in the C3H.SW (H-2b)→B6 (H-2b) strain paring, in which recipient APCs are necessary and sufficient for GVHD induction. Tg+ and Tg− CD8 recipients developed similar GVHD as measured by weight loss and clinical skin disease. Tg+ and Tg− CD8 recipients also had comparable pathologic GVHD of the skin, ear, liver and colon. To generalize these findings, we used B6bm12 →B6 strain pairing, an MHCII-mismatched CD4-dependent GVHD model, in which recipient APCs are also required (Teshima et al, 2002). Tg+ and Tg− CD4 recipients developed similar weight loss and pathologic changes in the tongue and liver, primary sites of GVHD in this model. Thus, in both MHC-matched and MHC-mismatched models in which recipient APCs are absolutely required, the specific absence of recipient epidermal LCs did not affect clinical or histological GVHD. We also analyzed LC turnover in these alloBMT recipients. As previously reported, LCs remained host-derived in B6 Tg− recipients of TCD C3H.SW bone marrow. Given our prior result that C3H.SW → B6 chimeras are resistant to GVHD induction by a second alloBMT from C3H. SW donors (Shlomchik, et al 1999), unlike in the MHC-mismatched model employed by Merad, residual host LCs are insufficient to initiate GVHD in this MHC-matched system. In B6 Tg− recipients of TCD C3H.SW bone marrow plus GVHD-inducing CD8 cells, LC turnover varied by mouse and ranged from all host or donor to a mix of donor and host LCs. This variability could relate to the extent of skin GVHD, as we previously found that epidermal MHCII+ cells in skin GVHD lesions in this model are donor-derived (Matte et all, 2004). Strikingly, in contrast to Tg− recipients, donor-derived LCs developed in Tg+ recipients of TCD C3H.SW bone marrow. Donor LCs also engrafted in Tg+ recipients of TCD bone marrow from Tg− but otherwise syngeneic littermates or B6 RAG1−/− T cell-deficient donors. Thus, in contrast to LC-replete mice, neither allogeneic donor T cells nor UV-induced inflammation was required for donor LC engraftment in LC-deficient hosts. These data indicate that a Langerin+ cell, absent in Langerin-DTA Tg+ mice, regulates LC turnover in the absence of inflammation. Work is underway to identify this key cell.


Blood ◽  
2008 ◽  
Vol 112 (6) ◽  
pp. 2232-2241 ◽  
Author(s):  
Jeff K. Davies ◽  
John G. Gribben ◽  
Lisa L. Brennan ◽  
Dongin Yuk ◽  
Lee M. Nadler ◽  
...  

AbstractWe report the outcomes of 24 patients with high-risk hematologic malignancies or bone marrow failure (BMF) who received haploidentical bone marrow transplantation (BMT) after ex vivo induction of alloantigen-specific anergy in donor T cells by allostimulation in the presence of costimulatory blockade. Ninety-five percent of evaluable patients engrafted and achieved full donor chimerism. Despite receiving a median T-cell dose of 29 ×106/kg, only 5 of 21 evaluable patients developed grade C (n = 4) or D (n = 1) acute graft-versus-host disease (GVHD), with only one attributable death. Twelve patients died from treatment-related mortality (TRM). Patients reconstituted T-cell subsets and immunoglobulin levels rapidly with evidence of in vivo expansion of pathogen-specific T cells in the early posttransplantation period. Five patients reactivated cytomegalovirus (CMV), only one of whom required extended antiviral treatment. No deaths were attributable to CMV or other viral infections. Only 1 of 12 evaluable patients developed chronic GVHD. Eight patients survive disease-free with normal performance scores (median follow-up, 7 years). Thus, despite significant early TRM, ex vivo alloanergization can support administration of large numbers of haploidentical donor T cells, resulting in rapid immune reconstitution with very few viral infections. Surviving patients have excellent performance status and a low rate of chronic GVHD.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 36-36
Author(s):  
Weihong Chen ◽  
Xin Du ◽  
Wenyujing Zhou ◽  
Changru Luo ◽  
Xiaoqing LI

