Lenalidomide Promotes CRBN-Mediated Ubiquitination and Degradation of IKZF1 and IKZF3

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. LBA-5-LBA-5
Author(s):  
Jan Krönke ◽  
Namrata Udeshi ◽  
Anupama Narla ◽  
Peter Grauman ◽  
Slater Hurst ◽  
...  

Abstract Lenalidomide is a highly effective drug for the treatment of multiple myeloma and has activity in additional B cell lymphomas. Lenalidomide has been shown to bind the CRBN-DDB1 E3 ubiquitin ligase, but it is unknown how lenalidomide alters the activity of this enzyme complex, and how this leads to therapeutic efficacy.  We used a combination of quantitative proteomic approaches to demonstrate that lenalidomide acts by a novel mechanism of action for a therapeutic agent: in multiple myeloma cells, lenalidomide increases the binding of two substrates, IKZF1 (Ikaros) and IKZF3 (Aiolos), to the CRBN substrate adaptor; increases the ubiquitination of these substrates; and causes the targeted degradation of these transcription factors that are essential for the differentiation and survival of plasma cells including multiple myeloma cells. To identify targets of the CRBN-DDB1 ubiquitin ligase that are altered by lenalidomide, we applied SILAC (stable isotope labeling by amino acids in cell culture)-based quantitative mass spectrometry studies to globally assess changes in ubiquitination and proteome levels in the multiple myeloma cell line MM1S. Two members of the Ikaros transcription factor family, IKZF1 and IKZF3, were differentially ubiquitinated and decreased after lenalidomide treatment.  Subsequent validation experiments in various cell lines demonstrated that lenalidomide, thalidomide, and pomalidomide cause a decrease of endogenous and ectopically expressed IKZF1 and IKZF3 protein levels but not mRNA levels. Furthermore, we confirmed that IKZF1 and IKZF3 bind CRBN in the presence of lenalidomide, supporting CRBN’s role as a substrate adaptor. Consistent with this, shRNA mediated knockdown or overexpression of a CRBN mutant (CRBNYWAA) that does not bind lenalidomide abrogated lenalidomide’s effect on IKZF1 and IKZF3. Moreover, CRBN promoted IKZF3 ubiquitination in vitro in the presence of lenalidomide, demonstrating that it is an enzymatic substrate. Using deletion mutants of IKZF3 we identified a 58-amino-acid degron in the N-terminal zinc finger domain that is sufficient for lenalidomide-induced degradation. Based on sequence alignment of that region between lenalidomide responding Ikaros proteins IKZF1 and IKZF3 vs. non-responding IKZF2, IKZF4 and IKZF5 we substituted a single amino acid (IKZF3Q147H) that prevented binding of IKZF3 to CRBN and conferred resistance to lenalidomide induced degradation. IKZF1 and IKZF3 are essential transcription factors for terminal B cell differentiation. We evaluated the biological effects of IKZF1 and IKZF3 loss using shRNAs in a variety of cell lines. IKZF1 and IKZF3 specific shRNAs inhibited the growth of multiple myeloma cell lines while lenalidomide insensitive cell lines derived from other hematopoietic neoplasms were unaffected. Similarly, a dominant negative IKZF3 mutant resulted in growth inhibition of MM1S cells. In contrast, expression of IKZF3Q147Hconferred lenalidomide resistance to MM1S cells. Lenalidomide induces IL-2 expression and release in T cells. We found that lenalidomide induced a dose-dependent decrease of IKZF1 and IKZF3 protein levels in primary human T cells. Previous studies have shown that IKZF3 is a transcriptional repressor of IL-2. To further evaluate the effect of IKZF3 loss, we transduced primary human T cells with shRNAs targeting either IKZF3 or control. IL2 RNA levels increased 3.3 fold after lenalidomide treatment in T cells expressing control shRNAs. In contrast, the baseline IL2 RNA level in T cells transduced with IKZF3 specific shRNAs was 3.7 fold higher compared to controls and this effect could not be further stimulated by lenalidomide. In conclusion, selective targeting of two lymphoid transcription factors, IKZF1 and IKZF3, explains lenalidomide’s selective growth inhibition in multiple myeloma and likely other B cell lymphomas as well as its immunomodulatory effects in T cells. Furthermore, selective ubiquitination and degradation of specific targets provides a novel mechanism of therapeutic activity for proteins that are not otherwise amenable to small-molecule inhibition. Disclosures: Ebert: Celgene: Membership on an entity’s Board of Directors or advisory committees.

