Birinapant Enhances Bendamustine-Induced Apoptosis In Activated B Cell-Diffuse Large Cell Lymphoma Cells

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5150-5150
Author(s):  
Indira D Joshi ◽  
Mitchell R Smith

Abstract Birinapant (TL32711), a Smac mimetic in clinical testing, potently targets Inhibitor of Apoptosis Proteins (IAPs, including cIAPs and XIAP) to unblock intrinsic and extrinsic pathways, enabling caspase-dependent apoptosis via multiple signals. Birinapant also inactivates canonical NF-kB signaling through cIAPs. We investigated the pro-apoptotic effects of birinapant, alone and in combination with bendamustine (BDM), an active lymphoma therapeutic agent, in a panel of B cell lymphoma cell lines representing germinal center/follicular (GC) vs. activated B cell (ABC) subtypes. We hypothesized that the efficacy of this potential combination therapeutic strategy might differ between GC and ABC lymphoma types, as ABC are reported to be NF-kB-dependent. We used the following EBV negative cell lines: WSU-FSCCL t(14:18)+ follicular lymphoma (FL), FC-TxFL2 t(14:18)+ transformed FL, and SU-DHL4 GC-type diffuse large B cell lymphoma (DLBCL) as examples of GC origin lymphomas. U2932 and TMD8 cell lines represent ABC-type DLBCL.  Apoptosis was determined by annexin V staining and confirmed by caspase-3 activation, each assessed by flow cytometric methods following 48 h incubation. Birinapant had little effect (<5% annexin V+ cells) as a single agent on any of these B cell lymphoma cell lines at ≤ 100 nM, though a low level of apoptosis (7-12% annexin V+ cells) was detectable at 10-20 µM in GC types. Addition of birinapant 30-60 minutes prior to BDM did not further enhance the already high level (>50% annexin V+) of apoptosis induced by 10 uM BDM in WSU-FSCCL and FC-TxFL2,  and only slightly enhanced the low level of BDM-induced apoptosis in the GC DLBCL cell line DHL-4 (to 10-15%). In the ABC DLBCL cell lines, however, whereas 10uM BDM induced <5% annexin V+ cells for U2932 and 10-15% for TMD8, addition  of 100 nM birinapant 30-60 minutes prior to 10 uM BDM induced 35-40% annexin V+ cells in each of these ABC-DLBCL cell lines. This enhancement was schedule-dependent, not observed when birinapant was added after BDM. Thus, the cell lines representing FL and transformed FL are sensitive to BDM at clinically-achievable concentrations, without further enhancement by birinapant. The 3 DLBCL lines were relatively insensitive to BDM compared with FL cells, but BDM-induced apoptosis was markedly enhanced when birinapant was added before (but not after) BDM in the 2 ABC type DLBCL lines. Further explorations into the mechanism of birinapant sensitization of ABC-DLBCL to BDM, issues of dose and schedule, and role of NF-kB-dependency are ongoing. These data suggest that therapeutic trials of BDM plus birinapant would be of interest in ABC type DLBCL. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4187-4187 ◽  
Author(s):  
Eugenio Gaudio ◽  
Chiara Tarantelli ◽  
Alberto Arribas ◽  
Luciano Cascione ◽  
Ivo Kwee ◽  
...  