CASE PRESENTATION: A 68-year-old male was diagnosed with CLL/SLL in November 2007. Bone marrow asp/bx: 36.5% lymphocytes, 78% CD19, 65% ATM (11q22 deleted) positive cells, 13.5% D13S25 (13q14.3 deleted). On December 10, 2009, the patient took FCR scheme for five cycles, followed by FR scheme for one cycle, and then a month of Chlorambucil. On September 5, 2013, the patient took BR scheme for four cycles with no effect. From March 2015 to Feb 2016, 420 mg of Ibrutinib was administered daily. On January 15, 2016, the patient developed swollen lymph nodes in his right neck with intermittent lumps, fever and nausea. He was admitted into the hospital at Feb 2, 2016. Test results: multiple swollen superficial lymph nodes over the body, with the biggest measuring 60×30mm on the right neck, with no tenderness. Supplementary tests: peripheral white blood cells (WBC) 11.94×10E9/L, lymphocyte 7.5×10E9/L, CD19 cells 6.73×10E9/L, bone marrow lymphocyte 62%, peripheral blood lymphocyte 52%. Immunophenotype: CD5, CD19, CD20dim, CD23, CD11b dim, HLA-DR expression, visible CD5+CD19+ cell clusters, and visible immunoglobulin cKappa with restricted expression. On March 10, 2016, peripheral blood platelet 60 × 10E9/L, CD19 cells 1.94×10E9/L, lactate dehydrogenase 460U/L, FER 115.6ng/ml, hepatitis B virus carrier. Diagnosis: CLL/SLL IV stage, ATM (11q22) deletion, D13S25 (13q14. 3) positive, CD19 positive. Relapse of CLL/SLL occurred again after four months and at this stage the patient was considered for therapy in a clinical trial of CD19-specific chimeric antigen receptor (CAR-) T cell therapy. Ethical approval and informed consent were obtained for anti-CD19 CAR T Cell treatment of ibrutinib resistance in relapsed/refractory CLL/SLL. We infused autologous T cells transduced with a CAR T 19 retroviral vector with CLL/SLL at doses of 3.3 × 10E8 CART19 cells on Mar. 16 2016. Patients were monitored for responses, toxic effects, and the expansion and persistence of circulating CART19 cells. After CART19 cells were infused, the patient experienced chills, fever, headache, weak, anorexia, nausea, shortness of breath, chest tightness, heart palpitation, hypotension and shock for 9 days. The serum levels of IFN-Υ were at their highest at day 7 after CAR T cells infusion. Serum interleukin 6 (IL-6) was at 680pg/ml and CD3+ cells were 97.5%, CD8+ cells 72.8% (18.7-32.8%), FER was 1529.5ng/ml (Normal No. 22-322ng/ml) 14 days after CAR-T cell infusion. The serum levels of IL-6 were at their highest at day14. The patient was diagnosed as having cytokine release syndrome. After the patient took the anti-IL-6R antibody and anti-TNF antibody, he began to recover gradually. Enlarge lymph nodes shrunk after being infused with CART19 cells for 7 days. The peripheral blood CD19 B lymphocytes were 0 on day 14 after infused with CAR T19 cells. Q-PCR was used to detect the amount of the peripheral blood CART19 cells, which stood at 5485 copies/μl, 924 copies/μl, 191 copies/μl respectively 2 weeks, 6 weeks and 3 months after infusing with CART19 cells. The peripheral blood CART 19 cells were not detectable 4 months after infusing with CART19 cells until present. The lymphadenopathy was decreased gradually after 14 days of infusion. The MRI test showed that lymphadenopathy reduced markedly or disappeared after 6 months of infusion. ATM (11q22 deleted) negative, D13S25 (13q14.3 deleted) negative. After treatment with CAR T 19 cell therapy for 53 months, the patient remained disease-free, the patient's lymph nodes, lymphocytes and I mmunoglobulins were normal. CONCLUSIONS : Cancer immunotherapy as a method of cancer treatment is the most effective after conventional treatments such as radiotherapy, chemotherapy, and surgery. For BTK Inhibitor resistance in relapsed and refractory CD19+ CLL/SLL, CD19 is a favorable target, because the expression of CD19 is limited to B cells and not present in other tissues or cells. Currently, the efficacy of this treatment in treating CLL/SLL remains to be seen. The effects of chemotherapy on the patient's B cell lymphoma are negligible, due to the fact that his CLL/SLL have become relapsed and refractory. As a result we chose the CAR T19 cell therapy genetic engineering technique as a method of treatment, to which the patient has responded well. Therefor, CAR T cell technology overcome the limitations of existing cancer therapies and has great potential for development and application. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 593-593
Author(s):  
Andreas Beilhack ◽  
Stephan Schulz ◽  
Jeanette Baker ◽  
Georg F. Beilhack ◽  
Courtney B. Wieland ◽  
...  