Blood ◽  
1995 ◽  
Vol 86 (7) ◽  
pp. 2747-2753 ◽  
Author(s):  
M Pettersson ◽  
C Sundstrom ◽  
K Nilsson ◽  
LG Larsson

Abstract PU.1 is a hematopoietic transcription factor belonging to the Ets-family. It is identical to the Spi-1 oncogene, which is implicated in spleen focus-forming virus-induced murine erythroleukemias. PU.1 seems to be required for early development of multiple hematopoietic lineages, but its expression in mature cells is preferentially observed in cells of the B-cell-and monocyte/macrophage-differentiation lineage. It binds the so-called Pu box, an important tissue-specific regulatory DNA element present in a number of genes expressed in these cell lineages. We have analyzed the expression and activity of PU.1 during human B-cell development using a panel of B-cell lines representing different stages of maturation, from early precursors to differentiated plasma cells. PU.1 mRNA expression and PU.1 DNA binding activity, as measured by Northern blot analysis and electrophoretic mobility shift assay, respectively, were evident in cell lines representing pro-B, pre- B, and mature B cells. We could also show Pu box-dependent transactivation of a reporter gene in transient transfections in these cell lines. In contrast, in a number of multiple myeloma cell lines, representing differentiated, plasma cell-like B cells, PU.1 DNA binding activity, mRNA expression, and Pu box-dependent transactivation were absent or detectable at a very low level. In lymphoblastoid cell lines, which exemplify an intermediate stage of B-cell differentiation, a reduced expression and activity were observed. The findings in the human multiple myeloma cell lines represent the first examples of B cells with downregulated PU.1 expression and apparently contradict observations in the murine system in which PU.1 is expressed and active in plasmacytoma cell lines. At present, it is unclear whether the lack of PU.1 expression and activity in human multiple myeloma cell lines represents a malignancy-associated defect in these cells or exemplifies a normal developmental regulation in terminally differentiated B cells.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2567-2567
Author(s):  
Yuen Lam Dora Ng ◽  
Stephan Bohl ◽  
Evelyn Ramberger ◽  
Oliver Popp ◽  
Imke Bauhuf ◽  
...  