Abstract Background IMGN529 is an antibody drug conjugate (ADC) consisting of an anti-CD37 antibody with direct anti-tumor activity conjugated via a thioether linker to the cytotoxic maytansinoid antimicrotubule agent DM1. IMGN529 has shown pre-clinical (Deckert et al, Blood 2013) and clinical activity in lymphoma (Stathis et al, ASH 2014; NCT01534715). Here, we assessed the anti-tumor activity of IMGN529 on a large panel of B cell and T cell human lymphomas to identify potential biomarkers of response. Methods Fifty-four lymphoma cell lines [diffuse large B cell lymphoma (DLBCL), n.=27; mantle cell lymphoma (MCL), n.=10; anaplastic large T-cell lymphoma, n.=5; marginal zone lymphomas, n=6, others, n=6] were exposed to increasing doses of IMGN529 or to the unconjugated DM1 for 72h. Cell proliferation was measured using the MTT. Apoptosis induction was defined by at least 1.5-fold increase in caspase 3/7 signal activation with respect to controls using the Promega ApoTox-Glo Triplex Assay. CD37 surface expression was assessed by cytofluorimetry. Gene expression profiling (GEP) was done with the Illumina HumanHT-12 Expression BeadChips on untreated cell lines followed by GSEA (NES > |2|, P<0.05, FDR<0.25) and limma t-test (FC> |1.2|; P< 0.05; top 200 up and top 200 down). Results. The IMGN529 median IC50 in the 54 cell lines was 780pM (95%C.I., 263pm-11.45nM). Activity was stronger (P<0.001) in B cell lymphoma cell lines (n= 46; median IC50=450pM; 95%C.I., 150-800pM) than in T cell lymphoma cell lines (n=8; median IC50=22.5nM; 95%C.I., 14-40nM). The median IC50 for DM1 was 30pM (C.I.95%, 20-40pM) with no differences between B and T cell lymphoma origin. IMGN529 induced apoptosis in 33/54 (61%) lymphoma cell lines. Surface CD37 expression was higher in cell lines derived from B than from T cells (P< 0.0001): IMGN529 IC50 values, but not of DM1, were negatively correlated with surface CD37 expression across all cell lines (R=-0.39; P= 0.018), but not within the individual B or T cell subgroups. Among B cell lines, DLBCL cell of origin, TP53 status or the presence of BCL2 translocation did not affect the sensitivity to IMGN529, while IC50s were higher in the presence of MYC translocation (P= 0.043). No association was seen between IMGN529-induced apoptosis or the sensitivity to DM1 with DLBCL cell of origin, TP53 status or the presence of BCL2 or MYC translocations. We then compared the baseline gene expression profiling of DLBCL cell lines that were highly sensitive to IMGN529 (IC50< 800pM; "S") versus less sensitive/resistant DLBCL cell lines (IC50>10nM, "R"), separately for germinal center B cell type (GCB) (S, n=11; R, n=8) and for activated B cell like (ABC) (S, n=4; R, n=3). In both DLBCL groups, MYC targets, genes involved in unfolded protein response, glycolysis and DNA repair were enriched in transcripts more expressed in R than S cell lines. Transcripts associated with low sensitivity included CD44, VIM, ANXA2, BCL2, ANXA2P1, HSP90B1, NFKBIZ, CDK6, BIRC5 in GCB and HSPA1B, HSP90AA1, CADM1, CD86, TUBB2A, TUBG1, NOTCH1 in ABC cell lines. HEBP1, PHB, PSME3, RNU6-15, RPL13 were more expressed in both GCB and ABC R. Genes involved in PI3K/AKT/mTOR, hypoxia, INF-gamma, TNFA signaling via NFKB and in complement were more expressed in S than in R cell lines. Genes associated with sensitivity to IMGN529 comprised: CD37 (IMGN529 target), CD79A, CHI3L2, FAM117B, LPAR5, NFATC1, PTPN22, RBM38, SGPP1, SLC6A16 in both GCB and ABC cell lines; BASP1, CXCR5, BIK, LY86, TLR10, CD86, LCK, CD22, PTPN22, BCL6, PIK3IP1, CDKN2A in GCB; AFF3, PIM1, MGMT, PDE4B, NFKBIE, SYK, FOXO1in ABC. Conclusions. IMGN529 showed a very strong anti-tumoral activity in pre-clinical lymphoma models. High expression of CD37 and mostly genes involved in BCR signalling were associated with sensitivity to IMGN529. Conversely, the presence of MYC translocation, a high expression of MYC targets and of genes known to be involved in drug resistance (BCL2, BIRC5, CDK6, heat-shock proteins, annexins, proteasome and tubulin components) appeared to negatively affect the response to the ADC but also represent therapeutic targets for novel combinations to be explored. Disclosures Rossi: Gilead: Honoraria, Research Funding; Abbvie: Honoraria; Janseen: Honoraria. Sloss:Immunogen Inc: Employment.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2381-2381
Author(s):  
Kanutte Huse ◽  
Marianne B. Eide ◽  
Christian Kersten ◽  
Erlend B. Smeland ◽  
June H. Myklebust