Abstract To study the complex pathophysiology of aGvHD in allogeneic hematopoietic cell transplantation (HCT) we transplanted transgenic luciferase expressing T cell populations into lethally irradiated HCT recipients (murine MHC major mismatch model, H-2q into H-2d). Tracking of light emitting donor T cells in living animals and detailed studies by multi color immunofluorescence microscopy (IFM) and FACS revealed the tight links of spatial and temporal evolution in this complex immune process. Donor derived T cells migrate to T cell areas in lymphoid tissues within a period of 12 hours. In the initial periods donor CD4+ T cells appear first with CD8+ T cell infiltration at later time points. Donor T cells start proliferating in lymphatic tissues on day 2 after transfer, as observed by BrdU stainings. Although alloreactive T cells are similarly activated in all lymphoid organs, they only up-regulate gut homing molecules after more than 5 cell divisions (CFSE proliferation analysis by FACS) in certain lymphoid organs (Peyer’s patches, mesenteric LN and spleen). Abruptly on day 4 after HCT, T cells migrate into intestinal sites. These findings strongly suggested, that specific priming sites are required for alloreactive T cells to induce a distinct type of tissue tropism in GvHD. In contrast to previous reports peformed without host conditioning, depletion of certain lymphoid organs (e.g. Peyer’s patches) before HCT or antibody blocking experiments did not control aGVHD. BLI showed, that anti-L-selectin or anti-MAdCAM-1 antibody treatment alone or in combination was effective in blocking donor T cell migration to lymph nodes and Peyer’s patches, while redirecting these cells to liver and spleen. Subsequently cells proliferated predominantly in the spleen until day 3 after HCT. Surprisingly we observed a full picture of gut infiltration on day 4 and skin involvement on day 5–6, similar in dynamics and strength to the aGvHD isotype control group. These findings demonstrated, that other lymphoid organs can functionally compensate for inducing gut and skin homing of alloreactive T cells. Of importance, we demonstrated that T cells that lacked homing molecules for secondary lymphoid organs had alloreactive properties in vitro, yet did not cause aGVHD in vivo. In summary, the activation of alloreactive T cells in specific sites throughout the body is complex and involves the acquisition of homing molecule expression. Transplantation of T cells with defined homing properties therefore, appears to be a promising alternative in conferring protective immunity early after HCT without the risk of aGvHD.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 61-61 ◽  
Author(s):  
Janelle A Olson ◽  
Dennis B Leveson-Gower ◽  
Jeanette Baker ◽  
Andreas Beilhack ◽  
Robert Negrin

Abstract Natural Killer (NK) cells have the ability to suppress graft-versus-host disease (GVHD) while inducing a graft-versus-tumor response (GVT) following murine allogeneic bone marrow transplantation (BMT). Prior studies have shown that NK cells suppress GVHD by eliminating recipient dendritic cells. To assess additional potential mechanisms of GVHD suppression we evaluated the impact of donor NK cells on GVHD-inducing donor T cells. Interleukin-2 activated allogeneic NK cells isolated from C57Bl6 (H-2b) or FVB (H-2q) animals were transplanted along with T cell-depleted bone marrow (TCD-BM) into lethally irradiated BALB/c (H-2d) mice, followed 2 days later by luciferase-expressing CD4+ and CD8+ conventional T cells (Tcon) from the same donor strain (Tcon+NK group). Control mice received TCD-BM on day 0, and luciferase-expressing