Lenalidomide, an immunomodulatory drug (IMiD), is highly active and broadly used for the treatment of multiple myeloma. Despite high initial remission rates, patients frequently relapse and become resistant to the drug. Comprehensive analyses of gene mutations and RNA expression have identified inactivating mutations and RNA downregulation in cereblon (CRBN), the primary target of lenalidomide, in some of the resistant patients. However, the underlying resistance mechanism for the majority of cases remains unknown. Here, we performed quantitative tandem mass tag (TMT)-based proteomic analyses and RNA sequencing in five paired pre-treatment and relapse samples from multiple myeloma patients treated with drug combinations comprising lenalidomide to identify changes in protein expression associated with resistance. Using a stringent cut-off with an adjusted P value < 0.1 and log2 fold change (FC) > 2, we found 7 proteins to be significantly upregulated and 10 proteins to be downregulated in the relapsed versus pre-treatment multiple myeloma samples. Of these 17 deregulated proteins at relapse, only two were also found to be deregulated on the RNA expression level (adjusted P value < 0.1) as assessed by RNA sequencing. In general, correlation between protein expression levels and RNA expression levels were weak (median Pearson correlation coefficient r=0.35). Among the top upregulated proteins in relapse samples was cyclin-dependent kinase 6 (CDK6) with an average log2 FC of 2.1. Protein and RNA levels of CDK6 showed only weak correlation (r=0.4) and CDK6 RNA was not differentially expressed between the relapse and pretreatment samples. To validate the findings of the proteomic analysis, we assessed CDK6 protein levels by western blot in additional patient samples obtained at diagnosis (N=4) and at relapse (N=9). This confirmed a high CDK6 protein expression in 6 of 9 relapse samples while CDK6 could not be detected in the 4 pre-treatment samples. In order to determine the impact of CDK6 on drug sensitivity, we overexpressed CDK6 using either a retro- or lentiviral vector system in multiple myeloma cell lines. In two multiple myeloma cell lines tested, MM.1S and OPM2, CDK6 overexpression reduced sensitivity to lenalidomide and pomalidomide, but not to melphalan, bortezomib, or dexamethasone. To examine whether lowered IMiD-sensitivity can be overcome by CDK6 inhibition, we treated multiple myeloma cell lines either with the CDK6 inhibitor palbociclib, an IMiD-based CDK6-selective proteolysis targeting chimera (PROTAC) or a non-selective CDK6-PROTAC which is also capable of pomalidomide-mediated degradation of IKZF1 and IKZF3 (Brand et al., Cell Chem Biol 2019). Both palbociclib and CDK6-selective PROTAC as single treatments had only mild effects on the majority of multiple myeloma cells, implying that multiple myeloma cells are generally not dependent on CDK6. In contrast, the combination treatment of palbociclib with lenalidomide, or the non-specific CDK6/IKZF1/IKZF3-targeting PROTAC significantly inhibited proliferation, producing synergistic effects on the decrease of myeloma cell viability in 6 multiple myeloma cell lines, including those with a low IMiD sensitivity like RPMI-8226 and L363. This demonstrates that CDK6 inhibition or degradation enhances the cytotoxic effects of IMiDs. In order to investigate a potential mechanism for the synergistic effects of CDK6 inhibition and IMiDs, we analyzed protein levels in treated cells. CDK6 inhibition or degradation had no effect on CRBN protein levels nor on lenalidomide-induced degradation of IKZF1 and IKZF3. In contrast, combined degradation of CDK6, IKZF1, and IKZF3 revealed decreased protein levels of c-MYC, which was not observable in cells treated with palbocicilib, CDK6-selective PROTAC or pomalidomide alone. In conclusion, quantitative proteomics in primary multiple myeloma samples identified new druggable candidates including CDK6 in relapse that were overlooked by RNA expression analyses. Inhibition of CDK6 by palbociclib or a PROTAC sensitizes multiple myeloma cells to IMiDs and results in synergism when used in combination. Disclosures Bohl: Pfizer: Honoraria. Bullinger:Menarini: Honoraria; Novartis: Honoraria; Pfizer: Honoraria; Sanofi: Honoraria; Seattle Genetics: Honoraria; Janssen: Honoraria; Jazz Pharmaceuticals: Honoraria; Amgen: Honoraria; Astellas: Honoraria; Bristol-Myers Squibb: Honoraria; Celgene: Honoraria; Daiichi Sankyo: Honoraria; Gilead: Honoraria; Hexal: Honoraria; Bayer: Other: Financing of scientific research; Abbvie: Honoraria. Kroenke:Celgene: Consultancy, Honoraria; Takeda: Consultancy.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2999-2999 ◽  
Author(s):  
Susanne Hipp ◽  
Petra Deegen ◽  
Joachim Wahl ◽  
Diann Blanset ◽  
Oliver Thomas ◽  
...  