Abstract Bone morphogenetic proteins (BMPs) belong to the TGF-β superfamily, and mediate their effects mainly through the Smad signalling pathway. Whereas TGF-β is well established as one of the most potent negative regulators in hematopoietic cells, the role of BMPs remains more elusive. We have previously shown that BMP-6 inhibits the growth of naïve and memory human B cells. As high BMP-6 mRNA expression is associated with poor outcome in diffuse large B cell lymphoma (DLBCL; Rosenwald et al, N Engl J Med 2002), we hypothesized that resistance towards BMP-induced growth inhibition is a possible mechanism for lymphomagenesis. In the current study, 7 B cell lymphoma cell lines (representing Burkitt lymphoma (BL) and DLBCL) and tumour material from lymphoma patients were investigated to unravel the role of BMPs in lymphomas. We analyzed the expression of BMP receptors by FACS analysis, and found variable expression of the BMP receptor type I (Alk2, Alk3 and Alk6) and type II (BMP RII, Activin RIIA and RIIB) among the cell lines and in primary lymphoma cells, suggesting variable binding of BMPs. We next investigated the effect of BMP-2, BMP-4, BMP-6 and BMP-7 on proliferation and survival of B lymphoma cell lines, and found 2 of 7 cell lines to be resistant towards BMP-2 and BMP-4 induced growth inhibition. In contrast, 4 of 7 and 7 of 7 cell lines were resistant to BMP-6 and BMP-7 induced growth inhibition, respectively. In Sudhl6 cells that were highly sensitive to BMP-2 and BMP-6 induced apoptosis and inhibition of proliferation, we demonstrated that the cytokines IL-10, CD40 Ligand and BLyS were able to counteract the negative effects induced by BMPs, while IL-2 and IL-4 were not. On the contrary, both BMP-2 and BMP-6 greatly increased anti-IgM activation induced apoptosis. In resistant lymphoma cells, the BMPs were not able to induce detectable levels or induced low levels of phosphorylated SMAD1/5/8 compared to sensitive cell lines. Low or no increase in phosphorylation of SMAD1/5/8 induced by BMPs could only partly be explained by low/ undetectable expression of BMP receptors. Hence, upregulation of inhibitory Smads (Smad6, Smad7) or mutations in receptors or Smads represent other possible mechanisms for resistance to BMPs in lymphomas, and this is currently under investigation. We also investigated if the lymphoma cells produced BMPs themselves and found that 5 of 7 cell lines and 3 of 5 primary lymphomas produced significant amounts of BMP-7. Some lymphoma cells also had detectable levels of BMP-4 and BMP-6. Our findings that lymphoma cells are resistant towards BMP-7 and to some degree BMP-6 induced growth inhibition, whereas they produce these cytokines, suggest that resistance towards BMP induced signalling in B cell lymphomas can contribute to increased tumour growth.


Oncotarget ◽  
2017 ◽  
Vol 8 (70) ◽  
pp. 114924-114934 ◽  
Author(s):  
Reem Karmali ◽  
Vineela Chukkapalli ◽  
Leo I. Gordon ◽  
Jeffrey A. Borgia ◽  
Andrey Ugolkov ◽  
...  

PLoS ONE ◽  
2011 ◽  
Vol 6 (11) ◽  
pp. e27213 ◽  
Author(s):  
Cynthia Bellanger ◽  
Lydie Dubanet ◽  
Marie-Claude Lise ◽  
Anne-Laure Fauchais ◽  
Dominique Bordessoule ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1401-1401 ◽  
Author(s):  
Massimo Mangiola ◽  
Kate Welsh ◽  
Shinichi Kitada ◽  
Irene M. Pedersen ◽  
Nuzhat Pathan ◽  
...  