T cells on day 2 after transplant (Tcon group). Bioluminescence imaging of Tcon+NK mice revealed a significantly lower T cell bioluminescent signal compared to Tcon mice (p=0.01 on day 5 post T cell transplant). We assessed the impact of NK cells on donor T cell activation and proliferation. CFSE proliferation analysis of alloreactive CD4 and CD8 T cells reisolated on day 4 post transplant showed a decreased percentage of dividing donor T cells in the Tcon+NK group. A reduced percentage of T cells in the Tcon+NK group as compared to the Tcon group expressed the T cell activation marker CD25 (11% and 49%, respectively, among donor CD4) and a reduced percentage of T cells from the Tcon+NK group down-regulated CD62L. Reisolated donor T cell numbers were reduced in the Tcon+NK mice compared to Tcon control mice. The impact of donor NK cells on donor Tcon function was addressed by intracellular cytokine staining. Fewer donor T cells reisolated from the spleen and lymph nodes of Tcon+NK mice produced the proinflammatory cytokines IFN-γ and IL-2 on day 3 after transplant. These observations can be explained by an NK cell-mediated induction of apoptosis in the donor Tcon. T cells reisolated from the peripheral lymph nodes of Tcon+NK animals at day 4 post transplant stained higher for the TUNEL apoptosis marker than those from Tcon mice (p<0.0001 for CD4 and CD8). To determine if this increase in apoptosis was due to a direct interaction between the donor T cells and NK cells, donor Tcon were reisolated from transplanted mice and used as targets in a killing assay. We demonstrated direct, specific lysis of these reisolated T cells by activated NK cells, both of which are from the donor strain and thus syngeneic to each other. Donor T cells reisolated from the lymph nodes of transplanted mice upregulated the NKG2D ligand Rae1γ as compared to naïve T cells, as shown by FACS. Further, use of an NKG2D-blocking antibody decreased the specific lysis of donor Tcon reisolated from the lymph nodes by activated NK cells in the in vitro killing assay, compared to an isotype control antibody (p=0.004). These data indicate that NK cells are causing direct, NKG2D-dependent lysis of alloreactive donor T cells in vivo during GVHD induction. Recent data from our laboratory has shown a lack of NKG2D ligand expression on GVHD target tissues in irradiated recipient mice. The tissue-specific expression of NKG2D ligands may explain why allogeneic NK cells do not cause GVHD but do impact donor T cells. We further investigated the ability of T cells in this model to elicit a GVT effect in the presence or absence of NK cells. Using a luciferase-expressing A20 lymphoma cell line, we demonstrated tumor clearance in groups receiving A20+Tcon and A20+Tcon+NK, as measured by A20 bioluminescence signal. Animals in the A20+Tcon+NK group had a lower peak bioluminescent signal than animals in the A20+Tcon group (p=0.03 on day 4 post T cell transplant), indicating an additive GVT effect of the T cells and NK cells. Thus, the T cells in this model are capable of mounting an effective GVT response. In addition to the established mechanism of NK cell-mediated elimination of recipient dendritic cells, we have demonstrated a novel mechanism of NK cell action in murine models of GVHD, whereby the donor NK cells inhibit T cell proliferation and activation and cause direct, NKG2D-mediated lysis of alloreactive donor T cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1331-1331
Author(s):  
Ying Lu ◽  
Wayne Harris ◽  
Jian-Ming Li ◽  
Edmund K. Waller