Abstract BI 836909 is a Bispecific T cell Engager (BiTE®), designed to redirect the body's endogenous T cells towards cells expressing B cell maturation antigen (BCMA) on the cell surface. BCMA is a highly plasma cell specific antigen and shows homogeneous expression on the cell surface of multiple myeloma, plasma cell leukemia and plasmacytoma cells. In normal tissues, BCMA expression is restricted to plasma cells, while other normal tissues do not express BCMA. This highly selective expression pattern makes BCMA an ideal target for T cell redirecting therapy. The pharmacological effect of BI 836909 depends on its simultaneous binding to both the CD3 epsilon subunit of the T cell receptor complex on T cells as well as to BCMA on multiple myeloma cells, resulting in the lysis of the BCMA-expressing cells. In vitro, unstimulated peripheral blood mononuclear cells (PBMCs) were co-cultured with several multiple myeloma cell lines and increasing concentrations of BI 836909, and tumor cell lysis, T cell activation, and induction of cytokine release were assessed. BI 836909 induced dose-dependent redirected lysis of human multiple myeloma cell lines with EC90 values ranging from 16 to 810 pg/mL. Viability of BCMA-negative cells was not affected, demonstrating the specificity of BI 836909 for BCMA. The expression of the activation markers CD69 and CD25 on T cells and the release of cytokines by T cells were target-dependent and occurred only in the presence of BCMA-positive cells. In vivo anti-tumor activity of BI 836909 was assessed in NOD/SCID mice reconstituted with human T cells and bearing subcutaneous or orthotopic xenografts derived from human multiple myeloma cell lines. In the subcutaneous NCI-H929 xenograft model, animals were treated with BI 836909 by daily intravenous or subcutaneous bolus injections. Statistically significant dose-dependent anti-tumor activity was observed at doses of 50 µg/kg/day and higher. The efficacy of BI 836909 was comparable after intravenous and subcutaneous administration, when the difference in bioavailability of the different routes was considered. In an orthotopic L-363 xenograft model, treatment with BI 836909 resulted in a statistically significant prolonged survival at doses of 5 µg/kg/day and higher. BI 836909 shows comparable cross-reactive binding to both BCMA and CD3 epsilon of human and macaque origin at picomolar and low nanomolar affinities respectively, thus allowing the assessment of pharmacodynamics, pharmacokinetics, and safety in non-human primates. In toxicity studies, cynomolgus monkeys were administered doses of up to 135 µg/kg/day of BI 836909 via continuous intravenous infusion, and up to 405 µg/kg/day via daily subcutaneous injection for up to 28 days. A dose- dependent decrease in plasma cells was observed in the bone marrow of treated animals compared to the vehicle control group, consistent with BCMA expression on cynomolgus monkey plasma cells, this demonstrated the pharmacological activity of BI 836909. These pre-clinical data demonstrate that BI 836909 is a highly potent, efficacious and BCMA-selective T cell redirecting agent and support clinical testing of BI 836909 in multiple myeloma patients. Disclosures Hipp: Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria: Employment. Deegen:Amgen Research (Munich) GmbH, Staffelseestrasse 2, 81477 Munich, Germany: Employment. Wahl:Amgen Research (Munich) GmbH, Staffelseestrasse 2, 81477 Munich, Germany: Employment. Blanset:Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877, USA: Employment. Thomas:Amgen Research (Munich) GmbH, Staffelseestrasse 2, 81477 Munich, Germany: Employment. Rattel:Amgen Research (Munich) GmbH, Staffelseestrasse 2, 81477 Munich, Germany: Employment. Adam:Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria: Employment. Friedrich:Amgen Research (Munich) GmbH: Employment.