Abstract We tested the effects of Rituximab (anti-CD20) and IDEC-152 (anti-CD23) on apoptosis of B-cell malignancies, using established non-Hodgkin’s B-Cell lymphoma cell lines and freshly isolated Chronic Lymphocytic Leukemia (CLL) B-cells. We used monolayers of stably transfected CHO-cells expressing FcRγIII-A to present antibody to B-cells and promote crosslinking. Established B-cell lymphomas (n = 3) were cultured in the presence of FcRγIIIA-expressing CHO monolayer with or without MAbs and apoptosis was measured by annexin V/propidium iodide staining at various times thereafter. Both antibodies induced time-dependent apoptosis of B-cell lymphoma cell lines. After 48 hrs of treatment with either Rituximab or IDEC-152, the majority of the malignant B-cells were apoptotic (remaining viable cells = 28.7% ± 0.2137% for Rituximab and 30.87% ± 0.7332% for IDEC-152). Rituximab and IDEC-152 also induced marked increases in caspase activity in B-cell lymphoma cell lines, with fold-increases above baseline control cells of 25 ± 0.9031 and 24 ± 0.3839, respectively. In contrast, neither Rituximab nor IDEC-152 induced striking effects on primary CLL B-cells (n = 6). We therefore tested the combination of Rituximab or IDEC-152 with other agents that target anti-apoptotic proteins, exploring whether more efficient induction of apoptosis can be achieved. We cultured lymphoma cell lines and primary CLL specimens with chemical antagonists of XIAP (Schimmer, et al. Cancer Cell5: 25, 2004), an anti-apoptotic protein that inhibits effector caspases. When used at concentrations where XIAP antagonists alone were non-apoptotic (approximately 2.5 μM), a significant increase in apoptosis was achieved in cultures of lymphoma and CLL cells treated with either Rituximab or IDEC-152. These findings suggest that Rituximab or IDEC-152 may more efficiently induce apoptosis of malignant B-cells when combined with an apoptosis-sensitizing agent. (Supported by CA-81534; CA-78040; and an unrestricted grant from Genentech, Inc.).


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4336-4336
Author(s):  
Minglang Zhan ◽  
Xiaolei Wei ◽  
Weimin Huang ◽  
Yongqiang Wei ◽  
Ru Feng

Abstract Background: Pyruvate kinase muscle isoenzyme 2 (PKM2) is a key enzyme in aerobic glycolysis and thought to contribute to cancer cell metabolic reprogramming and regulating the reactive oxygen species (ROS). Doxorubicin has been showed to induced activated-B cell types diffuse large B-cell lymphoma (ABC-DLBCL) cells death by ROS accumulation. Our purpose was to evaluate whether PKM2 inhibition could enhance the sensitivity of doxorubicin in ABC-DLBCL. Methods: MTT assay was used to evaluate the proliferation of 2 ABC-DLBCL cell lines by treated with PKM2 inhibitor, PKM2 shRNA and doxorubicin. Apoptosis were detected by FCM after staining with Annexin V/SYTOX Green. Western Blot was used to evaluated the expression of PARP, Mcl1, Bcl2, Bax, Bim, p38 and JNK in ABC-DLBCL cells treated with PKM2 inhibition, PKM2 shRNA and doxorubicin. Results: PKM2 expression was found in both U2932 and SuDHL2 cell lines. Both PKM2 inhibitor and doxorubicin could inhibit the proliferation and induce apoptosis in ABC-DLBCL cell lines. PKM2 inhibitor could enhance the doxorubicin-induced apoptosis. ShRNA was used to knock down the PKM2 expression in ABC-DLBCL cell lines and PKM2 KD cell lines were more sensitive to doxorubicin. PKM2 inhibition could increase the expression of cleaved PARP, Bax, Bim, p38 and JNK as well as decrease Mcl1 and Bcl2 expression Conclusions: PKM2 inhibition could sensitize ABC-DLBCL cell lines to the cytotoxic effects of doxorubicin. Key words: PKM2, Doxorubicin, Diffuse large B cell lymphoma Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1260-1260
Author(s):  
Joost Kluiver ◽  
Melanie Winkle ◽  
Mina Tayari ◽  
Martijn Terpstra ◽  
Gertrud Kortman ◽  
...  