Abstract Abstract 1331 Poster Board I-353 Background In contrast to the essential role of host dendritic cells (DC) in the initiation of graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) reactions, less is known about the effects of donor DC on T cells in these processes. We have previously reported that adding donor BM plasmacytoid DC (pDC) progenitors to a murine graft composed of purified hematopoietic stem cells (HSC) and T-cells increased donor activation and Th1 polarization leading to enhanced GVL activity without increasing GVHD (Li et al. 2007 Blood 110:2181), while larger numbers of human donor pDC were associated with less GVL activity following allogeneic bone marrow transplant (BMT) (Waller et al. 2001 Blood 97:2948). To explore the dissociation of GVHD from GVL we tested the hypothesis that activation of donor T-cells by donor pDC leads to reciprocal induction of indoleamine 2,3-dioxygenase (IDO) expression and immune counter-regulatory activity by donor DC that limits donor T-cell allo-reactivity. Methods pDC precursors were purified by high-speed FACS from un-stimulated BM harvested from wild type (WT) and IDO knock-out (IKO) mice. T-cell proliferation and immune polarization in response to indirect antigen presentation by syngenic DC was measured in mixed lymphocyte reaction (MLR) and by recovery of CFSE-labeled donor T-cells from allogeneic transplant recipients. IDO expression in DC was measured by FACS and intracellular staining using pDC from IKO BM as a negative staining control. FACS-purified 5 × 104 pDC either from WT mice or from IKO mice in combination with 3 × 103 c-kit+ Sca-1+ hematopoietic stem cells (HSC) and 3 × 105 T-cells were transplanted in MHC mismatched C57BL/6→B10.BR model following lethal irradiation. Results FACS-purified lineage−CD11cloCD11b− pDC expressed B220 (72%), CD90 (51%), and CD317 (PDCA-1) (93%), had low levels of MHC-II, partial expression of CD4, and lacked expression of CD24, CD80, CD86 and NK cell or granulocytic markers. IDO expression in purified pDC was up regulated by IFN-γ produced by syngenic T-cells in vitro in one-way MLR. In vivo proliferation of CFSE-labeled donor T-cells was enhanced in mice that received pDC from either WT or IKO mice. Co-transplantation of IKO pDC led to higher proliferation rates of CD8+ T-cells but not CD4+ T-cells compared with the proliferation of corresponding donor T-cell subset co-transplanted with WT DC. The incidence and severity of GVHD (weight loss and GVHD score) were markedly increased in recipients receiving pDC from IKO mice as compared with mice receiving WT pDC. The enhanced GVL activity of donor T-cells induced by transplanted donor WT pDC was abolished when IKO pDC were transplanted into tumor-bearing recipients. Transplanting WT donor pDC led to larger numbers of donor-derived CD4+CD25+Foxp3+ T-reg cells in the spleens of transplant recipients compared with mice receiving IKO pDC (p<0.01) in combination with purified HSC and T-cells. Conclusions Taken together, our data suggest IDO expression in pDC as a critical downstream event that inhibits continued T-cell activation and GVHD. We propose a feedback model in which donor pDC initially induce Th1 polarization of activated donor CD8+ T-cells that secret high levels of IFN-γ. IDO expressed by donor pDC in response to local IFN-γ subsequently induces a counter-regulatory effect including the generation of T-reg and down-modulation of CD8+ T-cell allo-reactivity and proliferation, limiting GVHD while preserving the GVL activity of donor T-cells. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4630-4630
Author(s):  
Marays Veliz ◽  
John Powers ◽  
Ling Zhang ◽  
Enrique Santana ◽  
Jeffrey E. Lancet ◽  
...  