Blood ◽  
1995 ◽  
Vol 86 (7) ◽  
pp. 2747-2753 ◽  
Author(s):  
M Pettersson ◽  
C Sundstrom ◽  
K Nilsson ◽  
LG Larsson

PU.1 is a hematopoietic transcription factor belonging to the Ets-family. It is identical to the Spi-1 oncogene, which is implicated in spleen focus-forming virus-induced murine erythroleukemias. PU.1 seems to be required for early development of multiple hematopoietic lineages, but its expression in mature cells is preferentially observed in cells of the B-cell-and monocyte/macrophage-differentiation lineage. It binds the so-called Pu box, an important tissue-specific regulatory DNA element present in a number of genes expressed in these cell lineages. We have analyzed the expression and activity of PU.1 during human B-cell development using a panel of B-cell lines representing different stages of maturation, from early precursors to differentiated plasma cells. PU.1 mRNA expression and PU.1 DNA binding activity, as measured by Northern blot analysis and electrophoretic mobility shift assay, respectively, were evident in cell lines representing pro-B, pre- B, and mature B cells. We could also show Pu box-dependent transactivation of a reporter gene in transient transfections in these cell lines. In contrast, in a number of multiple myeloma cell lines, representing differentiated, plasma cell-like B cells, PU.1 DNA binding activity, mRNA expression, and Pu box-dependent transactivation were absent or detectable at a very low level. In lymphoblastoid cell lines, which exemplify an intermediate stage of B-cell differentiation, a reduced expression and activity were observed. The findings in the human multiple myeloma cell lines represent the first examples of B cells with downregulated PU.1 expression and apparently contradict observations in the murine system in which PU.1 is expressed and active in plasmacytoma cell lines. At present, it is unclear whether the lack of PU.1 expression and activity in human multiple myeloma cell lines represents a malignancy-associated defect in these cells or exemplifies a normal developmental regulation in terminally differentiated B cells.


2000 ◽  
Vol 111 (4) ◽  
pp. 1118-1121 ◽  
Author(s):  
A. Bellahcene ◽  
I. Van Riet ◽  
C. de Greef ◽  
N. Antoine ◽  
M. F. Young ◽  
...  

2008 ◽  
Vol 49 (7) ◽  
pp. 1374-1383 ◽  
Author(s):  
Antonino Neri ◽  
Sandra Marmiroli ◽  
Pierfrancesco Tassone ◽  
Luigia Lombardi ◽  
Lucia Nobili ◽  
...  

2004 ◽  
Vol 52 (5) ◽  
pp. 335-344 ◽  
Author(s):  
Naomi Gronich ◽  
Liat Drucker ◽  
Hava Shapiro ◽  
Judith Radnay ◽  
Shai Yarkoni ◽  
...  

BackgroundAccumulating reports indicate that statins widely prescribed for hypercholesteromia have antineoplastic activity. We hypothesized that because statins inhibit farnesylation of Ras that is often mutated in multiple myeloma (MM), as well as the production of interleukin (IL)-6, a key cytokine in MM, they may have antiproliferative and/or proapoptotic effects in this malignancy.MethodsU266, RPMI 8226, and ARH77 were treated with simvastatin (0-30 μM) for 5 days. The following aspects were evaluated: viability (IC50), cell cycle, cell death, cytoplasmic calcium ion levels, supernatant IL-6 levels, and tyrosine kinase activity.ResultsExposure of all cell lines to simvastatin resulted in reduced viability with IC50s of 4.5 μM for ARH77, 8 μM for RPMI 8226, and 13 μM for U266. The decreased viability is attributed to cell-cycle arrest (U266, G1; RPMI 8226, G2M) and cell death. ARH77 underwent apoptosis, whereas U266 and RPMI 8226 displayed a more necrotic form of death. Cytoplasmic calcium levels decreased significantly in all treated cell lines. IL-6 secretion from U266 cells was abrogated on treatment with simvastatin, whereas total tyrosine phosphorylation was unaffected.ConclusionsSimvastatin displays significant antimyeloma activity in vitro. Further research is warranted for elucidation of the modulated molecular pathways and clinical relevance.


Sign in / Sign up

Export Citation Format

Share Document