Abstract MYC is an important oncogenic transcription factor in B-cell lymphoma and high MYC expression is associated with aggressive behavior and poor clinical outcome. A large number of genes are regulated by MYC, several of which are shown to contribute to the MYC induced phenotype. Long non-coding (lnc)RNAs have recently emerged as a novel class of regulatory RNAs acting at the epigenetic, transcriptional or posttranscriptional level. Aberrant expression of several lncRNAs has already been implicated in various aspects of tumorigenesis. It is currently unknown to what extend MYC can regulate lncRNA expression and whether these lncRNAs contribute to the pathogenesis of B-cell lymphoma. Using an inducible MYC B cell lymphoma model and a custom microarray we investigated the expression >10,000 lncRNA loci and identified 1,820 lncRNA probes that show a MYC regulated expression pattern. Of these, 355 responded already after 4h, indicating direct MYC regulation. To identify transcripts relevant to lymphoma pathogenesis, we determined if these 355 lncRNAs were differentially expressed between primary lymphoma cases with high and low MYC expression and in addition also between MYC-high lymphoma cell lines and normal germinal center B cells. This revealed an overlap of 176 lncRNAs that were MYC regulated, aberrantly expressed in B cell lymphomas and differentially expressed between MYC-high and MYC-low lymphomas. Differential expression patterns were validated by qRT-PCR. As a first indication for lncRNA function, we isolated RNA from nuclear and cytoplasmic fractions of B cell lymphoma cell lines and determined enrichment fold in comparison to RNA isolated from the total cell lysates. Approximately 40% of all lncRNA transcripts showed specific subcellular localization, 80% nuclear and 20% cytoplasmic enriched. 31 of the 176 candidate lncRNAs were enriched in a specific cellular fraction. Furthermore, we analyzed which lncRNAs are enriched in Argonaute 2 containing complexes as an indication for lncRNA-miRNA interaction. For ∼5% of all expressed lncRNAs we found evidence for miRNA-lncRNA interactions, including 8 of the 176 differentially expressed MYC-induced lncRNAs. This study identified 176 MYC responsive lncRNAs that are deregulated in B cell lymphoma. To establish a definitive role in B cell lymphoma pathogenesis a further characterization is warranted. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Morten P. Oksvold ◽  
Ulrika Warpman Berglund ◽  
Helge Gad ◽  
Baoyan Bai ◽  
Trond Stokke ◽  
...  

AbstractChemo-immunotherapy has improved survival in B-cell lymphoma patients, but refractory/relapsed diseases still represent a major challenge, urging for development of new therapeutics. Karonudib (TH1579) was developed to inhibit MTH1, an enzyme preventing oxidized dNTP-incorporation in DNA. MTH1 is highly upregulated in tumor biopsies from patients with diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma, hence confirming a rationale for targeting MTH1. Here, we tested the efficacy of karonudib in vitro and in preclinical B-cell lymphoma models. Using a range of B-cell lymphoma cell lines, karonudib strongly reduced viability at concentrations well tolerated by activated normal B cells. In B-cell lymphoma cells, karonudib increased incorporation of 8-oxo-dGTP into DNA, and prominently induced prometaphase arrest and apoptosis due to failure in spindle assembly. MTH1 knockout cell lines were less sensitive to karonudib-induced apoptosis, but were displaying cell cycle arrest phenotype similar to the wild type cells, indicating a dual inhibitory role of the drug. Karonudib was highly potent as single agent in two different lymphoma xenograft models, including an ABC DLBCL patient derived xenograft, leading to prolonged survival and fully controlled tumor growth. Together, our preclinical findings provide a rationale for further clinical testing of karonudib in B-cell lymphoma.


2018 ◽  
Vol 60 (4) ◽  
pp. 1043-1052
Author(s):  
Marie-Sophie Dheur ◽  
Hélène A. Poirel ◽  
Geneviève Ameye ◽  
Gaëlle Tilman ◽  
Pascale Saussoy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document