Abstract Abstract 4630 Background: The prognosis of patient with relapsed or refractory CLL/SLL is dismal with an overall response rate (ORR) to salvage therapy for refractory patients of 10–30%, and limited survival benefit with current treatment approaches. Phase II studies of single agent lenalidomide in patients with relapsed or refractory CLL revealed an ORR of 32–58% (7-17% CR). Recent in vitro studies have shown that lenalidomide enhances the rituximab-induced killing of NHL cell lines and B-CLL cells by enhancing ADCC activity and restoring the defective T-cell and NK-cell mediated tumor cell cytotoxicity. Methods: Patients with relapsed or refractory CLL/SLL received oral lenalidomide via dose escalation as follows: 2.5 mg on days 1–7, 5 mg on days 8–14 and 10 mg on days 15–21 followed by 7 days of rest in 28-day cycle; for cycle 2 and beyond 20 mg was given on days 1–21 on a 28-day cycle. Rituximab was dosed at 375 mg/m2 IV weekly for 4 weeks starting on day 15 of cycle 1. Treatment was continued until disease progression or toxicity. Primary objectives were ORR (CR+PR) and safety and tolerability of the combination regimen. CT scans, and bone marrow biopsies were done every 2 months to assess for response (NCI-WG 2008). Peripheral blood and bone marrow aspirates were collected for correlative studies before lenalidomide was initiated, before rituximab was initiated (between days 13–15), after finishing treatment with rituximab and then every two months until disease progression. Flow cytometry was performed using the following antibodies CD3, CD4, CD5, CD8, CD19, CD20, CD23, CD40, CD45RA, CD62L, CD80, CD86, CD95, IL-17A and FoxP3. Panels were created for the analysis of T-cell memory/naïve populations, B-cell populations, regulatory T-cells and Th17 cells. Data was collected to a limit of 10,000 events of the population of interest. Data is presented as total number of cells/ul instead as percentage to avoid misinterpretation due to the dramatic reduction in the number of B cell lymphocytes after initiation of therapy. Subpopulation of T cells memory/naïve were compared with an age matched population of normal controls. Results: 18 patients with CLL/SLL were enrolled on study. Median number of prior chemotherapies was 3 (range 1–5). Median age was 63 years (range 42–80). High risk cytogenetic abnormalities (del11q (11%), del 17p/p53 (11%), complex (22%)) were observed in 44% of the patients. 95% of the patients had received prior fludarabine therapy and 50% were fludarabine refractory. Overall clinical benefit was seen in 92% of patients (42% PR, 50% SD) with a median duration of response of 18 months for patients who achieved a PR and 12 months for patients with SD. Although all responses were PR, the PR rate improved with continued therapy suggesting increased responses with a longer duration of treatment with lenalidomide. Most common adverse effects were neutropenia (50% grade 3–4), tumor flare (28% grade 1–2, 11% grade 3–4), fatigue (11% grade 1–2, 6% grade 3–4), venous thromboembolic disease (11% grade 3–4), acute renal insufficiency (11%), rituximab related infusion reactions (11%), flu-like symptoms (11%), infections (11%), and hypercalcemia (11%). Correlative studies showed that peripheral blood CD4 and CD8 effector memory subpopulations decreased after initiation of lenalidomide therapy with subsequent elevation after rituximab treatment on the CD4 effector memory compartment. The Th17 compartment was minimally decreased after initiation of lenalidomide while the levels of regulatory T cells (Tregs) appeared to decrease with lenalidomide therapy and increase slightly after rituximab. The expression of CD20 from bone marrow samples decreased as expected with rituximab therapy; however shortly after the discontinuation of rituximab CD20 expression was regained by the B cells compartment. Later time points will be presented at the meeting. Conclusions The combination of lenalidomide with rituximab is a promising with clinical activity in heavily pretreated patients with relapsed or refractory CLL. The combination appears tolerable with observed events consistent with the use of these two agents in other studies. The impact of lenalidomide on the T cell subpopulations in patients treated with rituximab remains unclear. A detailed analysis of the BM compartment at latter time points will be investigated. Disclosures: Lancet: Eisai: Consultancy; Celgene: Honoraria. Komrokji:Genentech: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document